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Abstract: Heterogeneous catalysis often involves charge transfer between adsorbed molecules and
the surface of catalyst, and thus their activity depends on the surface charge density. The efficiency of
charge transfer could be optimized by adjusting the concentration of oxygen vacancies (Ov). In this
work, hexagonal Ni(OH)2 nanoparticles were initially synthesized by a hydrothermal process using
aluminum powder as the sacrificial agent, and were then converted into 2D Ni/NiO nanocomposites
through in situ reduction in hydrogen flow. The oxygen vacancy concentration in the NiO nanosheet
could be well-controlled by adjusting the reduction temperature. This resulted in strikingly high
activities for hydrogenation of nitrophenol. The Ni/NiO nanocomposite could easily be recovered
by a magnetic field for reuse. The present finding is beneficial for producing better hydrogenation
catalysts and paves the way for the design of highly efficient catalysts.
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1. Introduction

Hydrogenation is an important class of industrial reactions for converting unsaturated
hydrocarbons or nitroarenes to produce fine chemicals [1–5]. Estimations show that a quarter
of all chemical processes include at least one catalytic hydrogenation step [6]. Hydrogenation of
nitrophenol (NP) to aminophenol is a typical reaction important for both environmental remediation
and chemical stock production, considering that nitrophenols are hard-to-degrade compounds and
exist widely in industrial wastewater [7]. The aminophenols are important intermediate products for
synthesizing fine chemicals [8–10]. Supported nanoparticles of noble metals, including Pd, Au, and their
alloys, exhibit high activity for hydrogenation of nitrophenols [11–15]. Though conversion efficiency
is high, intensive costs of noble metals limit their large-scale industrial employment. To reduce the
cost and energy-consumption of the processing, highly active catalysts comprising non-precious
metals are highly preferable. Many efforts are thus devoted to developing Ni-based nanocatalysts for
hydrogenation. Unfortunately, the hydrogenation activity of pure Ni is generally limited under mild
conditions due to the inappropriate hydrogen adsorption energies. There is now demand for Ni-based
nanocatalysts with high performance.

The crucial step in hydrogenation reactions involves intermediate adsorption and subsequent
conversion into product on the nanocatalyst surface [16]. In such a process, charge interaction between
adsorbed species and the catalyst surface plays a determining role [17]. Current strategies to tune the
intermediate binding on active sites include doping the metal with a second element, introducing
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strain effect, or adjusting the exposed facets [18–20]. The central concept of these strategies is to
manipulate the local electronic structure of the active sites. No matter which strategy is adopted
to tune the electronic structure of the metal nanocatalyst, the nanometals are generally supported
on an oxide substrate with a large specific surface area. In this scenario, interactions with the
oxide support significantly impact the electronic structures and in turn the catalytic performance of
nanometals [21,22]. Recently, we have demonstrated that the electron exchange between the two
phases is highly correlated with the Fermi level of the oxide support [23]. The electron density and
Fermi level of oxides can be tailored by breaking the symmetry or stoichiometry of the crystal structure,
such as defects engineering [24,25] or doping [26,27], resulting in changes in catalytic activity and
activation energy of the catalysts. In particular, oxygen vacancies (Ov) of the oxide support enhance
the charge donation to the supported metals forming a well-oriented space charge layer [28]. It has
been shown that the surface Ov of NiO nanorods significantly enhances the electron conduction and
promotes HER (hydrogen evolution reaction) kinetics [29]. However, the intentionally formed excess
oxygen vacancies could be progressively annihilated during catalysis at elevated temperatures because
the oxide stays at the thermodynamic metastable state and requires a mechanism to maintain the
concentration of the Ov. For this purpose, using oxide containing the same element with the supported
metal nanoparticles to build the heterostructure would be effective for maintaining the level of oxygen
defects in the oxide due to the thermodynamic equilibrium between the two phases.

