
catalysts

Review

Catalytic Oxidation Processes for the Upgrading of
Terpenes: State-of-the-Art and Future Trends

Audrey Denicourt-Nowicki 1,*, Mariem Rauchdi 1,2, Mustapha Ait Ali 2 and Alain Roucoux 1

1 Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France;
rauchdimariem@gmail.com (M.R.); alain.roucoux@ensc-rennes.fr (A.R.)

2 Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia,
Université Cadi Ayyad, BP 2390 Marrakech, Morocco; aitali@uca.ac.ma

* Correspondence: Audrey.Denicourt@ensc-rennes.fr

Received: 10 October 2019; Accepted: 23 October 2019; Published: 27 October 2019
����������
�������

Abstract: Terpenic olefins constitute a relevant platform of renewable molecules, which could be used
as key intermediates for the perfumery, flavoring, and pharmaceutical industries. The upgrading of
these cheap and available agro-resources through catalytic oxidation processes remains of great interest,
leading to the formation of either epoxides via the oxidation of the olefinic bond or α,β-unsaturated
ketones by the Csp3-H functionalization at the α-position of the double bond. This critical review
summarizes some of the most relevant homogeneous or heterogeneous catalysts designed for the
oxidation of some abundant terpenic olefins in the last decade (2008–2018).
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1. Introduction

Monoterpenes based on a 10-carbons skeleton and sesquiterpenes with 15 carbons are highly
abundant renewables, present as major constituents in essential oils and natural resins or as co-products
from the paper and citric juice industries. In 2015, the world production of turpentine oils was estimated
around 360,000 tons, arising from coniferous trees or as a co-product of the paper industry. Turpentine
can then be distillated to afford its major constituents, α- and β-pinene [1]. Besides, limonene is
principally obtained as a byproduct of the citric fruit juice industry, with a worldwide production of
more than 70,000 tons [2]. Terpenes constitute a sustainable platform of cheap renewables that could be
converted into valuable products for the production of perfumes, flavors, or pharmaceuticals, as well as
pertinent and potentially optically active building blocks [3,4]. The upgrading of terpenes can involve
many synthetic transformations, such as isomerization, hydrogenation, oxidation, rearrangement,
or esterification [5,6]. On this topic, Golets and Mikkola published in 2015 an exhaustive review
of scientific advances for α-pinene valorization, including various catalytic applications (such as
isomerization, hydrogenation, acetoxylation, etc.) [7]. Among these reactions, the oxyfunctionalization
of terpenic olefins through oxidation processes remains a relevant synthetic methodology to afford either
epoxides or allylic ketones and alcohols (Figure 1). In the context of an eco-responsible chemistry [8],
the use of catalytic processes for their upgrading remains attractive to limit the environmental impact
by lowering the energy barriers and minimizing the formation of co-products, thus simplifying the
work-up [9]. In 2009, Bicas et al. reviewed various methods for terpene oxidation via microbial
biotransformation using either purified enzymes or integer cells [10]. Here, we summarize some of
the most relevant molecular complexes and heterogeneous catalysts designed for the oxidation of
some abundant terpenic olefins, such as pinenes, limonene, valencene, or carenes, within the period of
ca. 2008–2018.
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Figure 1. Oxyfunctionalization of terpenic olefins into value-added products. 

One of the main challenges in these oxidation processes that should be underlined is the high 
control of the selectivity. In fact, complex reaction mixtures are often obtained, as realistically 
illustrated in the literature by Antunes and coworkers for the catalytic oxidation of α-pinene 1 using 
H2O2 as the oxidant and the biomimetic [FeIII(BPMP)Cl(μ-O)FeIIICl3] catalyst to methane 
monooxygenase (MMO) enzymes [11]. Although efficient catalytic activities with high conversions 
into the allylic products were achieved, the chromatogram (Figure 2) showed the complexity of the 
crude reaction mixture, with more than 20 products detected. This result fully justifies the 
development of new investigations to improve the selectivity with designed catalysts. 

 
Figure 2. Chromatogram of the challenging α-pinene oxidation with [FeIII(BPMP)Cl(μ-O)FeIIICl3] 
(adapted from reference [11]). 

The selectivity could in some cases be substrate-dependent, as observed by Gusevskaya’s team 
with chromium-containing mesoporous molecular sieves MCM-41 prepared by a sol-gel method 
with tetraethoxysilane and CrCl3·6H2O [12]. While the solvent-free oxidation of β-pinene 12, using 
molecular oxygen, afforded almost exclusively allylic mono-oxygenated derivatives, α-pinene 1 and 
limonene 2 were transformed into both epoxides and allylic oxidation products (Figure 3). These 
observations point out the difficulties in obtaining a general procedure for the oxidation of terpenes 
with a unique catalyst. 

Figure 1. Oxyfunctionalization of terpenic olefins into value-added products.

One of the main challenges in these oxidation processes that should be underlined is the high
control of the selectivity. In fact, complex reaction mixtures are often obtained, as realistically illustrated
in the literature by Antunes and coworkers for the catalytic oxidation of α-pinene 1 using H2O2 as the
oxidant and the biomimetic [FeIII(BPMP)Cl(µ-O)FeIIICl3] catalyst to methane monooxygenase (MMO)
enzymes [11]. Although efficient catalytic activities with high conversions into the allylic products
were achieved, the chromatogram (Figure 2) showed the complexity of the crude reaction mixture,
with more than 20 products detected. This result fully justifies the development of new investigations
to improve the selectivity with designed catalysts.
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(adapted from reference [11]).

The selectivity could in some cases be substrate-dependent, as observed by Gusevskaya’s team
with chromium-containing mesoporous molecular sieves MCM-41 prepared by a sol-gel method
with tetraethoxysilane and CrCl3·6H2O [12]. While the solvent-free oxidation of β-pinene 12, using
molecular oxygen, afforded almost exclusively allylic mono-oxygenated derivatives, α-pinene 1 and
limonene 2 were transformed into both epoxides and allylic oxidation products (Figure 3). These
observations point out the difficulties in obtaining a general procedure for the oxidation of terpenes
with a unique catalyst.
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Figure 3. Solvent-free oxidation of terpenic olefins using Cr-MCM41 catalyst (adapted from reference 
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2. Epoxidation of Terpenes 

Epoxidation reactions constitute great synthetic transformations of olefins into epoxides and cis-
diols [13], as versatile intermediates for various areas from material science to bulk chemicals [14]. In 
the last decades, many efforts have been devoted to reducing the environmental footprint of these 
processes. The main challenges rely on the use of benign and abundant metals instead of scarce and 
potentially toxic metals (chromium or osmium) and more atom-economic oxidants such as dioxygen 
or hydrogen peroxide. Some recent examples of molecular complexes and heterogeneous catalysts 
are presented hereafter, arbitrary classified in three metal groups: (i) noble and semi-noble metals, 
(ii) first row metals, and (iii) miscellaneous metals. 
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a Reaction conditions: Camphene (2.5 mmol), H2O2, 60 °C, CH3CN (10 mL), 12 h. b Determined 
by GC analyses. c Complex mixture of products resulting from hydration of the olefinic bond, 
the skeletal rearrangement (hydroxycamphene, borneol, tricyclene). d 20 determined as two 
isomers in a 3:1 proportion. e Blank experiment: no PdCl2, 3 mmol H2O2, 6 h. f Conversion 
reached after 6 h reaction. 

First, a blank test on camphene 18 without catalyst afforded only 10% of epoxide 19 in 6 h, in 
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2. Epoxidation of Terpenes

Epoxidation reactions constitute great synthetic transformations of olefins into epoxides and
cis-diols [13], as versatile intermediates for various areas from material science to bulk chemicals [14].
In the last decades, many efforts have been devoted to reducing the environmental footprint of these
processes. The main challenges rely on the use of benign and abundant metals instead of scarce and
potentially toxic metals (chromium or osmium) and more atom-economic oxidants such as dioxygen
or hydrogen peroxide. Some recent examples of molecular complexes and heterogeneous catalysts are
presented hereafter, arbitrary classified in three metal groups: (i) noble and semi-noble metals, (ii) first
row metals, and (iii) miscellaneous metals.

2.1. Using Homogeneous Complexes

2.1.1. Noble and Semi-Noble Metals

In this subsection, among the short list of chemically noble metals (Pd, Rh, Ru, Au, Ag, Pt, Ir, Os)
that almost all chemists agree, semi-noble metals such as rhenium (Re) will be included.

Palladium catalysts. Oxidation of olefins by dioxygen, using Wacker-type systems (PdCl2/CuCl2),

is quite limited, owing to the formation of many co-products due to the Lewis acidity of CuCl2 [15].
Alternatively, da Silva et al. designed a CuCl2-free oxidative process based on a PdCl2/H2O2/CH3CN
combination [16] that could improve the selectivity toward oxidation products (Table 1).

Table 1. Oxidation of camphene 18 catalyzed by palladium salts a (adapted from reference [16]).

Entry PdCl2
(mmol)

Initial H2O2
(mmol)

Conv. into Oxidation
Products b (%)

Conv. into Other
Products b,c (%)

Selectivity b (%)

19 20 d 21

1 e 0 3.0 10 8 10 - -
2 0.1 1.5 32 8 90 5 5
3 0.1 3.0 78 15 8 49 43
4 0.1 6.0 60 27 5 35 60

5 f 0.3 3.0 86 11 2 67 31
6 f 0.4 3.0 90 10 3 64 33

a Reaction conditions: Camphene (2.5 mmol), H2O2, 60 ◦C, CH3CN (10 mL), 12 h. b Determined by GC
analyses. c Complex mixture of products resulting from hydration of the olefinic bond, the skeletal rearrangement
(hydroxycamphene, borneol, tricyclene). d 20 determined as two isomers in a 3:1 proportion. e Blank experiment:
no PdCl2, 3 mmol H2O2, 6 h. f Conversion reached after 6 h reaction.

