
catalysts

Article

In Situ EPR Characterization of a Cobalt Oxide Water
Oxidation Catalyst at Neutral pH

Yury Kutin 1,† , Nicholas Cox 2,* , Wolfgang Lubitz 1 , Alexander Schnegg 1,* and
Olaf Rüdiger 1,*

1 Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany;
yury.kutin@tu-dortmund.de (Y.K.); wolfgang.lubitz@cec.mpg.de (W.L.)

2 Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
* Correspondence: nick.cox@anu.edu.au (N.C.); alexander.schnegg@cec.mpg.de (A.S.);

olaf.ruediger@cec.mpg.de (O.R.)
† Present address: Department of Chemistry and Chemical Biology, TU Dortmund University,

D-44227 Dortmund, Germany.

Received: 7 October 2019; Accepted: 31 October 2019; Published: 6 November 2019
����������
�������

Abstract: Here we report an in situ electron paramagnetic resonance (EPR) study of a low-cost,
high-stability cobalt oxide electrodeposited material (Co-Pi) that oxidizes water at neutral pH and
low over-potential, representing a promising system for future large-scale water splitting applications.
Using CW X-band EPR we can follow the film formation from a Co(NO3)2 solution in phosphate buffer
and quantify Co uptake into the catalytic film. As deposited, the film shows predominantly a Co(II)
EPR signal, which converts into a Co(IV) signal as the electrode potential is increased. A purpose-built
spectroelectrochemical cell allowed us to quantify the extent of Co(II) to Co(IV) conversion as a
function of potential bias under operating conditions. Consistent with its role as an intermediate,
Co(IV) is formed at potentials commensurate with electrocatalytic O2 evolution (+1.2 V, vs. SHE).
The EPR resonance position of the Co(IV) species shifts to higher fields as the potential is increased
above 1.2 V. Such a shift of the Co(IV) signal may be assigned to changes in the local Co structure,
displaying a more distorted ligand field or more ligand radical character, suggesting it is this subset
of sites that represents the catalytically ‘active’ component. The described spectroelectrochemical
approach provides new information on catalyst function and reaction pathways of water oxidation.
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1. Introduction

The Nocera catalyst [1], a self-healing [2], cobalt/phosphate derivative (Co-Pi), formed in situ
from a CoII solution under oxygen evolution potentials represents a promising system for future
large-scale water splitting applications coupled to the production of hydrogen as fuel [3]. The Co-Pi
catalyst can be deposited at oxidizing potentials from an aqueous solution of a cobalt salt in potassium
phosphate buffer on a variety of conducting surfaces including glassy carbon, carbon felt, silicon,
and ZnO photoanodes [4–6]. It has an overpotential of about 200–300 mV at 1 mA/cm2 comparable
to RuO2, one of the most efficient metal oxide catalysts at present. The catalyst is particularly robust
and can operate in brine and river water, suggesting that it is not inhibited by naturally occurring
concentrations of other ions [7]. Integration of the Co-Pi catalyst with silicon-based semiconductors in
a solar water-splitting cell has also been reported [8]. It is expected that deposition of the film involves
oxidation from Co(II) to Co(III), while further oxidation presumably generates Co(IV) oxo species
from which O2 is produced [9]. Related Co-based catalysts can be deposited using various electrolytes,
such as borate (Co-Bi), fluoride, sulfate, etc. [10].
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The groups of Dau and Nocera have studied its short-range order using in situ Co K-edge
X-ray absorption spectroscopy of frozen Co-Pi catalyst electrodes [11,12]. X-ray absorption near edge
structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy data assign the
oxidation state and the ligand field of the deposited Co to be predominantly in the EPR silent 3+ state
with near-octahedral, oxygen coordination. Co–Co and Co–O distances suggest the film represents
clusters of complete (Co4O4) and/or incomplete (Co3O4) cobalt-oxo cubanes, or corner and edge
sharing molecular cobaltate clusters [12]. Alternative models, which include counter-ions, suggested
the Co-Pi film contains tile-shaped Co10O32 units with cations (e.g., K+), anions (e.g., HPO4

2−) and
water filling the space in between these tiles [13]. A recent synchrotron-based X-ray grazing incidence
diffraction (GID) study of the Co-Pi films combined with atomic force microscopy (AFM) revealed
aggregations of Co-Pi nanoparticles resulting in a highly porous film morphology, with the electrolyte
anions present within the films as shown by Fourier transform infrared (FT-IR) spectroscopy [14].
In later measurements the nature of the anion was shown to modulate the conductivity of the
film [15]. While the location and mechanism of O—O bond formation have been probed by differential
electrochemical mass spectrometry coupled with 18O isotope labeling [16], the precise details remain
under debate. Current literature favors a radical coupling mechanism between two surface/terminal
Co-oxyl radicals [17,18].