In this work, we report the fabrication of 2D Ni/NiO nanocomposites with abundant oxygen
vacancies (Ov) by in situ growth of Ni on a NiO support. The Al, as the sacrificial agent, is introduced
to direct the growth of the Ni(OH)2 nanosheet, which is mainly involved in the formation of a
hydrotalcite-like intermediate and subsequent conversion to Ni(OH)2 by hydrothermal treatment.
At the same time, much of the Al can be etched out during the hydrothermal process, so that the
mesh-like plate can form as a product. The obtained nanocomposites show a large amount of Ov on
the surface and the abundant defects are beneficial for the adsorption of 4-NP and hydrogen by the
enhanced electronic interaction. Moreover, the total amounts of Ov of the nanocomposites can be
tuned by the reduction temperature. The resulting Ni/NiO nanocomposites exhibit excellent catalytic
performance for hydrogenating p-nitrophenol to p-aminophenol by NaBH4. The successful synthesis of
2D Ni/NiO nanocomposites with abundant Ov paves the way for the design of highly efficient catalysts.

2. Results and Discussion

2.1. Formation of Ni/NiO Nanocomposites

The fabrication of hexagonal Ni/NiO nanocomposites was achieved via H2 reduction of
hydrothermal-grown Ni(OH)2 nanosheets. Figure 1 shows the XRD profiles of the as-synthesized
samples, depicting the transition process of Ni(OH)2 into Ni/NiO. The hydrothermal products were
assigned to Ni(OH)2 structure (JCPDS No. 73-1520) and were ready to decompose into NiO (JCPDS
No. 75-0197) at the relative low temperature of 250 ◦C. Due to the release of the H2O molecular during
the decomposition, the crystallinity of the NiO product is low, as expected, which is evidenced by the
broad diffraction peaks. Increasing the reduction temperature would produce Ni nanoparticles in
the NiO matrix. Metallic Ni appears when the reduction temperature reaches 300 ◦C and its content
increases with a reduction in temperature. The sample heated at 450 ◦C is mainly composed of metallic
Ni and the broadening of diffraction peaks is still obvious, indicating the size of the Ni products is at
the nanoscale. Notably, the Al signal peak in XRD disappears due to their low content, although some
residuals are observed in the EDS spectrum.
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Figure 1. XRD patterns of the Ni(OH)2, NiO-250, Ni/NiO-300, Ni/NiO-350, Ni/NiO-400 and Ni/NiO-450
catalysts compared with the standard pattern of Ni, NiO and Ni(OH)2.

The morphology of the products at different stages was observed by SEM. Figure 2 shows that
the hydrothermal grown Ni(OH)2 nanosheets have a hexagonal shape with the length of between
50–90 nm. After thermal decomposition, the NiO inherits the uniform nanosheet structure of the
Ni(OH)2 precursor. Ni particles were grown on nanosheets at a reduction temperature of 300 ◦C,
in good agreement with the XRD analysis. Ni/NiO nanocomposites prepared by thermal reduction are
expected to have a strong interaction across the interface [30]. Interestingly, the Ni nanoparticles grow
preferentially at the edge positions of the nanosheets. We deduce that the Ni–O bonding at the edge
position is weaker than that on the plane surface. Two parallel processes exist during the growth of
Ni nanoparticles: one is the reduction of NiO to Ni, and the other is the ripening of the reduced Ni.
The growth of Ni particles is accomplished by breaking the surface Ni–O bond and the subsequent
surface diffusion of the Ni atoms. In thermodynamics, Ni diffusion is driven by the energy difference
between the adhesion energy of the Ni atom on the NiO surface and the inherent binding energy of
metallic Ni [31]. Therefore, the size and distribution of metallic Ni nanoparticles, as well as the ratio
between Ni and NiO, could be tuned by controlling the reduction temperature and the duration. At a
higher temperature of 400 ◦C, a dense distribution of Ni nanoparticles on the nanosheet surface plane
is observed, indicating that the kinetic rates of the two processes are comparable. Further increasing
the reduction temperature could cause sintering of the nanocomposites (Figure 2f).
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Figure 2. SEM images of the as-prepared products. Hydrothermal grown Ni(OH)2 (a); samples after
H2 reduction at 250 ◦C (b), 300 ◦C (c), 350 ◦C (d), 400 ◦C (e), and 450 ◦C (f). (g) Schematic illustration of
the conversion of samples starting from Ni(OH)2.