First, a blank test on camphene 18 without catalyst afforded only 10% of epoxide 19 in 6 h,
in standard conditions (Table 1, Entry 1). Palladium dichloride (PdCl2) gives oxidation products
identified as epoxide 19, glycol 20 (endo and exo isomers in a 3:1 proportion), and aldehyde 21 (Table 1,
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Entries 2–6). Moreover, the oxidant concentration (Entries 2–4) has an impact on the conversion and the
product distribution at a same Pd concentration. An optimum conversion of 78% into oxidation products
was achieved with an H2O2/Substrate ratio of 1.2 (Entry 3) favoring the camphene-2,10-glycol 20.
This compound results either from the ring opening of 19 or from a possible hydroxypalladation of
olefin in a π-camphene–palladium complex followed by heterolysis of a carbon–palladium σ-bond
(Scheme 1). Moreover, higher metal concentration with an H2O2/substrate ratio of 1.2 (Entries 3, 5,
and 6) leads to an improved conversion rate (up to 90%) and an increased selectivity toward the glycol
camphene 20. The authors proposed a pathway, based on the previous work of Gusevskaya and
coworkers [15], to explain the various products formed and presumed that palladium hydroperoxidic
species (ClPdOOH and/or HOPdOOH) are likely to be the active species (Scheme 1).
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Scheme 1. Potential reaction pathways for Pd-catalyzed oxidation (adapted from reference [16]).

Rhenium catalyst. Methyltrioxorhenium(VII) (CH3ReO3, MTO) is known as a relevant oxidation

catalyst, being available, stable in air (O2 and humidity), and soluble in various solvents (even in
water). In 2010, Yamazaki developed a relevant procedure for the production of terpenic epoxides
with excellent yields (Table 2) using MTO as catalyst combined with 3-methylpyrazole and 1-methyl
imidazole [17]. These additives seem relevant to avoid the ring opening and the rearrangement of
acid-sensitive epoxides [18]. However, according to the substrate, the reaction conditions are quite
different and the rationalization remains difficult. Both isomers of carene 3 and 22 (Entries 1–6) and
pinene 1 and 12 (Entries 7–8) gave excellent yields into the corresponding epoxides, either under
solventless conditions or in dichloromethane (Entries 5–6) without significant differences between
both additives (Entries 3–4). However, in the case of 2-carene 22, a lower yield was observed without
1-methylimidazole, owing to a decomposition of the epoxide under longer reaction times (Entry 2).
Limonene 2 was oxidized into 1,2-epoxide 6 as the main product, along with diepoxide 25. The use of
an excess of oxidant, as well as a prolonged reaction time, selectively afforded diepoxide 25 (Entry 10).

Table 2. Methyltrioxorhenium(MTO)-catalyzed epoxidation of various terpenes—Optimization a

(adapted from reference [17]).

Entry Substrate MTO
(%) Additive b Solvent Time (h) Conv. (%) c Epoxide Yield

(%)

1
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Table 2. Cont.

Entry Substrate MTO
(%) Additive b Solvent Time (h) Conv. (%) c Epoxide Yield

(%)

3
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2.1.2. First-Row Metals

In the context of an eco-responsible chemistry, the use of earth-abundant and cheaper first-row
transition metals (Mn, Fe, Co, Ni or Cu), also called ”biometals,” provides an economical alternative to
noble metals. Among them, only manganese complexes have been used in epoxidation of terpenes.

Manganese catalysts. Manganese presents environmental compatibility, low toxicity [19],

and moderate cost [20], being the 12th most abundant element in the Earth’s crust, with a concentration
about 950 g per ton [21].

In 2010, Cubillos et al. [22] developed an original epoxidation process of (R)-limonene 2 with
Jacobsen-based manganese catalysts using in situ–generated dimethyldioxirane (DMD) produced from
potassium monopersulfate (KHSO5) and acetone, as oxidant. While usual oxidizing agents (NaOCl,
PhIO or m-CPBA) lead to the oxidative degradation of the catalyst, KHSO5 reacts with acetone in
a slightly basic medium to afford DMD. The main products observed are the diepoxide 25 and the
endocyclic epoxide 6 (Scheme 2).

Catalysts 2019, 9, 893 5 of 38 

 

5 

 

0.3 e A - d 6 >99 

 

>99 

6 0.2 A CH2Cl2 2.5 >99 94 

7 

 
0.2 A CH2Cl2 4 >99 

 
91 

8 

 
0.2 A CH2Cl2 4 >99 

 
91 

9 f 

 

0.2 B - d 3 97 

 

83 g, 14 h 

10 f 0.2 B CH2Cl2 8 100 1 g, 98 h 

a General conditions: Olefin (10 mmol), 35% H2O2 (12 mmol), 10 °C. b Additive A: 3-
methylpyrazole (1 mmol) and 1-methylimidazole (0.1 mmol). Additive B: 3-methylpyrazole 
(1.0 mmol). c Analysis by GC. Yields based on olefins used. d Reaction without organic solvent. 
e Addition of 0.2 mol% MTO initially, and additional MTO (0.1 mol%) after 1 h. f Reaction at 
15 °C with 25 mmol H2O2. g 1,2-epoxide. h Diepoxide. 

2.1.2. First-Row Metals 

In the context of an eco-responsible chemistry, the use of earth-abundant and cheaper first-row 
transition metals (Mn, Fe, Co, Ni or Cu), also called ”biometals,” provides an economical alternative 
to noble metals. Among them, only manganese complexes have been used in epoxidation of terpenes. 

Manganese catalysts. Manganese presents environmental compatibility, low toxicity [19], and 
moderate cost [20], being the 12th most abundant element in the Earth’s crust, with a concentration 
about 950 g per ton [21]. 

In 2010, Cubillos et al. [22] developed an original epoxidation process of (R)-limonene 2 with 
Jacobsen-based manganese catalysts using in situ–generated dimethyldioxirane (DMD) produced 
from potassium monopersulfate (KHSO5) and acetone, as oxidant. While usual oxidizing agents 
(NaOCl, PhIO or m-CPBA) lead to the oxidative degradation of the catalyst, KHSO5 reacts with 
acetone in a slightly basic medium to afford DMD. The main products observed are the diepoxide 25 
and the endocyclic epoxide 6 (Scheme 2). 

 
Scheme 2. Epoxidation of limonene 2 with a Jacobsen-type catalyst (adapted from reference [22]). 

The authors proved that the reaction conditions (such as substrate/KHSO5 and acetone/substrate 
ratios), have an influence on the selectivity and the catalyst durability (Figure 4). Good selectivities 
in the diepoxides 25 and total recovery of the catalyst were observed above the stoichiometric ratio 
of substrate/KHSO5 (Figure 4a). Moreover, low amounts of acetone are in favor of the diepoxides 25, 
while higher quantities lead to the formation of endocyclic cis-epoxide 6 (Figure 4b). 

Scheme 2. Epoxidation of limonene 2 with a Jacobsen-type catalyst (adapted from reference [22]).

The authors proved that the reaction conditions (such as substrate/KHSO5 and acetone/substrate
ratios), have an influence on the selectivity and the catalyst durability (Figure 4). Good selectivities in
the diepoxides 25 and total recovery of the catalyst were observed above the stoichiometric ratio of
substrate/KHSO5 (Figure 4a). Moreover, low amounts of acetone are in favor of the diepoxides 25,
while higher quantities lead to the formation of endocyclic cis-epoxide 6 (Figure 4b).
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the corresponding epoxides, respectively 23, 7, and 5, with medium to high yields and full 
diastereoselectivity (Figure 5). Moreover, the authors showed that this epoxide could be easily 
isomerized into the flavor campholenic aldehyde ingredient 26 in a one-pot procedure by a simple 
addition of silica at 40 °C. Mechanistic studies evidence that the catalyst uses the 3-hydroxyperoxy-
3-hydroxybutan-2-one, produced in situ from reaction of butanedione with H2O2 as oxidant. 
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epoxidation of terpenic olefins. 

Gallium and aluminum catalysts. Recently, Shul’pin and coworkers [24] used soluble gallium 
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compared the results to aluminum analogs. Both metals lead to a 60% conversion in 3 h at 80 °C, with 

Figure 4. Influence of reaction parameters in (R)-(+)-limonene oxidation catalyzed by Salen manganese
(III) complexes (adapted from reference [22]).

In 2012, a practical method catalyzed by a a Mn(II) salt, combined with pyridine-2-carboxylic
acid (PCA) and substoichiometric butanedione, was used in the oxidation of some terpenes with
H2O2 as oxidant [23] and proved to be particularly relevant for acid- or base-sensitive epoxide
products. Under optimized reaction conditions, α-pinene 1, 2-carene 22, and 3-carene 3 were
transformed in the corresponding epoxides, respectively 23, 7, and 5, with medium to high yields
and full diastereoselectivity (Figure 5). Moreover, the authors showed that this epoxide could
be easily isomerized into the flavor campholenic aldehyde ingredient 26 in a one-pot procedure
by a simple addition of silica at 40 ◦C. Mechanistic studies evidence that the catalyst uses the
3-hydroxyperoxy-3-hydroxybutan-2-one, produced in situ from reaction of butanedione with H2O2

as oxidant.
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2.1.3. Post-Transition Metals

Post-transition metals, such as gallium or aluminum, proved to be original metals for the
epoxidation of terpenic olefins.