There is general consensus that Co(IV) species are key reaction intermediates in the water
oxidation. Co(IV), a d7 ion, is an EPR-active species in both its high-spin (4T1) and low-spin (2E)
forms, and this method has been previously applied to a series of Co(IV) containing model complexes
and minerals [19–30] including the Nocera catalyst. Ex situ EPR spectroscopy confirms that the net
oxidation state of the Co ions of the film increases at potentials required for water oxidation catalysis.
Using CW X-band EPR spectroscopy the group of Britt [31] identified a low-spin (S = 1/2) Co(IV)
species centered at geff = 2.27. This finding was later confirmed by EPR studies in Co-oxide catalyst
films prepared in borate, fluoride and other buffers [10]. Depending on the buffer solution and the
applied potential, Co(IV) g-values ranging from 2.2 to 2.4 have been observed. In borate buffer
it was found that the effective g-values slightly shift to higher resonance fields (corresponding to
smaller g-values) upon increasing the applied potential during film formation with concomitant signal
broadening. Co(IV) species in Co-oxide films bear a resemblance to the EPR signal seen for a tetranuclear
Co(III)3Co(IV) cubane complex [Co4O4(C5H5N)4(CH3CO2)4]+ [32]. In this simpler model system
multi-frequency/multi-resonance X- and Q-band EPR data show that the spin of the unpaired electron
is delocalized over all four cobalt centers as well as partially over the ligands. This delocalization is
reflected by an axial g-tensor [33]. Co(IV) species in Co-oxide films, on the contrary, exhibit rhombic
g-tensors with significantly larger g-anisotropy as compared to their Co(III)3Co(IV) counterparts.
This discrepancy was rationalized by a much more localized electron spin density on one Co center [33].

In all of these studies, measurements were conducted after manually removing the catalytic
film from the electrode, drying, and freezing the sample in an EPR tube. This approach assumes
that the oxidation state and the local structure of the catalytic sites remain unchanged after removal
of the film. More reliable quantitative information on catalyst structures and oxidation states can
be extracted from in situ EPR measurements on intact films on electrodes with applied potential.
However, such measurements require dedicated spectroelectrochemical cells that can be inserted in
an EPR resonator. In this study we employ a purpose-built spectroelectrochemical cell in order to
preserve the oxidation state of the electrolyzed catalytic film for the EPR investigation. This is achieved
by flash freezing the cell in liquid nitrogen while the potential is applied on the working electrode.
Our cell design overcomes many of the problems encountered in performing EPR in tandem with
electrochemistry. We demonstrate that our approach allows for quantification of Co(II) and Co(IV)
states in electrodeposited Co-oxide films under applied potential bias. In addition, potential-dependent
shifts of the EPR resonance are observed. Possible structural changes in the local Co structure inducing
these shifts of the EPR resonance are discussed.
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2. Results and Discussion

2.1. Performance of the Spectroelectrochemical Cell

The measurement of catalysts interfaced with conducting electrodes poses a series of challenges
when using EPR spectroscopy. EPR measurements are conducted in EPR resonators that separate
the magnetic field component (B1), inducing the EPR signal, from the electric component (E1) of the
electromagnetic radiation. The conductive electrode with the electrodeposited film has to be positioned
in the maximum of B1 but should be separated in space from E1. In addition, the solvent (water)
also strongly dampens microwaves (MW) in the liquid phase. Both these issues are typically solved
by using very small electrodes/sample geometries, which inevitably lead to a reduction of the EPR
signal. Our solution to this problem was to use instead a large gold (Au) electrode within a standard
X-band EPR tube frozen under operating conditions (applied bias) and measured at low temperature.
These conditions were necessary as both EPR signatures (Co(II), Co(IV)) of the film are broad and
can only be observed at cryogenic temperatures. Fortunately, the presence of a large conducting
electrode did not dramatically change the performance of the EPR resonator, i.e., did not lead to a
loss in sensitivity. However, we do note that other choices for the electrode (e.g., glassy carbon) in
the chosen configuration did not allow measurement of the Co film. We also note that it is important
to load the EPR tube in the same way (Au plate parallel/perpendicular to the applied magnetic field,
B0) for quantitative results and that artifacts stemming from the choice of materials for connections,
electrodes, etc. can be observed. Note too that the Pt counter electrode needed to be inserted all the
way to the bottom of the cell in order to obtain a homogeneously applied potential on the working
electrode and maximize the conversion of Co(II) to Co(IV).