The morphology and crystal structures of products at intermediate stages were further confirmed
using TEM. Figure 3 demonstrates the Ni/NiO nanocomposite converted from hydrothermal-grown
Ni(OH)2 nanosheets by H2 reduction at 250 ◦C and 350 ◦C, showing the inheritance of plate shape.
The Fourier transform pattern confirms the hexagonal symmetry in agreement with the [010] axis.
Therefore, the exposed facet of the obtained NiO is in the {010} plane. However, the nanosheets
obtained at 250 ◦C are polycrystalline, indicating that the formation of NiO by Ni(OH)2 dehydration
nucleates at different sites of the nanosheets. The interplanar spacing of 0.24 nm and 0.27 nm in
Figure 3b corresponds to (101) of NiO and (100) of Ni(OH)2, respectively. Brunauer–Emmett–Teller
(BET) surface areas and pore size distributions were measured and are summarized in Table S1 and
Figure S1. As expected, the surface areas are strikingly enhanced to 40.4 m2/g in NiO-250. Figure
S2 and Figure 3c show that the Ni particles are sufficiently formed from the NiO matrix at 350 ◦C,
resulting in a large number of active sites. The neighboring lattice fringe spacings of 0.2 nm and
0.24 nm correspond to the (200) and (111) planes of NiO, respectively [32]. Another 0.17 nm plane
spacing is well matched to the metal Ni d(200) spacing (JCPDS No. 65-2865), indicating that the sample
consists of a NiO matrix and embedded metal Ni nanoparticles (Figure 3d).



Catalysts 2019, 9, 944 5 of 11

Catalysts 2019, 9, x FOR PEER REVIEW 4 of 10 

 

hydrothermal-grown Ni(OH)2 nanosheets by H2 reduction at 250 °C and 350 °C, showing the 
inheritance of plate shape. The Fourier transform pattern confirms the hexagonal symmetry in 
agreement with the [010] axis. Therefore, the exposed facet of the obtained NiO is in the {010} plane. 
However, the nanosheets obtained at 250 °C are polycrystalline, indicating that the formation of NiO 
by Ni(OH)2 dehydration nucleates at different sites of the nanosheets. The interplanar spacing of 0.24 
nm and 0.27 nm in Figure 3b corresponds to (101) of NiO and (100) of Ni(OH)2, respectively. 
Brunauer–Emmett–Teller (BET) surface areas and pore size distributions were measured and are 
summarized in Table S1 and Figure S1. As expected, the surface areas are strikingly enhanced to 40.4 
m2/g in NiO-250. Figures S2 and 3c show that the Ni particles are sufficiently formed from the NiO 
matrix at 350 °C, resulting in a large number of active sites. The neighboring lattice fringe spacings 
of 0.2 nm and 0.24 nm correspond to the (200) and (111) planes of NiO, respectively [32]. Another 0.17 
nm plane spacing is well matched to the metal Ni d(200) spacing (JCPDS No. 65-2865), indicating that 
the sample consists of a NiO matrix and embedded metal Ni nanoparticles (Figure 3d).  

 
Figure 3. TEM and HRTEM image of the Ni(OH)2 converted products after H2 reduction at 250 °C (a, 
b) and 350 °C (c, d). Inset: FFT pattern of the rectangle region. 

The mixture of metallic Ni and nickel oxide of the as-synthesized samples was confirmed by X-
ray photoelectron spectroscopy (XPS). Figure 4 shows the XPS spectra of the as-synthesized Ni/NiO 
nanocomposites. The two peaks at ~855eV and ~872eV were assigned to the 2p3/2 and 2p1/2 of Ni. The 
two satellite peaks at ~862eV and ~880eV represent the main peak and satellite peak of Ni2+ 2p1/2, 
respectively, indicating that the existence state of Ni in the two samples is only Ni2+, which exists in 
the form of Ni(OH)2 or NiO. For Ni/NiO-350, the binding energy values of ~853 eV and ~871 eV were 
observed, corresponding to Ni0 2p3/2 and 2p1/2, respectively [33]. This result confirms that the surface 
of the Ni/NiO-350 sample consists of both Ni0 and NiO. Under reduction conditions in a H2 
atmosphere, the Ni(OH)2 precursor was reduced to the NiO intermediate in 250 °C, then the 
generated NiO intermediate was further reduced to Ni at 350 °C, but a thin NiO layer remains due 
to re-oxidation in air. After reduction at 450 °C, Ni nanoparticles agglomerate to form large Ni 
particles and the products lose the sheet-like shape. 