Gallium and aluminum catalysts. Recently, Shul’pin and coworkers [24] used soluble gallium

nitrate salts as catalysts in the epoxidation of carvone 27 and limonene 2 with hydrogen peroxide and
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compared the results to aluminum analogs. Both metals lead to a 60% conversion in 3 h at 80 ◦C,
with a mass balance of 65%, which could be explained by the formation of other volatile products.
The selectivity in internal and external epoxides 28 and 29 for both metals is given on Figure 6.
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Kinetic curves provide interesting mechanistic information. First, although both catalysts gave
the same amount of internal epoxide 28 (ca. 13% in 3 h), radical oxygen species are formed faster
with Ga3+ salts with regard to the yields in internal epoxide after 15 min (12% for Ga3+ vs. 9% for
Al3+). Moreover, the authors observed that, after 30 min, the yield in external epoxide 29 plateaued
for Al3+ species but kept increasing for Ga3+ species. This behavior was explained by the enhanced
ability of this metal to produce hydroxyl radicals, which are probably responsible for the oxidation
of the external bond [25]. This hypothesis was confirmed by the addition of pyrazine-2-carboxylic
acid (PCA), known as a promoter of hydroxyl radicals, and thus affording higher amount of external
epoxide. This system was extended to the oxidation of limonene 2 (Scheme 3), leading to the major
formation of diols 31 with quite low yields.

Catalysts 2019, 9, 893 7 of 38 

 

a mass balance of 65%, which could be explained by the formation of other volatile products. The 
selectivity in internal and external epoxides 28 and 29 for both metals is given on Figure 6. 

 
Figure 6. Epoxidation of (R)-carvone. Gallium vs. Aluminum salts. Conditions: Carvone (1.0 M) with 
H2O2 (4.0 M) containing 3.2 M H2O, Catalyst (0.02 M), Ethylacetate, 80 °C (adapted from reference 
[24]). 

Kinetic curves provide interesting mechanistic information. First, although both catalysts gave 
the same amount of internal epoxide 28 (ca. 13% in 3 h), radical oxygen species are formed faster with 
Ga3+ salts with regard to the yields in internal epoxide after 15 min (12% for Ga3+ vs. 9% for Al3+). 
Moreover, the authors observed that, after 30 min, the yield in external epoxide 29 plateaued for Al3+ 
species but kept increasing for Ga3+ species. This behavior was explained by the enhanced ability of 
this metal to produce hydroxyl radicals, which are probably responsible for the oxidation of the 
external bond [25]. This hypothesis was confirmed by the addition of pyrazine-2-carboxylic acid 
(PCA), known as a promoter of hydroxyl radicals, and thus affording higher amount of external 
epoxide. This system was extended to the oxidation of limonene 2 (Scheme 3), leading to the major 
formation of diols 31 with quite low yields. 

 
Scheme 3. Galium or Aluminum-catalyzed oxidation of limonene (adapted from reference [24]). 

2.1.4. Miscellaneous Metals 

Tungsten catalysts. In an original way, the epoxidation of several terpenic olefins was 
performed using a catalytic system based on sodium tungstate (Na2WO4) and PhP(O)(OH)2 as co-
catalyst, which coordinates the metal center to form a phosphonate complex, and [Me(n-
C8H17)3N]HSO4 as a phase transfer catalyst [26]. The reactions were performed in the presence of 
aqueous H2O2 as an oxidant under nearly neutral conditions. Excellent yields and selectivities were 
achieved toward the corresponding epoxides (Scheme 4). 

Scheme 3. Galium or Aluminum-catalyzed oxidation of limonene (adapted from reference [24]).

2.1.4. Miscellaneous Metals

Tungsten catalysts. In an original way, the epoxidation of several terpenic olefins was performed

using a catalytic system based on sodium tungstate (Na2WO4) and PhP(O)(OH)2 as co-catalyst,
which coordinates the metal center to form a phosphonate complex, and [Me(n-C8H17)3N]HSO4 as
a phase transfer catalyst [26]. The reactions were performed in the presence of aqueous H2O2 as an
oxidant under nearly neutral conditions. Excellent yields and selectivities were achieved toward the
corresponding epoxides (Scheme 4).
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Scheme 4. Na2WO4-catalyzed epoxidation of olefinic terpenes (adapted from reference [26]).

2.2. Using Heterogeneous Complexes

Sustainable epoxidation reactions based on solid catalysts also remains a subject of extensive
research with the aim of reducing the environmental footprint [27].

2.2.1. Transition Metal–Free Catalysts

To our knowledge, only two publications are reported in the literature concerning the epoxidation
of terpenic olefins through metal-free catalysts.

In 2014, the team of Shul’pin has described for the first time the use of cheap aluminum oxide, as
an efficient and selective promoter for the epoxidation of limonene 2 using green hydrogen peroxide
(H2O2), at moderate temperature (80 ◦C) in ethylacetate [28]. Based on three reaction parameters such
as the initial amounts of substrate, H2O2, and alumina, the targeted reaction was optimized to define
the best conditions to achieve the most productive epoxidation reaction with regard to the initial rates
of the accumulation of internal epoxide 6 as well as diepoxides 25. Thus, by modifying the reaction
conditions, the selectivity could be easily modulated (Scheme 5).
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In 2015, carbon nanotubes (CNTs) were used as metal-free catalysts for the selective epoxidation
of α-pinene 1 in the presence of molecular oxygen as terminal oxidant (Table 3) [29].
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Table 3. Catalytic performances of carbon nanotubes in the oxidation of α-pinene 1 a (adapted from
reference [29]).
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Entry Catalyst Conv. (%)

Product Selectivity b (%) E/A c Ratio

Epoxide 5 Verbenone 8 Verbenol 32 Verbenyl
Hydroperoxide 33

1 Blank d 10.3 24.5 11.7 15.0 40.4 0.9
2 CNTs 24.6 33.8 7.9 6.1 37.9 2.4
3 NCNTs e 54.5 37.8 14.1 17.5 15.3 1.2
4 NCNTs f 51.0 40.6 17.1 13.8 16.4 1.3
5 NCNTs g 61.4 41.1 18.7 13.4 15.9 1.3

a Reaction conditions: Catalyst (70 mg), α-pinene (10 mL), O2 (15 bar), CH3CN (20 mL), 80 ◦C, 4 h. b Determined
by GC analyses using o-dichlorobenzene as internal standard. To determine verbenylhydroperoxide 33, samples
were analysed twice (before and after reducing the hydroperoxide to verbenol 32 with triphenylphosphine). c E/A
ratio: molar ratio of epoxidation products (α-pinene oxide 5) to allylic oxidation products (alcohol 32 and ketone 8).
d Without catalyst. e NCNTs (N-doped carbon nanotubes) were obtained using 100% aniline in a NH3 atmosphere.
f NCNTs were treated with HNO3 and annealed at 60 ◦C. g NCNTs were treated with HNO3 and annealed at 900 ◦C.

The influence of nitrogen-doping as well as post-treatments on the catalytic performances were
studied and compared to a blank experiment (Entry 1). First, epoxidation product was greatly favored
with carbon nanotubes (CNTs), affording a high epoxidation/allylic oxidation product ratio of 2.4
(Entry 2). Doping with nitrogen (4.36% N) improves the conversion about twofold, up to 54.5%
(Entry 3), with a high selectivity in α-pinene oxide 5 (37.8%) and an improved selectivity toward allylic
products and thus a lower E/A ratio. This result could be explained by the stabilization of the peroxyl
and cyclohexyl radicals by nitrogen dopants. The introduction of oxygen functions via the HNO3

treatment has a negative effect on the conversion with regard to the increased specific surface area
(Entry 4). However, a post-treatment of the catalyst by annealation at 900 ◦C allowed increasing the
conversion up to 61% with a high epoxide selectivity of 41% (Entry 5). Thus, treatments of carbon
nanotubes seem to improve conversion, to the detriment of the selectivity (E/A ratio around 1).

2.2.2. Noble and Semi-Noble Metals

Noble (Au) and semi-noble (Re) metals, also used in homogeneous catalysis for epoxidation
reactions of usual olefins, were also studied as pertinent heterogeneous catalysts.

Gold catalysts. In 2011, an interesting comprehensive study was reported on the influence of

pore architecture and surface modification on the dispersion and the size of gold nanoparticles,
as well as their catalytic performances in the epoxidation of α-pinene 1 with H2O2 (Table 4) [30].
A porous support with a higher pore connectivity, such as MSU with 3D-worm like pore structure,
was compared to periodic mesoporous organosilica materials (PMO) with 1D-architecture. Moreover,
the AuNPs@S15P-1.4 catalyst was prepared by a post-synthesis method, known to be more efficient
in anchoring metal particles, and compared to other systems synthesized by a one-pot procedure
(Entry 4 vs. Entries 1–3). First, without catalyst, a conversion of 11% was achieved, with a selectivity ib
epoxide of about 73%. The AuNP@MSU-2.0 material, with a 3D structure and larger nanoparticles
(5–20 nm), afforded lower catalytic results in terms of conversion and epoxide selectivity (Entry 1
vs. Entries 2–4), compared to 1D catalysts which possess more active sites due to their smaller sizes.
Among the PMO materials with 1D pore structures (Entries 2–4), the catalyst prepared by post-synthesis
method (AuNPs@S15P-1.4), presenting a better dispersion of the metallic nanospecies with smaller
sizes (1.6 nm), afforded the highest epoxide selectivity. This catalyst could be retrievable with quite
similar conversion, but a decrease in the selectivity due to particles aggregation.
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Table 4. Oxidation of α-pinene 1 catalyzed by gold nanoparticles supported on periodic mesoporous
organosilicas a (adapted from reference [30]).
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1 AuNP@MSU-2.0 474 3.4 4.7–20 62 53 27 20
2 AuNP@M41-2.1 366 2.2 2.1 73 81 14 5
3 AuNP@S15-2.1 531 7.5 2.0 86 79 16 5
4 AuNP@S15P-1.4 329 6.3 1.6 82 95 5 -

a Reaction Conditions: Catalyst (50 mg or 100 mg for S15P-1.4), α-pinene (10 mmol), H2O2 (3 eq.), CH3CN (5 mL),
8 h, 60 ◦C. b AuNP-PMO: Gold particles supported on ordered mesoporous silicas (OMS), namely MCM-41-x,
MSU-x, and SBA-15-x where x is the Au loading (wt. %). c Determined by GC analyses.