2.2. Co(II) EPR Signature

CW X-band EPR spectra of as-deposited catalytic films show a broad, featureless EPR signal at
g ≈ 4, typical for Co(II) in octahedral coordination environment, with S = 3/2 and large positive zero
field splitting (see Figure 1). In our set-up EPR measurements were performed in a cell containing
both the Co-based film and Pi electrolyte solution. For a quantitative analysis of the paramagnetic Co
states in the electrodeposited film, EPR signals from Co in the solution need to be discriminated from
those in the film. Comparison of EPR spectra of the cell containing a film-covered electrode and of an
aqueous 1 mM Co(NO3)2 solution in 0.1 M Pi electrolyte is shown in Figure 1A. The line shapes are
fairly similar, making it impossible to quantify a possible admixture of the film and solution signals on
this basis. However, it was found that the two types of Co(II) species show very different relaxation
properties. In the film, the Co(II) species relaxes fast, with its EPR intensity growing as the square root
of the applied microwave power (PMW) over the available range (see Figure 1B). In contrast, Co(II) in
solution saturates above PMW = 0.1 mW at T = 5 K. Thus, by measuring at high power, of the order of
PMW = 50 mW, the Co(II) content of the film could be ascertained, through suppressing the residual
Co(II) population in solution.

2.3. Co Uptake during the Electrodeposition

EPR was used to quantify Co uptake from a 0.5 mM Co(NO3)2 electrolyte solution into the Co-Pi
film during the deposition. Aliquots of the solution were taken from the cell at several time points,
and the decrease of the Co(II) concentration in solution was monitored as a function of deposition
duration (see Figure 2). Simultaneously, aliquots of a control cobalt nitrate solution in Pi electrolyte
were analyzed to track the Co(II) intensity in the absence of electrolysis. The same two EPR tubes
were used for all time points to minimize errors in Co(II) quantification. The initial decrease in the
Co(II) population is linear with time, amounting to a loss of about 22 µg of Co per hour. The loss rate
decreases over time. Upon 23 h of deposition, about 70% of the Co ions initially present in solution have
incorporated into the film. No change in the Co(II) EPR intensity was observed for the control solution.
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catalyst film electrodeposited at 0.9 V from an aqueous 1 mM Co(NO3)2 solution in 0.1 M Pi electrolyte 

(red) and Co(II) in the starting solution (blue) measured at T = 5 K and PMW = 6.3 mW. (B) Normalized 

EPR intensity of Co(II) in the Co-Pi film (red circles) and electrolyte solution (blue diamonds) as a 

function of PMW with T = 5 K. Simulations obtained using (1 + P/P1/2)−0.5 are shown with solid lines, 

with best fit P1/2 values of 1 ± 0.2 mW for the solution and 945 ± 35 mW for the film species. 
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Figure 2. EPR intensity of free Co(II) in the electrolyte solution as a function of the electrodeposition 

duration (blue triangles) and in control solution (red diamonds). The blue dashed line represents a 

linear fit of the Co(II) intensity change during the first 6 h of deposition (if interpolated further, the 

linear fit reaches zero after approximately 20 h); red dashed line shows a zeroth-order polynomial fit 

of the control solution EPR intensity. 