The high-resolution O 1s XPS spectra was deconvoluted into three peaks as shown in Figure 4b. 
The peaks located at 530.6 eV, 531.9 eV, and 533.3 eV could be attributed to lattice oxygen (Ni–O), 
adsorbed oxygen and absorbed water on the surfaces of the catalysts, respectively [34,35]. In addition, 
the peak centered at 531.9 eV is related to a large number of defect sites with lower oxygen 
coordination [29] and its content in all as-prepared nanocomposites is displayed in Figure 4b. The 
detailed analysis indicates that the O-vacancies are mainly located on the outermost surface of the 

Figure 3. TEM and HRTEM image of the Ni(OH)2 converted products after H2 reduction at 250 ◦C
(a,b) and 350 ◦C (c,d). Inset: FFT pattern of the rectangle region.

The mixture of metallic Ni and nickel oxide of the as-synthesized samples was confirmed by
X-ray photoelectron spectroscopy (XPS). Figure 4 shows the XPS spectra of the as-synthesized Ni/NiO
nanocomposites. The two peaks at ~855eV and ~872eV were assigned to the 2p3/2 and 2p1/2 of Ni. The
two satellite peaks at ~862eV and ~880eV represent the main peak and satellite peak of Ni2+ 2p1/2,
respectively, indicating that the existence state of Ni in the two samples is only Ni2+, which exists
in the form of Ni(OH)2 or NiO. For Ni/NiO-350, the binding energy values of ~853 eV and ~871 eV
were observed, corresponding to Ni0 2p3/2 and 2p1/2, respectively [33]. This result confirms that the
surface of the Ni/NiO-350 sample consists of both Ni0 and NiO. Under reduction conditions in a H2

atmosphere, the Ni(OH)2 precursor was reduced to the NiO intermediate in 250 ◦C, then the generated
NiO intermediate was further reduced to Ni at 350 ◦C, but a thin NiO layer remains due to re-oxidation
in air. After reduction at 450 ◦C, Ni nanoparticles agglomerate to form large Ni particles and the
products lose the sheet-like shape.
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The high-resolution O 1s XPS spectra was deconvoluted into three peaks as shown in Figure 4b.
The peaks located at 530.6 eV, 531.9 eV, and 533.3 eV could be attributed to lattice oxygen (Ni–O),
adsorbed oxygen and absorbed water on the surfaces of the catalysts, respectively [34,35]. In addition,
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the peak centered at 531.9 eV is related to a large number of defect sites with lower oxygen
coordination [29] and its content in all as-prepared nanocomposites is displayed in Figure 4b.
The detailed analysis indicates that the O-vacancies are mainly located on the outermost surface of
the Ni/NiO samples (near below 20 nm, Figure S3), which is highly beneficial for fine-tuning the
surface chemical and electronic structures, and finally regulating their reactivity [29]. Notably, with a
rising reduction temperature, the concentration of O-vacancies in the sample firstly increased and then
decreased. The highest concentration in Ov is obtained at NiO prepared at 350 ◦C. Though higher
temperature favors the formation of O-vacancies [36], excessive reduction temperature eliminates the
oxide phase and causes sintering of Ni/NiO-450. Therefore, 2D nanocomposites with abundant oxygen
defects were successfully prepared in our work. For metal nanoparticles dispersed on an oxide support,
the oxygen vacancy in the oxide impacts the electronic interaction across the interface [28,37]. Therefore,
many material strategies have been proposed for engineering the oxide defects. However, the oxygen
vacancies created by reduction have a strong tendency to be recovered [38]. In this work, the oxygen
vacancies in the NiO are expected to be maintained because the NiO has a direct contact with Ni.
Therefore, the stability of OV in NiO is guaranteed by the thermodynamics of the Ni–NiO couple.