Rhenium catalyst. Methyltrioxorhenium (CH3ReO3, MTO) is a well-known catalyst for oxidation

reactions of a large variety of substrates, including epoxidation of olefinic compounds [31]. However,
this reaction performed with hydrogen peroxide suffers from competitive reactions, such as ring-opening
of the newly formed oxirane, leading to the formation of diols due to the pronounced Lewis-acidity of
MTO and the production of water. The formation of these co-products could be avoided by Lewis
bases acting as ligands of the metal center but used in large excess due to the low stability of the
adducts and the easy oxidation of the ligands in solution [32]. In 2005, the team of Saladino solved
this drawback through the microencapsulation of Lewis base adducts of MTO with cheap and easily
available polystyrene (Scheme 6) [33]. This process enables to entrap the active species within the
capsules of a polymeric support through non-covalent interactions. These catalysts present quite
similar reactivities and selectivities, compared to their homogeneous counterparts in the epoxidation
of various olefinic terpenes (α-pinene 1, limonene 2, and 3-carene 3), as well as a higher stability that
could facilitate the recycling. Some results are presented in Table 5.
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Table 5. Epoxidation of terpenic olefins by microencapsulated Lewis base of MTO a (adapted from
reference [33]).

Entry Substrate Catalyst b Time (h) Conversion
(%)

Epoxide Yield
(%)

1
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a Reaction conditions: Catalyst (1% wt.), olefin (1 mmol), H2O2 (1.5 mmol, 35 wt. % in H2O), 5 mL 
CH3CN/CH2Cl2 (1/1), with a catalytic loading factor of 1.0. b The catalyst III is the homogeneous 
system, while mII and mIII are the microencapsulated rhenium species. 

2.2.3. First-Row Metals 

The anchoring of first row transition metals on inorganic or polymeric supports, as well as the 
design of heterogeneous analogs, was also reported in the literature. 

Manganese catalysts. Schiff base complexes are well-known in olefin epoxidation [34]. 
However, due to their easy deactivation by oxidation and/or formation of μ-oxo dimers [35], their 
immobilization on solid supports seems relevant. Two examples, using either MCM-41 or SBA-15 
materials, were reported in the literature for the oxidation of limonene 2. First, Srinivas and 
coworkers studied the influence of the organo-functional group (propylamine, thiol or sulfonic acid) 
of the SBA15 support on the electronic and catalytic properties [36]. The obtained heterogeneous 
catalysts based on a Mn(Salen)Cl complex were compared in the aerobic oxidation of limonene 2 
under mild conditions with 2-methylpropanal to facilitate the formation of Mn2+ ions (Table 6). 

Table 6. Aerial oxidation of (R)-(+)-limonene 2 over “neat” and immobilized Mn(Salen)Cl complexes 
a (adapted from reference [34]). 

Entry Catalyst Conv. 
b (%) 

TOF 
(h−1) 

Selectivity (%) b 

6c 30c 25c Allylic Oxidation 
Products d 

1 “Neat” Mn(Salen)Cl 69.2 7.0 74.2 7.2 6.2 12.4 
2 SBA-15-pr-NH2-Mn(Salen)Cl 75.9 35.4 80.2 6.4 7.2 6.2 
3 SBA-15-pr-SO3H-Mn(Salen)Cl 60 17.8 82.0 8.0 2.6 7.4 
4 SBA-15-pr-SH-Mn(Salen)Cl 64.1 58.9 100 0 0 0 

a Reaction Conditions: Neat catalyst (0.0165 g) or immobilized catalyst (100 mg), limonene (3.75 
mmol), 2-methylpropanal (9 mmol), air (1 bar, 2 mL.min−1), toluene (20 mL), 25 °C, 8 h. b 
Determined by GC analyses. c Determined by Gas Chromatography and GC-MS. d Carvone 9 
and carveol 17. 

The support functionalization allowed a relevant anchoring of the complex, compared to the 
“bare” one, in the following order: “bare” (0.07 mmol·g−1) < sulfonic acid (0.31 mmol·g−1) < thiol (0.9 
mmol·g−1) < amino (2.1 mmol·g−1). Moreover, the metal oxidation state changed from +3 (for “neat” 
Mn(Salen)Cl) to +2, the extent of this reduction increasing in the following order: amino < sulfonic 
acid < thiol. Thus, following the variation of electron density observed in EPR and oxidizability 
obtained from cyclic voltammetry experiments, the complex anchored on a propylthiol-modified 
SBA-15 support afforded higher catalytic activity (TOF = 58.9 h−1) and complete selectivity in 1,2-
epoxide 6. However, metal leaching was detected during the reaction, thus limiting the recycling. 
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2.2.3. First-Row Metals

The anchoring of first row transition metals on inorganic or polymeric supports, as well as the
design of heterogeneous analogs, was also reported in the literature.

Manganese catalysts. Schiff base complexes are well-known in olefin epoxidation [34]. However,

due to their easy deactivation by oxidation and/or formation of µ-oxo dimers [35], their immobilization
on solid supports seems relevant. Two examples, using either MCM-41 or SBA-15 materials, were
reported in the literature for the oxidation of limonene 2. First, Srinivas and coworkers studied the
influence of the organo-functional group (propylamine, thiol or sulfonic acid) of the SBA15 support
on the electronic and catalytic properties [36]. The obtained heterogeneous catalysts based on a
Mn(Salen)Cl complex were compared in the aerobic oxidation of limonene 2 under mild conditions
with 2-methylpropanal to facilitate the formation of Mn2+ ions (Table 6).

Table 6. Aerial oxidation of (R)-(+)-limonene 2 over “neat” and immobilized Mn(Salen)Cl complexes a

(adapted from reference [34]).

Entry Catalyst Conv. b

(%)
TOF (h−1)

Selectivity (%) b

6 c 30 c 25 c
Allylic

Oxidation
Products d

1 “Neat” Mn(Salen)Cl 69.2 7.0 74.2 7.2 6.2 12.4
2 SBA-15-pr-NH2-Mn(Salen)Cl 75.9 35.4 80.2 6.4 7.2 6.2
3 SBA-15-pr-SO3H-Mn(Salen)Cl 60 17.8 82.0 8.0 2.6 7.4
4 SBA-15-pr-SH-Mn(Salen)Cl 64.1 58.9 100 0 0 0

a Reaction Conditions: Neat catalyst (0.0165 g) or immobilized catalyst (100 mg), limonene (3.75 mmol),
2-methylpropanal (9 mmol), air (1 bar, 2 mL.min−1), toluene (20 mL), 25 ◦C, 8 h. b Determined by GC analyses.
c Determined by Gas Chromatography and GC-MS. d Carvone 9 and carveol 17.

The support functionalization allowed a relevant anchoring of the complex, compared to the
“bare” one, in the following order: “bare” (0.07 mmol·g−1) < sulfonic acid (0.31 mmol·g−1) < thiol
(0.9 mmol·g−1) < amino (2.1 mmol·g−1). Moreover, the metal oxidation state changed from +3 (for “neat”
Mn(Salen)Cl) to +2, the extent of this reduction increasing in the following order: amino < sulfonic acid
< thiol. Thus, following the variation of electron density observed in EPR and oxidizability obtained
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from cyclic voltammetry experiments, the complex anchored on a propylthiol-modified SBA-15 support
afforded higher catalytic activity (TOF = 58.9 h−1) and complete selectivity in 1,2-epoxide 6. However,
metal leaching was detected during the reaction, thus limiting the recycling. Two years later, Vital and
coworkers reported the covalent anchoring of three Salen-based manganese complexes on MCM-41 [37].
Two routes were explored: the OHPTS-DIC approach corresponds to the support functionalization
with 3-chloropropyltrimethoxysilane (CIPTS), followed by its hydrolysis in hydroxyl groups, which
react with 1,4-diisocyanobutane (DIC-4) and the DIC method is the direct reaction of hydroxyl groups
of the complex with DIC-4. The Salen ligands bearing various diamine bridges (1,2-diamino-ethane,
-cyclohexane, or -phenyl) and phenolic moieties were resumed in Scheme 7.
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control the nucleation rate for the production of a highly crystalline material [38]. This nanoscaled 
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Characterization analyses such as XPS, ICP, FTIR and TEM validate the covalent immobilization
of the Mn(Salen) complex within the support, and the unchanged channel structure. Moreover, the
metal content is higher in heterogeneous catalysts prepared by the OHTPS-DIC approach, and mainly
located in the inner structure, as showed by XPS analyses. The obtained catalysts were evaluated in the
oxidation of limonene 2 using dilute tert-butylhydroperoxide (t-BHP) as oxidant (Table 7). The reaction
leads to the formation of a polymer as main product, along with limonene oxide 6 and some allylic
oxidation products. Comparing the same complex (Entries 2 vs. 3 and 4 vs. 5), the catalyst prepared
by the DIC method is more active (higher TOFs values) due to a lower load in organic material and
thus better substrate accessibility. Finally, the catalytic activity is also very dependent on the complex
used, with higher activities and selectivities toward epoxide obtained with the Mn(4-OHSalophen)
complex, possessing a 1,2-diaminophenyl bridge.

Table 7. Limonene 2 oxidation catalyzed by MCM41-supported Mn(Salen) complexes a (adapted from
reference [37]).

Entry Complex Method % MnICP
b Conv. c

(%)
TOF
(h−1)

Selectivity (%) c

Limonene
Oxide 6

Allylic
Oxidation
Products

Others

1 Mn(4-OHSalen) OHTPS-DIC 0.21 6.0 0.4 19.5 17.8 62.7
2 Mn(4-OHSalhd) OHTPS-DIC 5.27 80.5 1.4 2.2 3.7 94.1
3 Mn(4-OHSalhd) DIC 1.84 51.4 1.7 3.8 2.2 93
4 Mn(4-OHSalophen) OHTPS-DIC 0.48 84.1 14.7 10.6 6.9 82.5
5 Mn(4-OHSalophen) DIC 0.2 60.0 17.1 10.0 8.4 81.6
a Reaction conditions: Catalyst (50 mg), limonene (14,5 mmol), t-BHP (8 eq., 3% w/w in acetone/t-butanol (100/1.2)
solution), 425 mL solvent, 60 ◦C. b Mn content determined by Inductively Coupled Plasma Atomic Emission
Spectroscopy (ICP-AES). c Determined by Gas Chromatography analyses using nonane as internal standard.