Figure 1. (A) X-band CW electron paramagnetic resonance (EPR) spectra of a cobalt oxide (Co-Pi)
catalyst film electrodeposited at 0.9 V from an aqueous 1 mM Co(NO3)2 solution in 0.1 M Pi electrolyte
(red) and Co(II) in the starting solution (blue) measured at T = 5 K and PMW = 6.3 mW. (B) Normalized
EPR intensity of Co(II) in the Co-Pi film (red circles) and electrolyte solution (blue diamonds) as a
function of PMW with T = 5 K. Simulations obtained using (1 + P/P1/2)−0.5 are shown with solid lines,
with best fit P1/2 values of 1 ± 0.2 mW for the solution and 945 ± 35 mW for the film species.
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Figure 2. EPR intensity of free Co(II) in the electrolyte solution as a function of the electrodeposition
duration (blue triangles) and in control solution (red diamonds). The blue dashed line represents
a linear fit of the Co(II) intensity change during the first 6 h of deposition (if interpolated further,
the linear fit reaches zero after approximately 20 h); red dashed line shows a zeroth-order polynomial
fit of the control solution EPR intensity.

2.4. Potential Dependence of the Co-Pi EPR Spectrum

In order to determine changes in the oxidation state and local structure of paramagnetic
Co sites in the film as a function of the potential, the Co-Pi Au electrode was placed inside the
spectroelectrochemical cell and electrolyzed at increasing potentials (Figure 3). Linear scan voltammetry
shows an oxidation current starting at potentials more positive than +1.2 V, with a subtle pre-catalytic
wave at 1.1 V previously assigned to the Co(II)/Co(III) couple, similarly to what has been described
earlier (Figure 3B) [1]. Changes in the low-temperature EPR spectrum of the film are shown in
Figure 3A. For potentials in the range of 0.7 to 1.2 V the EPR signal is dominated by the broad Co(II)
signal. The Co(II) signal intensity varies by ≈25%, possibly due to changes in the B1 field distribution
and cavity Q-factor after reinsertion of the spectroelectrochemical cell. For voltages below 1.2 V,
an additional asymmetric EPR signal with a crossing point at g ≈ 2.06 and a broad component at
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g ≈ 2.27 was observed. This signal was assigned to a square planar Cu(II)-Pi complex in the electrolyte
solution. The copper presumably leaches from the connector to the Au electrode into the electrolyte
solution. Its intensity significantly drops when the electrolyte is exchanged (bottom trace in Figure 3
and Figure S1) and it is also present in electrolyte solutions separated from the cell (Figure S2). Based
on this assignment, the Cu EPR signal was not further considered in the discussion of the Co films.
When subjecting the film to electrolysis above the threshold of water oxidation catalysis (>1.2 V),
an additional EPR signal at g ≈ 2.23 with a line width of ≈50 mT becomes apparent. This new EPR
signal continues to grow with increasing potentials, while the Co(II) signal decreases. Based on its
spectral position and line shape, the signal can be clearly assigned to a low-spin Co(IV) species.
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Figure 3. (A) X-band CW EPR spectra of a Co-Pi modified working Au electrode electrolyzed at
increasing potentials; PMW = 63 mW, T = 5 K. (B) The loss of the Co(II) species (black circles) and
the increase in the Co(IV) intensity (red diamonds) as a function of applied potential are shown.
The increase in the Co(IV) population in the film coincides with the water oxidation (blue line; linear
scan voltammetry at 1 mV/s measured in the EPR spectroelectrochemical cell).

The increase in the Co(IV) EPR intensity is concomitant with an increase in the water oxidation
rate (Figure 3B). The highest achievable Co(IV) EPR intensity was limited by physical deterioration
of the Co-Pi films at oxidation potentials higher than ≈1.5 V, presumably due to excessive release
of O2—bubbles forming on the surface of the electrode leading to disintegration of the Co-Pi film.
As parts of a Co-Pi film broke off and fell from the electrode during catalysis, EPR intensities of both
Co(II) and Co(IV) signals dropped due to the material loss. The effect is best seen in the 1.7 V EPR
spectrum, which was excluded from further analysis. Interestingly, this was accompanied by a slight
broadening of the Co(II) EPR feature, possibly demonstrating changes in the surroundings for a part of
the Co(II) population. Exchanging the Pi electrolyte solution was followed by the restoration of the
initial Co(II) line shape (Figure S1).

The g-factor and line width of the Co(IV) signal match those observed by McAlpin et al. [31].
In this previous work the Co-Pi material was scraped off of an electrode surface and moved into an
EPR tube prior to freezing, potentially leading to modification of the catalyst. This is avoided in our



Catalysts 2019, 9, 926 6 of 11

set-up where the film-modified electrode is left intact and frozen under the operating conditions of
the cell. As both methods yield similar results, the overall Co oxidation level of the Co-Pi film must
remain unchanged following its removal from the electrode.