2.2. Catalytic Performance

The catalytic activity of the nanosheet Ni/NiO composite was evaluated using hydrogenation of
p-nitrophenol by NaBH4. Pure Ni nanocrystals show limited activity for catalyzing the hydrogenation
reaction from p-nitrophenol to p-aminophenol [39]. This reaction process could be monitored by
scanning the light absorption profile of the solution. In this study, the peak intensity at 400 nm is
selected to represent the concentration of p-nitrophenol, while the intensity at 300 nm stands for the
concentration of p-aminophenol. As shown in Figure 5a, by adding the Ni/NiO-350 catalyst to the
p-nitrophenol solution containing NaBH4, the absorption band at 400 nm gradually weakened, while a
new band at 300 nm appeared. Because the light absorption coefficients of AP and NP are different,
the variation in absorbance peak does not match. The evolution in light absorption is widely adopted
in the literature to reflect the hydrogenation reaction where the p-nitrophenol molecule is directly
translated into the p-aminophenol [40,41] Within 5 min, the conversion of p-nitrophenol achieved
100% over the Ni/NiO-350 sample. Figure 5b shows the evolution of nitrophenol concentration over
different Ni/NiO nanocatalysts. It was found that the reactivity of nanocomposites follows: NiO-250 <

Ni/NiO-300 < Ni/NiO-450 < Ni/NiO-400 < Ni/NiO-350.
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For hydrogenation of nitrophenol using NaBH4 as the hydrogen source, the concentration of the
borohydride ion was higher than those of p-nitrophenol and Ni/NiO catalysts, so pseudo-first-order
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kinetics could be applied to investigate the reaction [42]. The pseudo-first-order rate constant k
was calculated from the equation −kt = ln(Ct/C0), where Ct and C0 stand for the concentrations
of p-nitrophenol at the time of t and at the beginning of the reaction, respectively [42]. The rate
constants (k) of all Ni/NiO nanocomposites are listed in Table S2. Ni/NiO-350 shows the highest
activity among all samples. The outstanding catalytic performance could be attributed to the dense
and uniform distribution of Ni nanoparticles on the oxide, accompanying the high concentration of
oxygen vacancies.

2.3. Magnetic Performance

As the metallic Ni is included in the final products, they exhibit room temperature ferromagnetism
that facilitates recovery of the catalyst after the catalytic reaction and recycling. Figure 6 depicts
the room-temperature magnetic hysteresis loop of the 2D Ni/NiO nanocomposites. The saturation
magnetization (MS) of the Ni/NiO nanocomposites ranges from 6.7 emu g−1 to 12.7 emu g−1, and the
coercive force (Hc) ranges from 7.5 Oe to 91.7 Oe. The Ni/NiO composite obtained by hydrogen
reduction has a large MS and Hc. For composite materials, MS is related to the content of the magnetic
phase [39]. In this work, the presence of Ni nanoparticles in the Ni/NiO composite microstructure
leads to a high MS.
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3. Materials and Methods

3.1. Materials

Nickel nitrate (Ni(NO3)2·6H2O, AR) and potassium hydroxide (KOH, AR) were purchased from
SinoPharm Chemical Reagent Corp (Shenyang, China), and aluminum powder (Al, 99.5%) from
Aladdin (Shanghai, China). All chemicals and solvents were used without further purification.