Copper catalysts. Recently, a copper-MOF catalyst was easily prepared using the

1,3,5-benzenetricarboxylate (BTC) ligand in the presence of benzoic acid as mediator, which enables to
control the nucleation rate for the production of a highly crystalline material [38]. This nanoscaled
[Cu3(BTC)2] with sizes around 390 nm proved to be efficient in epoxidation of α-pinene 1 (Scheme 8)
under mild conditions (1 bar O2, 40 ◦C) with excellent yield (>99%) and selectivity (>99%).
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Cobalt catalysts. Based on previous work with homogeneous Co(II) complexes [39], various

cobalt-exchanged zeolites were prepared by different strategies. First, these materials with various
metal contents were synthesized by ion exchange of the zeolite Y support (Y) with aqueous Co(NO3)2

solution, giving NaCoYx structure with x being the cobalt content. Various alkali (K, Cs) and alkaline
earth metal (Mg, Sr, and Ba) ion-containing materials were also prepared. These catalysts were
evaluated in the oxidation of α-pinene 1 with molecular oxygen under optimized reaction parameters
such as DMF as solvent at 100 ◦C (Table 8) [40].

Table 8. Oxidation of α-pinene 1 catalyzed by cobalt(III)-exchanged zeolite Y. Influence of the cobalt
content and the co-cations a (adapted from reference [40]).

Entry Catalyst Chemical Composition
(on Dry Basis)

Conv. b

(%)
TOF (h−1)

Selectivity (%) b

Epoxide 5
Allylic

Oxidation
Products 8 + 32

Trans-Carveol
17

1 NaCoY66 Na10Co10Al30Si162O384 32 7.2 66 28 6
2 NaCoY86 Na4Co13Al30Si162O384 40 7.0 69 28 3
3 NaCoY93 Na2Co14Al30Si162O384 45 7.3 71 28 1
4 NaKCoY33 Na10Co5K10Al30Si162O384 34 17 62 31 7
5 NaCsCoY20 Na6Co3Cs18Al30Si162O384 47 49.1 61 32 7
6 NaMgCoY33 Na8Co8Mg3Al30Si162O384 43 12.5 61 31 8
7 NaSrCoY33 Na10Co5Sr5Al30Si162O384 41 18.0 60 30 10
8 NaBaCoY26 Na10Co4Ba6Al30Si162O384 48 23.9 62 30 8

a Reaction conditions: Catalyst (300 mg), α-pinene (3 g), O2 (5.5 bar), DMF (30 mL), 100 ◦C, 4 h. b Determined by
Gas Chromatography analyses using dodecane as internal standard.

First, an increase in the metal amount (Entries 1–3) leads to higher conversions (from 32 to 45%),
with a selectivity in epoxide up to 71%. Moreover, addition of alkali and alkaline earth metal ions in
the zeolite structure enhances the catalytic activity (up to 48%), with a lower epoxide selectivity of
60–62%, cesium being the best candidate.

In 2014, to facilitate the catalyst’s recovery, a chloromethylated polystyrene-supported cobalt(II)
complex, prepared through a two-step process, was used for the aerobic epoxidation of α- and
β-pinenes 1 and 12 (Figure 7) [41]. Although the reaction occurred quite easily to form the epoxide
products, lower selectivities were observed compared to other alkenes derivatives.
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Titanium catalysts. The same team developed a series of Ti-MCM-41 catalysts, in which the

metal species were incorporated by post-synthesis methods, such as wetness (WN1) and wet (W1)
impregnation of the MCM-41 mesoporous materials [42]. Compared with catalysts obtained through a
hydrothermal (HT) approach, the solids present a well-ordered hexagonal arrangement, with three
types of titanium sites. The performances of these catalysts were evaluated in the oxidation of limonene
2 with H2O2 in acetonitrile (Table 9).

Table 9. Oxidation of limonene with titanium-MCM-41 catalysts a (adapted from reference [42]).

Entry Catalyst % TiO2
(w/w)

χL
b

(% max)
TOF c

(h−1)
Efficiency

H2O2
d

Product Selectivity e (%)

6 + 30 f 9 + 17 Others g

1 WN1 1.8 50 3.4 68 46 34 20
2 W1 7.3 48 0.9 59 50 31 19
3 HT 1.8 52 4.5 65 58 22 20

a Reaction conditions: Catalyst (50 mg), limonene (4.32 mmol), H2O2 (0.25 eq.), CH3CN, 70 ◦C, 7 h. b Limonene
conversion as percentage of the maximum possible conversion. c TurnOver Frequency to epoxides. d Percentage of
H2O2 consumed to produce oxygenated products. e Expressed as a percentage of the total formed products. f 1,2-
and 1,8-epoxylimonene. g Diepoxide and glycol.

The structural differences did not change significantly the catalytic activities, with about 50% of
conversion for each material. Nevertheless, a slight decrease in the selectivity in epoxide is observed
with Ti-MCM-41 catalysts prepared by the post-synthetic approach (Entries 1–2), in favor of the allylic
oxygenated products (carvone 9 and carveol 17). Despite these quite lower catalytic performances, the
authors claimed an easier and reproducible post-synthetic method for the catalyst’s recycling.

2.2.4. Miscellaneous Metals

In this part, some unconventional metals, such as zirconium, niobium, and praesodynium, are
described, generally with hydrogen peroxide or air as oxidant.

Zirconium catalysts. In 2009, Rocha et al. compared the catalytic performances of various

zirconium-based tetravalent phosphates and phosphonates in the oxidation of (+)-3-carene 3 using
hydrogen peroxide [43]. Metal(IV) phosphates and phosphonates are particularly pertinent owing to
their low cost, easy synthesis, and extreme resistance to high temperatures. First, the authors showed
that the oxidation reaction occurred in glacial acetic acid, alone or with co-solvents (dichloromethane
or acetonitrile), but not in organic solvents alone. This solvent effect presumes that peracetic acid
formed during the catalytic process is the effective oxidant. Three major oxidation products were
formed: α-3,4-epoxycarane 7, 3β-acetoxycaran-4α-ol 34 from the acidic cleavage of epoxide, and
carane-3β,4α-diol 35 after acid hydrolysis. Considering the results in Table 10, it seems that the
judicious combination of solvent or solvent mixtures, with a metal(IV) phosphates or phosphonates
possessing basic properties (NaZrPA or KZrPA), leads to promising selectivities in epoxide.
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Table 10. Metal phosphates or phosphonates-catalyzed oxidation of 3-carane a (adapted from
reference [43]).

Catalysts 2019, 9, 893 14 of 39 

 

a hydrothermal (HT) approach, the solids present a well-ordered hexagonal arrangement, with three 
types of titanium sites. The performances of these catalysts were evaluated in the oxidation of 
limonene 2 with H2O2 in acetonitrile (Table 9). 

Table 9. Oxidation of limonene with titanium-MCM-41 catalysts a (adapted from reference [42]). 

Entry Catalyst % TiO2 
(w/w) 

χL b (% 
max) 

TOF c 
(h−1) 

Efficiency H2O2 

d 

Product Selectivity e (%) 

6 + 30 
f 

9 + 
17 

Others 
g 

1 WN1 1.8 50 3.4 68 46 34 20 
2 W1 7.3 48 0.9 59 50 31 19 
3 HT 1.8 52 4.5 65 58 22 20 

a Reaction conditions: Catalyst (50 mg), limonene (4.32 mmol), H2O2 (0.25 eq.), CH3CN, 70 °C, 7 h. b 
Limonene conversion as percentage of the maximum possible conversion. c TurnOver Frequency to 
epoxides. d Percentage of H2O2 consumed to produce oxygenated products. e Expressed as a 
percentage of the total formed products. f 1,2- and 1,8-epoxylimonene. g Diepoxide and glycol. 

The structural differences did not change significantly the catalytic activities, with about 50% of 
conversion for each material. Nevertheless, a slight decrease in the selectivity in epoxide is observed 
with Ti-MCM-41 catalysts prepared by the post-synthetic approach (Entries 1–2), in favor of the 
allylic oxygenated products (carvone 9 and carveol 17). Despite these quite lower catalytic 
performances, the authors claimed an easier and reproducible post-synthetic method for the 
catalyst’s recycling. 

2.2.4. Miscellaneous Metals 

In this part, some unconventional metals, such as zirconium, niobium, and praesodynium, are 
described, generally with hydrogen peroxide or air as oxidant. 

Zirconium catalysts. In 2009, Rocha et al. compared the catalytic performances of various 
zirconium-based tetravalent phosphates and phosphonates in the oxidation of (+)-3-carene 3 using 
hydrogen peroxide [43]. Metal(IV) phosphates and phosphonates are particularly pertinent owing to 
their low cost, easy synthesis, and extreme resistance to high temperatures. First, the authors showed 
that the oxidation reaction occurred in glacial acetic acid, alone or with co-solvents (dichloromethane 
or acetonitrile), but not in organic solvents alone. This solvent effect presumes that peracetic acid 
formed during the catalytic process is the effective oxidant. Three major oxidation products were 
formed: α-3,4-epoxycarane 7, 3β-acetoxycaran-4α-ol 34 from the acidic cleavage of epoxide, and 
carane-3β,4α-diol 35 after acid hydrolysis. Considering the results in Table 10, it seems that the 
judicious combination of solvent or solvent mixtures, with a metal(IV) phosphates or phosphonates 
possessing basic properties (NaZrPA or KZrPA), leads to promising selectivities in epoxide. 