The amount of Co(IV) formed at high potentials varied depending on the film thickness. Thick
films show much stronger Co(IV) signals, indicating that the Co(IV) is not only located on the film
surface, but also in the bulk. This finding is in accordance with the proposed layered structure of the
electrodeposited Co-oxide films [10].

In addition, our in situ experiment resolves subtle changes in the position and shape of the Co(IV)
resonance as a function of applied potential (Figure 4). As the potential increases, the precise crossing
point of the Co(IV) signal shifts to higher fields, while the peak-to-peak width decreases (see Table 1).
Both effects were found to become more pronounced on average with an increase in film thickness.
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Figure 4. Change in the line shape and spectral position of the Co(IV) species as a function of
applied potential. Isolation of the Co(IV) EPR line was achieved by a scaled subtraction of the Co(II)
spectral feature of the 1.1 V spectrum from the higher-potential spectra, followed by polynomial
background correction.

Table 1. Co(IV) line shape parameters vs. applied potential for a Co-Pi film electrodeposited for 22 h at
1.1 V (vs. SHE).

Potential (V) Peak-to-Peak Line Width (mT) Effective g-Factor

1.2 53.9(5) 2.316(6)
1.3 52.7(4) 2.270(3)
1.4 49.6(4) 2.257(3)
1.5 47.3(4) 2.227(3)
1.6 47.6(4) 2.217(3)

A shift of the Co(IV) effective g-factor from 2.39 to 2.29 with increasing potential bias was observed
in an ex situ EPR study on electro-deposited Co-oxide catalyst films by Gerken et al. [10] This shift was
rationalized by an increase of spin-spin couplings, due to a decreased average distance between the
Co(IV) sites. Importantly this shift was coupled with an increase in the linewidth, as would be expected
in the case of increased intermolecular interactions, which is the opposite of what is seen in this study.
Furthermore, in the present case the increase of Co(IV) population in the films is accompanied by a
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strong decrease of paramagnetic Co(II), which could be expected to even reduce couplings between Co
spins in the film. Therefore, alternative reasons for the observed changes in the EPR line position and
shape need to be considered. A possible explanation are changes in the local Co environment leading
to changes in the Co(IV) g-anisotropy. It was shown recently that the line shape of the Co(IV) signal in
electrodeposited Co-oxide films is largely determined by its g-tensor anisotropies [33]. The g-tensor has
three components (g1, g2, g3), which represent the canonical values (different chemical environments)
of the species. g-anisotropy is induced by spin-orbit coupling (SOC). This leads to a shift of the EPR
signal away from the free electron g-value (ge = 2.0023) and the three individual g-values spreading
apart, which in this instance would manifest in terms of changes in the peak-to-peak width of the
signal. We speculate that the reduction in width of the signal and the shift towards ge indicate that the
Co(IV) sites formed at high potential:

(i) display larger crystal field splitting parameters, reducing the mixing via SOC within the d-orbital
manifold; or

(ii) the spin density migrates from the Co(IV) metal to its ligands, which again will reduce the overall
SOC owing to the inclusion of lighter atoms.

The first option (i) suggests that the high-potential Co(IV) subset has a more distorted ligand
field, or alternatively can be described as a ‘defect like’ site, and represent binding sites of substrate
water. Alternatively, option (ii) instead suggests that the high-potential Co(IV) subset may have some
ligand radical character, consistent with a radical coupling type O–O bond formation mechanism [34].
The challenge moving forward is to better isolate this subpopulation, potentially by moving to
higher microwave frequencies and to extend these measurements to pulsed methodologies such as
electron-nuclear double resonance (ENDOR). These will allow the spin density distribution across the
film to be obtained, revealing if indeed catalyst oxidation is in part ligand centered.