3.2. Synthesis of Samples

Ni(OH)2 precursor: The catalysts were synthesized using a hydrothermal method [43]. In a
typical preparation, 1.1632 g Ni(NO3)2·6H2O was dissolved in 30 mL of deionized water and the
solution was stirred for 30 min. KOH solution (2.5 M, 40 mL) was then added dropwise into the nickel
nitrate solution with a speed of ~1 mL/min under vigorous stirring for 1 h. Immediately after 0.2698 g
aluminum powder was added, the mixture was sealed in a Teflon-lined steel autoclave and maintained
at 200 ◦C for 20 h. Finally, the obtained precipitates were centrifuged and washed with deionized
water before drying at 60 ◦C overnight under vacuum.
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Ni/NiO nanocomposites: The dried precursor was then calcined in a furnace at different calcination
temperatures under flowing 10 vol % H2/He (100 mL min−1) for 2 h. In this study, the reduction
temperature ranged between 250 ◦C and 450 ◦C. The obtained nanocomposites were named Ni/NiO-T
(T represents the reduction temperature). By regulating the reduction temperature, we obtained sample
NiO-200, NiO-250, Ni/NiO-300, Ni/NiO-350, Ni/NiO-400, Ni/NiO-450.

3.3. Structural Characterizations

Powder X-ray diffraction (XRD) was used to determine the crystal structure of the samples on a
Phillips X-Pert X-ray diffractometer (Almelo, Netherlands) (Cu KR radiation, λ = 1.5418 Å) at 40 kV
and 15 mA. The scanning electron microscopy (Tokyo, Japan) (SEM) images were recorded using a
Hitachi SU8020 scanning electron microscope. Transmission electron microscopy (TEM) images were
taken on Tecnai G2S-TwinF20 equipped with energy dispersive spectroscopy (EDS) (Akishima, Japan).
Surface chemical states were analyzed by X-ray photoelectron spectroscopy (XPS, PHI 5000 Versaprobe)
with Al-Kα excitation. The charging shift was calibrated using a C 1s photoemission line at 284.8 eV.
Raman spectra were collected on an INVIA Raman system under excitation of 532 nm. Nitrogen
adsorption–desorption measurements were carried out on an ASAP 2020 instrument (Shah Alam,
Selangor, Malaysia). Before the measurement, all the catalyst samples were degassed at 200 ◦C under
vacuum for 2 h. The specific surface areas of samples were determined by N2 adsorption/desorption
isotherms at 77 K collected on an ASAP 2460 gas adsorption analyzer. Magnetic properties were
measured on a vibrating sample magnetometer (VSM) at room temperature.

3.4. Catalytic Activity Measurements

The as-obtained Ni/NiO nanocomposites were used as catalyst for the hydrogenation of
4-nitrophenol using NaBH4 as a hydrogen source. In a typical procedure, 25 mL 4-nitrophenol
solution (0.072 mol/L) and 25 mL NaBH4 solution (0.72 mol/L) were mixed in a 100-mL beaker under
stirring at 1000 r min−1 at room temperature, atmospheric pressure and then 5 mg of catalysts were
added into the system to trigger the catalytic reaction. The reaction processes were monitored by
UV–vis spectroscopy [44]. During the reaction process, 2 mL of reaction solution was withdrawn every
30 s and then immediately dispersed back after measurement.

4. Conclusions

In summary, we have demonstrated a simple hydrothermal method and subsequent hydrogen
reduction for the preparation of uniform 2D Ni/NiO nanocomposites. The nanocomposites were
obtained by heating Ni(OH)2 nanosheets in H2 flow. Balancing the reduction of NiO and the ripening
of the resulted Ni nanoparticles plays a critical role in controlling the Ni nanoparticle distribution on
the NiO surface. The hexagonal 2D Ni/NiO nanocomposites exhibit excellent catalytic activity for the
reduction of 4-nitrophenol to 4-aminophenol in NaBH4 solution. The high hydrogenation activity of
the Ni/NiO nanocomposite resulted from the interfacial electronic interaction enhanced by the rich
oxygen vacancies in the NiO. In addition, the ferromagnetic feature of the nanocomposites renders
them easy to recover and reuse after the reaction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/11/944/s1,
Figure S1: N2 adsorption–desorption isotherms and pore size distribution, Figure S2: TEM image of the Ni/NiO
after reduction at 350 ◦C, Figure S3: EDS mapping and TEM images of Ni/NiO-350 sample, Table S1: Textural
properties of the Ni/NiO nanocomposites.
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