Table 10. Metal phosphates or phosphonates-catalyzed oxidation of 3-carane a (adapted from 
reference [43]). 

 

Entry Catalyst Solvent Conv. (%) 
Selectivity (%) 

7 34 35 
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Entry Catalyst Solvent Conv. (%) Selectivity (%)

7 34 35

1 NaZrPA AcOH 31.6 61.4 38.3 -
2 KZrPA AcOH 36.1 58.2 33.5 -
3 NaZrPA CH2Cl2/AcOH (1/1) 57.5 58.3 20.7 7.9
4 KZrPA CH2Cl2/AcOH (1/1) 50.4 48.3 21.5 16.1
5 ScZrPA CH2Cl2/CH3CN/AcOH (1/1/0.2) 20.7 100 - -
6 ZrPPA CH2Cl2/CH3CN/AcOH (1/1/0.2) 14.6 100 - -

a Reaction conditions: Catalyst (58 mg), 3-carene (2.2 mmol), H2O2 (1 eq., 35% w/w), 2 mL solvent, 50 ◦C, 6 h,
PA = Phosphate, PPA = Phosphonate.

Niobium catalysts. Some studies showed that niobium containing silicates are active catalysts

for the epoxidation of olefins with hydrogen peroxide, being more resistant to hydrolysis and metal
leaching [44]. Based on these promising results, Kholdeeva and coworkers prepared mesoporous
niobium-silicates by an evaporation-induced self-assembly (EISA) method in order to control the
state of metal centers according to the niobium precursor [45]. On one hand, the use of niobium(V)
ethoxide modified with acetylacetone leads to the formation of oligomeric metal species well-dispersed
within the silica matrix (Catalyst A). On the other hand, ammonium niobate(V) oxalate hydrate in
combination with acetylacetonate affords catalytic materials with isolated niobium species (Catalyst
B). Both catalysts were efficiently used in the epoxidation of two terpenic olefins—limonene 2 and
3-carene 3—using hydrogen peroxide as oxidant (Table 11).

Table 11. Oxidation of 3-carene and limonene using mesoporous niobium-silicates a (adapted from
reference [45]).

Entry Substrate Catalyst Solvent Time b (h)
Conv. c

(%)

Epoxide
Selectivity

d (%)

Exo/Endo
Ratio e

1
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For 3-carene 3, a complete selectivity toward epoxide was obtained with an acceptable olefin 
conversion of about 30% (Entries 1–2). However, this value tends to drop at higher conversions, 
owing to the formation of co-products resulting from rearrangement, ring-opening, and suroxidation 
processes. Concerning limonene 2, a drastic influence of the solvent on the exo- to endocyclic ratio 
was observed (Entries 5–7). While 1,2-limonene epoxide was predominantly formed in methanol, 7,8-
limonene epoxide was obtained in acetonitrile (Entry 5 vs. 6). These differences of selectivity suggest 
that different reaction mechanisms could be involved. Finally, these quite robust catalysts could be 
easily recycled due to no metal leaching observed. 

Praesodynium catalysts. Interestingly, Jang and coworkers developed praesodynium-
containing AlPO-5 material through a hydrothermal method in fluoride medium using triethylamine 
as template [46]. This bifunctional catalyst, possessing both redox and mild acid sites, allows the 
production of campholenic aldehyde 26, an industrial relevant synthon for the production of santalol 
(sandalwood fragrance) [47], from α-pinene 1 via the epoxide 5 as intermediate. This compound was 
selectively isomerized into campholenic acid due to the Lewis acid sites in the framework of the 
material. It is noticeable that the catalyst with a lower (Al+P)/Pr ratio leads to higher catalytic 
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A CH3CN 2 29 73 n.d f

5 B CH3CN 2 28 71 2.7
6 B MeOH 2 12 90 0.5

7 B Dimethyl
carbonate 2 10 43 2

a Reaction conditions: Catalyst A (0.003 mmol Nb) or B (0.005 mmol Nb), substrate (0.1 mmol), 50% H2O2 (1 eq.),
solvent (1 mL), 50 ◦C. b Optimal reaction time for maximum selectivity and conversion. c Determined by GC
analyses. d Other products: carveol, carvone, and limonene diepoxide. e Ratio of exocylic epoxide (7,8-limonene
epoxide) to endocyclic epoxide (1,2-limonene epoxide). f Non determined.

For 3-carene 3, a complete selectivity toward epoxide was obtained with an acceptable olefin
conversion of about 30% (Entries 1–2). However, this value tends to drop at higher conversions,
owing to the formation of co-products resulting from rearrangement, ring-opening, and suroxidation
processes. Concerning limonene 2, a drastic influence of the solvent on the exo- to endocyclic ratio
was observed (Entries 5–7). While 1,2-limonene epoxide was predominantly formed in methanol,
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7,8-limonene epoxide was obtained in acetonitrile (Entry 5 vs. 6). These differences of selectivity
suggest that different reaction mechanisms could be involved. Finally, these quite robust catalysts
could be easily recycled due to no metal leaching observed.

Praesodynium catalysts. Interestingly, Jang and coworkers developed praesodynium-containing

AlPO-5 material through a hydrothermal method in fluoride medium using triethylamine as
template [46]. This bifunctional catalyst, possessing both redox and mild acid sites, allows the
production of campholenic aldehyde 26, an industrial relevant synthon for the production of santalol
(sandalwood fragrance) [47], from α-pinene 1 via the epoxide 5 as intermediate. This compound
was selectively isomerized into campholenic acid due to the Lewis acid sites in the framework of
the material. It is noticeable that the catalyst with a lower (Al+P)/Pr ratio leads to higher catalytic
performances in terms of activity, product selectivity, and reusability over five runs, as presented in
Scheme 9.
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Scheme 9. Epoxidation-isomerization process, catalyzed by PrAlPO-5 material (with (Al+P)/Pr ratio of
75) for the production of campholenic aldehyde (adapted from reference [46]). Product selectivities are
given for α-pinene oxide 5 and campholenic aldehyde 26.

2.3. Catalysts Comparison and Conclusions

Catalytic epoxidation reactions of terpenic olefins constitute valuable synthetic transformations
for the production of epoxides and diols as relevant intermediates for various chemical industries.
As illustrated alongside this first part, the control of the selectivity in epoxidation remains quite
challenging, with the competitive formation of allylic oxidation products, as well as rearrangement,
isomerization, or suroxidation. Moreover, in some cases, the formation of epoxides seems to be
substrate-dependent, and it therefore becomes difficult to predict and rationalize the result of the
reaction. The Figure 8 presents a comparison of various catalysts and oxidants used in the epoxidation
of α-pinene 1, one of the most studied terpenic olefins.
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From this comparative study, either homogeneous or heterogeneous catalysts, based on semi-noble
rhenium catalysts (MTO) or first row transition metals, such as manganese or copper species, are
relevant candidates to transform α-pinene 1 into the corresponding epoxide, using either hydrogen
peroxide or dioxygen as green oxidants. Although homogeneous and heterogeneous rhenium catalysts
affords quite efficient catalytic performances with various terpenes, these processes use toxic additives,
as well as organic solvents, which are considered as problematic and hazardous according to some
solvent selection guides [48]. In that context, Nardello-Rataj and coworkers investigated 18 eco-friendly
solvents for the epoxidation of various olefins, catalysed by amphiphilic dodecyltrimethyl ammonium
polyoxometalate nanoparticles [C12]3[PW12O40] [49]. Among these solvents, cyclopentylmethylether
(CPME) and 2-methyltetrahydrofuran (2-Me-THF) were found more efficient and extended to several
terpenic olefins through a sequential addition of hydrogen peroxide to achieve better selectivities
(Table 12). Higher selectivities and catalytic activities were achieved with limonene 2 and 3-carene 3,
as usually observed, compared to pinene isomers 1 and 12, which are more prone to oligomerizations
and rearrangements [50].

Table 12. Epoxidation of terpenes, catalyzed by [C12]3[PW12O40] nanoparticles in CPME or 2-Me-THF
a (adapted from reference [49]).

Entry Substrate Solvent Selectivity b (%) TOF0 (h−1)

1 c
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3. Allylic Oxidation of Terpenic Olefins 

Oxidation of allylic methylene groups into their conjugated carbonyl derivatives also remains a 
relevant value-creating Csp3-H functionalization approach to produce value-added products [51]. 
The allylic oxidation of terpenic olefins was previously performed using stoichiometric amounts of 
toxic chromium- or selenium-based reagents without fulfilling the criteria of eco-responsible 
chemistry [8]. Therefore, various greener methods have been developed to transform these 
renewables into allylic oxidation products such as α,β-unsaturated ketones. An overview of the last 
10 years’ literature is presented hereafter. 

3.1. Using Homogeneous Complexes Based on Noble Metals 

First, molecular complexes, exclusively based on noble metals such as palladium or rhodium, 
were used for this transformation. 

Palladium catalysts. Palladium complexes could be used as efficient catalytic systems, 
combined with reversible co-oxidants for the re-oxidation of the zerovalent metal species such as the 
CuCl2 (Wacker-type catalyst). In that context, Gusevskaya and coworkers developed a selective 
palladium-catalyzed oxidation process for limonene 2 in the presence of benzoquinone as redox agent 
and of various alcohols as nucleophiles to access the corresponding allylic ethers [52]. The results 
obtained with methanol, gathered in Table 13, could be extended to other alcohols (ethanol, propan-
2-ol, etc.). 
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3. Allylic Oxidation of Terpenic Olefins

Oxidation of allylic methylene groups into their conjugated carbonyl derivatives also remains
a relevant value-creating Csp3-H functionalization approach to produce value-added products [51].
The allylic oxidation of terpenic olefins was previously performed using stoichiometric amounts of toxic
chromium- or selenium-based reagents without fulfilling the criteria of eco-responsible chemistry [8].
Therefore, various greener methods have been developed to transform these renewables into allylic
oxidation products such as α,β-unsaturated ketones. An overview of the last 10 years’ literature is
presented hereafter.