3. Materials and Methods

3.1. Electrochemical Measurements

All electrochemical experiments were carried out aerobically at ambient temperature using a
PARSTAT MC potentiostat/galvanostat from Princeton Applied Research. Electrolyte solutions
were prepared using purified water (18 MΩ·cm resistivity) obtained from the Milli-Q system.
22Co(NO3)2·6H2O (99.999%), K2HPO4 and KH2PO4 (99.9%) were used as received from Sigma-Aldrich
(Sigma-Aldrich, St. Louis, MO, USA). Gold electrodes were prepared from a gold wire pressed-flat into
a plate of dimensions (approximately: 2 mm× 0.2 mm× 50 mm) which could easily fit within an X-band
EPR tube. The design of a spectroelectrochemical cell used for the potential-dependent EPR of Co-Pi
films is shown in Figure 5. It consists of a Pt counter electrode parallel to the gold working electrode.
An AgCl plated Ag wire is used as reference electrode. Electrode potentials were converted to the
standard hydrogen electrode (SHE) scale using ESHE = EAg/AgCl + 0.2 V. Linear sweep voltammetry
(LSV) measurements were performed at 1 mV/s inside the EPR spectroelectrochemical cell.

3.2. Synthesis of Catalyst Films

Co-Pi films were electrodeposited on Au working electrodes from a 0.5 or 1 mM solution of
Co(NO3)2·6H2O in Chelex-demetalated 0.1 M potassium phosphate (Pi electrolyte) at pH 7.0 by bulk
electrolysis. Ag/AgCl was used as a reference electrode and a Pt wire as the counter electrode. Prior to
the deposition, Au electrodes were cleaned with aqua regia and submerged in the solution by ≈1.5 cm.
The deposition was done at a constant potential of 0.9 V vs. Ag/AgCl, where the water oxidation rate
is negligible. The deposition time was varied between 3 and 24 h. Upon deposition, catalyst films were
rinsed with water, allowed to dry in air and subsequently moved to the EPR spectroelectrochemical
cell for potential-dependent EPR measurements.
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reference electrode.

3.3. Potential Dependence

Potentials in the range of 0.7 to 1.7 V were applied in 0.1 V increments to the Au electrode
with the catalytic film fully submerged into the Co-free Pi electrolyte. Following each step (7 min
at a constant potential), the EPR spectroelectrochemical cell was frozen in liquid nitrogen, with the
potential still applied during freezing to preserve the catalyst oxidation state. Upon conclusion
of the low-temperature EPR measurement, the spectroelectrochemical cell was slowly thawed and
immediately connected to the potentiostat for the next step in the potential dependence.

3.4. EPR Spectroscopy

X-Band CW EPR measurements were performed using a Bruker E500 spectrometer equipped with
a Bruker ER 4116DM resonator (Bruker BioSpin, Rheinstetten, BW, Germany), Oxford Instruments ESR
935 cryostat and ITC503 temperature controller (Oxford Instruments, Abingdon, Eng., UK). Microwave
power PMW was in the range of 6 to 65 mW. Magnetic field modulation and temperature were 7.5 G
and 5 K, respectively.

4. Conclusions

A custom-made in situ spectroelectrochemical EPR cell was employed to monitor oxidation state
and structural changes in electrodeposited Co-Pi catalyst films vs. an externally applied potential bias.
Above a potential of 1.1 V a Co(IV) EPR signal was observed. The intensity of this EPR resonance
further increased with increasing potential, concomitant with an increase in the water oxidation rate.
In addition, the Co(IV) EPR signal was found to shift to higher resonance fields at rising potentials,
with its peak-to-peak width decreasing. Changes in the Co(IV) EPR line position and shape were
tentatively assigned to structure induced changes of the spin-orbit coupling. Our findings are in
accordance with previous ex situ EPR experiments on similar catalysts, which involved removal of the
catalyst material from an electrode prior to EPR measurements. This strongly invasive step is avoided in
the chosen in situ approach, which clearly reduces ambiguity as compared to earlier studies. A further
extension of the arsenal of in situ EPR experiments towards pulse EPR and hyperfine spectroscopies is
underway in our laboratories. The application of a novel in situ spectroelectrochemical EPR cell to
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a highly relevant Co thin film catalyst sets the basis for these experiments and application to other
heterogeneous catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/11/926/s1,
Figure S1: Bottom two traces of Figure 3A: EPR spectra of a Co-Pi modified Au electrode electrolyzed at the
highest applied potential of 1.7 V, recorded before (top) and after (bottom) the electrolyte solution exchange.
PMW = 63 mW, T = 5 K, Figure S2: EPR spectra of the electrolyte solution used in the titration series measured at
several MW power levels. The narrow g ≈ 2.1 line is found in the solution measured separately from the cell,
Figure S3: (A) The loss of the Co(II) species and (B) the increase in the Co(IV) EPR intensity as a function of applied
potential above the water oxidation threshold.
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