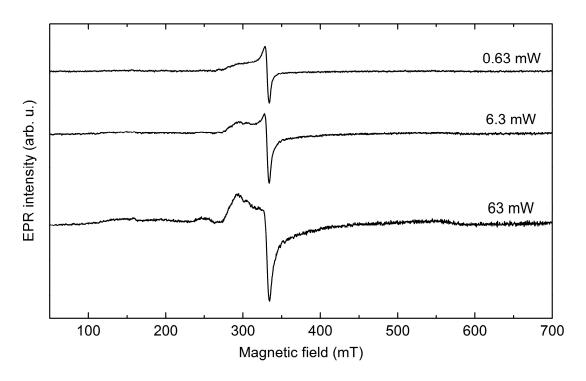

Supplemental Materials


In situ EPR characterization of a cobalt oxide water oxidation catalyst at neutral pH

Yury Kutin,^{1,†} Nicholas Cox,^{2*} Wolfgang Lubitz,¹ Alexander Schnegg,^{1*} Olaf Rüdiger^{1*}

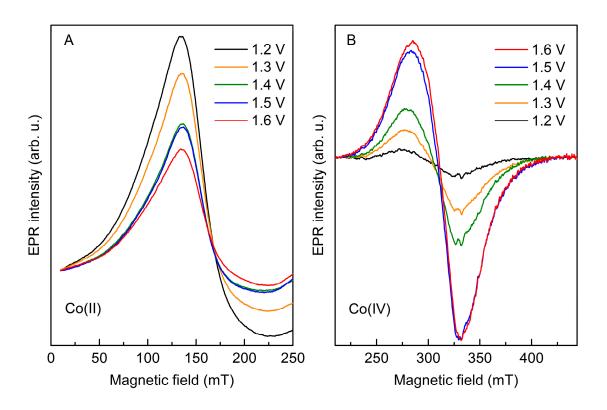

¹Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany; ²Research School of Chemistry, the Australian National University, ACT 2601 Canberra, Australia; [†]Present address: Department of Chemistry and Chemical Biology, TU Dortmund University, D-44227 Dortmund, Germany.

Figure S1. Bottom two traces of Figure 3 A: EPR spectra of a Co-Pi modified Au electrode electrolyzed at the highest applied potential of 1.7 V, recorded before (top) and after (bottom) the electrolyte solution exchange. $P_{\text{MW}} = 63 \text{ mW}$, T = 5 K.

Figure S2. EPR spectra of the electrolyte solution used in the titration series measured at several MW power levels. The narrow $g \approx 2.1$ line is found in the solution measured separately from the cell.

Figure S3. (**A**) The loss of the Co(II) species and (**B**) the increase in the Co(IV) EPR intensity as a function of applied potential above the water oxidation threshold.