3.1. Using Homogeneous Complexes Based on Noble Metals

First, molecular complexes, exclusively based on noble metals such as palladium or rhodium,
were used for this transformation.

Palladium catalysts. Palladium complexes could be used as efficient catalytic systems, combined

with reversible co-oxidants for the re-oxidation of the zerovalent metal species such as the
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CuCl2 (Wacker-type catalyst). In that context, Gusevskaya and coworkers developed a selective
palladium-catalyzed oxidation process for limonene 2 in the presence of benzoquinone as redox
agent and of various alcohols as nucleophiles to access the corresponding allylic ethers [52].
The results obtained with methanol, gathered in Table 13, could be extended to other alcohols
(ethanol, propan-2-ol, etc.).

Table 13. Oxidation of limonene 2 catalyzed by palladium complexes in methanol a (adapted from
reference [52]).
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First, p-toluenesulfonic acid (PTSA) is known to promote a kinetic effect on the reaction rate and a
stabilizing influence on the catalyst. Moreover, an increase in PTSA concentration (Entries 1,2) leads to
higher reaction rates, without modifying the reaction selectivity towards the ether 36 containing two
exocyclic double bonds. In the same manner, the palladium precursor seems also to have an influence.
While the Pd(acac)2 precursor gives similar results in terms of selectivity in 36 with a lower reaction rate
(Table 13, Entries 5–6), the selectivity switches towards the ether 37 with Na2PdCl4 as catalyst (Table 13,
Entry 4). In 2014, quite a similar catalyst, based on Pd(OAc)2 combined with benzoquinone, was used
for the aerobic oxidation of α-bisabolol 38, a bio-renewable present in various essential oils [53]. This
process leads to the formation of three main products: the product 39 via the oxidation of the exocyclic
encumbered double bond, combined with the hydroxyl-assisted formation of the tetrahydrofuran
ring, and the allylic acetates 40 and 41 by allylic oxidation of the endocyclic double bond, or both
olefinic bonds. The reaction conditions were optimized to find adequate conditions to regenerate
benzoquinone (BQ) and use this oxidant in catalytic amounts. Some of the results, resulting from
this screening study, are gathered in Table 14. First, as a comparison experiment (Table 14, Entry 1),
the reaction with a stoichiometric amount of benzoquinone proceeded with a 58% conversion in 5 h
and a 88% selectivity in 39 and 40. The authors showed that copper acetate could be used as a catalytic
transfer mediator, thus allowing the efficient regeneration of benzoquinone during the catalytic cycle
(Table 14, Entries 2–6) and its sub-stoichiometric use (up to 0.25 equiv.). Moreover, benzoquinone
seems to be crucial toward the selectivity all over the reaction (Table 14, Entries 4–6) acting as a ligand
of palladium system.
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Table 14. Palladium-catalyzed oxidation of α-bisabolol 38 with molecular oxygen in the presence of
benzoquinone and copper acetate a (adapted from reference [53]).
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In 2009, da Silva et al. reported a complex PdCl2/H2O2/CH3CN system, which transformed
camphene into the corresponding epoxide (vide supra) [14]. In contrast, the same catalyst used with
β-pinene 12 afforded allylic oxidation products, mainly pinocarveol 13 (57%) and pinocarvone 14
(24%), alongside epoxy-β-pinene 24 (19%), with a conversion up to 58% in 8 h (Scheme 10).
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Nevertheless, under these conditions, α-pinene 1 provides a complex mixture of products, without
oxidation compounds, probably due to the steric hindrance of the methyl groups. On the contrary, the
oxidation of 3-carene 3 gave various allylic oxidation products (mono- and di-ketones, allylic alcohols
and little epoxy-derivatives) with low degree of selectivity.

Rhodium catalysts. In 2009, Doyle and coworkers reported the use of dirhodium(II) caprolactamate

(Rh2(cap)4) (E1/2 = 11 mV [54]) as a catalyst for the oxidation of (R)-(+)-limonene 2 [55], with a safer and
cheaper 70% t-BHP in water (T-HYDRO) as an oxidant (Scheme 11). After 20 h, the reaction afforded
racemic carvone 9 as major product with a 44% isolated yield, resulting from the racemic free radical
obtained by H-abstraction at the 6-position of the substrate. Isopiperitinone 42, arising from oxidation
at the 3-position, was also observed as a minor product, probably owing to steric factors.
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Recently, the chelating Du Bois’ catalyst Rh2(esp)2 (esp= α,α,α′,α′-tetramethyl-1,3-benzene
dipropionate), possessing a higher oxidation potential (E1/2 = 1130 mV [56]) proved to efficiently
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catalyze the solvent-free allylic oxidation of some targeted olefins, using large excess of T-HYDRO
(5 equiv.), at ambient temperature (Table 15) [57]. First, the Rh2(esp)2 catalyst was more efficient than
Rh2(cap)4 complex for oxidation of isophorone 43, a structural model of terpenic derivatives, with a
91% conversion in 24 h. Moreover, the catalyst was easily separated by chromatographic purification
and reused. After optimization on isophorone, the process was successfully extended to some targeted
terpenic olefins (Entries 2–4), leading to the corresponding α,β-unsaturated ketones with promising
isolated yields, ranging from 43 to 71%.

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a

(adapted from reference [57]).
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3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

Entry Substrate Product Yield b (%)

1

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

78

2

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

71

3 C

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

43

4 C

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

Catalysts 2019, 9, 893 20 of 39 

 

Table 15. Allylic oxidation of olefins by Rh2(esp)2/T-HYDRO under optimized reaction conditions a 
(adapted from reference [57]). 

 

 

Entry Substrate Product Yield b (%) 

1 

  

78 

2 

  

71 

3 C 

  

43 

4 C 

 
 

60 

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. 
c Rh2(esp)2 (1 mol%) and 1 mL H2O. 

3.2. Using Heterogeneous Catalysts 

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with 
regard to environmental considerations, the most relevant approach consists in the catalytic use of 
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most 
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and 
first row transition metals will be described. 

3.2.1. Chromium-Based Catalysts 

Various chromium-containing solid materials were developed and evaluated in the oxidation of 
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected 
products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered 
some of the most pertinent chromium heterogeneous catalysts. 

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are 
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the 

60

a General conditions: Olefin (4 mmol), Rh2(esp)2 (0.1 mol%), T-HYDRO (20 mmol), r.t. b Isolated yield. c Rh2(esp)2
(1 mol%) and 1 mL H2O.

3.2. Using Heterogeneous Catalysts

Chromium reagents are widely known in stoichiometric or catalytic oxidations. However, with
regard to environmental considerations, the most relevant approach consists in the catalytic use of
chromium species deposited on heterogeneous supports [58]. In the first paragraph, some of the most
pertinent chromium-based systems will be referenced. Then, novel catalysts composed of noble and
first row transition metals will be described.

3.2.1. Chromium-Based Catalysts

Various chromium-containing solid materials were developed and evaluated in the oxidation of
α-pinene 1, using either tert-butylhydroperoxide (t-BHP) or molecular oxygen. The main detected
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products are verbenone 8, verbenol 32, epoxide 5, and α-pinenehydroperoxide 33. Table 16 gathered
some of the most pertinent chromium heterogeneous catalysts.

Chromium catalysts, deposited either on MIL-101 framework [59] or SBA-15 support [60], are
active and selective toward α,β-unsaturated ketones with t-BHP and reusable with no leaching of the
metal from the inorganic matrix. Mechanistically, the reaction mainly occurs via a heterolytic pathway
and proceeds via a radical-chain mechanism (Scheme 12) [60]. Promising catalytic performances are
also observed with chromium-containing mesoporous materials (MCM-41 or MIL-101) in aerobic
conditions [12,61]. This catalytic system was extended to β-pinene 12, mainly affording the allylic
mono-oxygenated products [12]. Interestingly, Kholdeeva et al. [61,62] compared the potential of both
chromium- and iron-containing mesoporous metal-organic framework (MIL-101) in the solventless
oxidation of some terpenes, such asα- andβ-pinenes 1 and 12, respectively, and limonene 2. The product
distribution seems to be dependent on the nature of the metal (Table 17). Various products were
identified, probably due to the partial isomerization of the substrate and the resulting products. On
one hand, chromium-based catalysts give the α,β-unsaturated ketone, through dehydration of the
hydroperoxide, followed by the subsequent oxidation of the corresponding alcohol into ketone. On the
other hand, iron catalyst affords the alcohol, resulting from the metal-centered oxidation. In the case of
limonene 2, the epoxide 6 was also observed (Table 17, Entry 3a-b). The catalysts could be recycled at
least four times with no loss of the catalytic properties. Moreover, the authors evaluated the effect of the
support in the oxidation of pinene isomers (Table 17, Entries 1c-d and 2c-d) using an MIL-101 support
with cages presenting diameters of 34 and 29 Å as well as an MIL-100 structure with smaller cages
(24 and 27 Å) [63]. No significant influence of the material was noticed on the catalytic performances.

Table 16. Chromium-containing solid materials for allylic oxidation of α-pinene 1.

Entry Catalyst Cr
(mmol) Oxidant Solvent T (◦C) Conv.

(%)
Enone

Selectivity (%) Ref.

1 a Cr-SBA15(8) n.d. c t-BHP Chlorobenzene 85 91.5 88.2 [61]
2 b Cr-SBA15(8) n.d. c t-BHP Chlorobenzene 85 85.2 80.1 [61]
3 a Cr-MIL-101 0.006 t-BHP Benzene 50 87 89 [62]
4 b Cr-MIL-101 0.006 t-BHP Benzene 50 90 87 [62]
5 Cr-MCM41 0.02 O2 (1 bar) Solventless 60 40 26 [12]
6 Cr-SiO2 0.02 O2 (1 bar) Solventless 60 45 16 [12]
7 Cr-MIL-101 0.1 O2 (10 bar) Solventless 60 26 39 [63]
a Cr-SBA15(8) prepared with a pH-adjusting hydrothermal method according to a nSi/nCr = 8. b Reusable
Cr-containing solid catalyst was used in a second run. c Non determined.
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Table 17. Iron- vs. chromium-MIL catalysts—a comparison in the oxidation of various terpenic olefins
a (adapted from reference [61–63]).

Entry Metal Support T (◦C) Conv.
(%) Product Selectivity (%)
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a General conditions: 12–26 mg catalyst (0.05–0.1 mmol Fe or Cr), 10 mmol olefin, 1 bar O2, t-BHP (0.02 
mmol), 16 h. 
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3.2.2. Noble Metals

Ruthenium and gold catalysts. Godhani et al. prepared zeolite-Y encaged ruthenium(III) and

iron(III) complexes, modified with a Schiff Base (SB) ligand (2,2′-((1E,1′E)-((azanediylbis(ethane-
2,1-diyl))bis(azanylylidene))bis(methanylyliden)diphenol) [64] and compared their catalytic results in
the oxidation of limonene 2 with H2O2 (Figure 9). First, the homogeneous Ru-SB catalyst was more
efficient than its heterogeneous Ru-SB-Y analog. However, the zeolite-Y encaged Ru(III) complex
presents a higher TurnOver Frequency (2273 h−1 vs. 50.8 h−1 for Ru-SB) and is more easily recycled.
Both molecular and heterogeneous catalysts were highly selective in allylic products (80–90%), with
carvone 9 as major product, and more active than the metal exchanged zeolite-Y materials.
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The Ru-SB-Y material was applied to α-pinene 1, affording the allylic products (verbenone 8,
verbenol 32 and myrtenol 16) with a 87% selectivity and a TOF up to 2023 h−1 (Figure 10). Surprisingly,
the addition of sulfuric acid in the reaction media favored the epoxidation products (pinene oxide 5
and campholenal 26) without their opening, with a complete conversion and a 70% selectivity.
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In 2011, Mikkola and coworkers studied the catalytic performances of TiO2-supported bimetallic
gold-metal (with metal = Cu, Co, Ru) nanoparticles, obtained by a deposition–precipitation method [65].
Transmission Electron Microscopy images showed finely distributed particles on the support in the
size range of 3–4 nm and 4–6 nm, respectively for the bi- and mono-metallic catalysts. XPS (X-ray
photoelectron spectrometry) studies validate the formation of metallic Au0 particles under the synthesis
conditions (300 ◦C), while other metals (cobalt, copper, ruthenium) are in oxide forms. Various reaction
parameters (reaction time, temperature, solvent) were studied to achieve optimal conversion of
α-pinene 1 in verbenone 8. Under optimized conditions, a comparison of the various catalysts is
resumed in Table 18. The bimetallic AuCu/TiO2 (1/1) was more active and selective in ketone 8
(Entry 2). The catalytic activities over the various systems decreased in the following order: AuCu/TiO2

> AuCo/TiO2 > Cu/TiO2 > Au/TiO2 > AuRu/TiO2. Finally, the AuCu/TiO2 catalyst was easily recycled,
with a conversion up to 94% for three successive runs.
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Table 18. Oxidation of α-pinene. Comparison of various gold containing mono- or bi-metallic
nanoparticles supported on TiO2

a (adapted from reference [65]).

Entry Catalyst Conversion (%) b Selectivity (%) b

Verbenone 8 Verbenol 32 Epoxide 5

1 - 62 21.6 12.8 19.2
2 AuCu/TiO2 97 47.9 12.1 6.5
3 AuCo/TiO2 88 28.2 13.2 6.3
4 AuRu/TiO2 73 32.1 22.1 5.7
5 Au/TiO2 78 24.6 17.5 4.6
6 Cu/TiO2 80 22.8 8.8 8.5

a Reaction conditions: Catalyst (100 mg), α-pinene (5 mmol), t-BHP (5 mmol), CH3CN (15 mL), 70 ◦C. b Determined
by Gas Chromatography.

3.2.3. First Row Transition Metals

Iron catalysts. Iron—a cheap, non-toxic, and earth-abundant metal—was deposited on various

supports (activated carbon, silica, or montmorillonite). First, activated carbon EuroPh supported-iron
catalysts, with various metal contents were evaluated in the oxidation of limonene 2 (Table 19) with
hydrogen peroxide (H2O2) or tert-butylhydroperoxide (t-BHP) [66].

Table 19. FeEuroPh-catalyzed allylic oxidation of limonene 2: H2O2 vs. t-BHP a (adapted from
reference [66]).

Entry Fe Content (%) Oxidant Selectivity b (%)

9 (%) 17 (%) 48 (%) 6 (%) 31 (%)

1 0.68 H2O2 28 - 50 - 22
2 1.32 H2O2 22 - 44 - 34
3 2.64 H2O2 - - 37 - 63

4 0.68 t-BHP 24 - 76 - -
5 1.32 t-BHP 18 10 72 - -
6 2.64 t-BHP - - 73 27 -

a Reaction conditions: Catalyst (2.45% wt.), (R)-limonene (1.6% wt.), limonene/oxidant = 1
2 , Methanol, 70 ◦C.

b Determined by GC analyses.

Whatever the oxidant is, the main product is the perillyl alcohol 48 obtained by allylic oxidation at
position 7. At low iron loading, carvone 9 was also observed with selectivities around 20–30% (Entries 1,2
and 4,5). However, epoxidation of the unsaturated bond at the 1,2 position of limonene, followed
by hydration to afford the corresponding diol 31, also occurs with hydrogen peroxide. At higher
metal loading, 1,2-epoxylimonene 6 was also detected with t-BHP (Entry 6). In 2016, Gonzalez et al.
immobilized an iron hexadecachlorinated phthalocyanine on a modified silica (FePcCl16-NH2-SiO2)
and studied the kinetics of the oxidation of α-pinene 1, using tert-butylhydroperoxide in acetone
(Figure 11) [67]. After 23 h, a conversion up to 83.7% was achieved, with 23% of selectivity in
verbenone 8. The catalyst could be efficiently reused over 7 runs, with no significant loss of activity.
Kinetic studies suggested that the oxidation over this supported catalyst was not purely heterogeneous
but also homogeneous, owing to the involvement of radical species in the bulk phase.
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hierarchically ordered lotus-shaped MnO2 nanomaterial, obtained by a chelate-mediated growth of 
MnCO3 using citric acid as a chelating agent, followed by calcination [70]. This material was 
compared to other MnO2 nanospecies, possessing different morphologies (rods, spheres, or 
aggregates) prepared from other chelating agents (tartaric acid, oleic acid, or 
ethylenediaminetetraacetic acid known as EDTA), as well as to bulk manganese. Among the tested 
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pinene 1 using dioxygen as oxidant (Table 20), with a 82% yield in verbenone 8. 
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In 2006, mechanochemically activated iron-pillared montmorillonite materials (Fe-PILC/MA)
were prepared and investigated in the same reaction, but in dichloromethane (Figure 12) [68]. These
materials are characterized by a “house cards” structure of Fe2O3-pillars and meso- and macropores.
They were compared to iron-supported on sodium-montmorillonite (Fe-PILC), mainly formed of
Fe2O3-pillars and micropores. According to the structural features of the materials, isomerization
(such as limonene 2 or p-cymene 49) or oxidation products were obtained. Thus, the Fe- PILC material
mainly leads with high conversion to the α-isomerization product, limonene 2, alongside p-cymene
49 and some fragmentation products. On the contrary, the mechanochemically activated material
affords lower conversion, but high selectivity in allylic oxidation products 8 and 32 (67.5%), with
α-campholene aldehyde 26 (7%) formed by rearrangement of epoxypinane on the acidic sites of the
support. Finally, an increase in the oxidant amount allows total conversion, with an 84% ketone yield.
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Manganese oxide catalysts. Activated MnO2, combined with tert-butylhydroperoxide, proved

to be an efficient system for the oxidation of allylic methylene groups of limonene 2 or valencene 45,
into the corresponding α,β-unsaturated ketones with 22% (carvone 9) and 63% (nootkatone 46) yields,
respectively (Figure 13) [69]. The oxidation process proceeds in two sequential steps: first, at low
temperature (−30 to −10 ◦C), the oxide species catalyzes the oxidation of the methylene group; secondly,
at higher temperatures, it decomposes the unreacted t-BHP and oxidizes the formed allylic alcohol.

In 2013, Panda and coworkers developed a new method for the synthesis of porous hierarchically
ordered lotus-shaped MnO2 nanomaterial, obtained by a chelate-mediated growth of MnCO3 using
citric acid as a chelating agent, followed by calcination [70]. This material was compared to other
MnO2 nanospecies, possessing different morphologies (rods, spheres, or aggregates) prepared from
other chelating agents (tartaric acid, oleic acid, or ethylenediaminetetraacetic acid known as EDTA),
as well as to bulk manganese. Among the tested catalysts, the lotus-shaped form showed excellent
catalytic results in the solventless oxidation of α-pinene 1 using dioxygen as oxidant (Table 20), with a
82% yield in verbenone 8.
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Cobalt catalysts. At the end of 1990s, molecular cobalt complexes, such as Co(NO3)2 or Co(4-
MeC5H3N)2Br2, proved to be active for the oxidation of α-pinene 1 with promising selectivities.[71–
73] Their supported analogs have also been widely studied. For instance, Gusevskaya et al. used 
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structure preferentially occurred at octahedral positions. First, cobalt-containing ferrites seem to be 
slightly more active with higher TONs, compared to the manganese ones (Table 21). On one hand, 
the cobalt-catalyzed oxidation of β-pinene 12 and 3-carene 3 mainly afforded the allylic mono-
oxygenated products. At 37% conversion, β-pinene 12 was equally transformed with a high global 
selectivity of 95% into trans-pinocarveol 13, pinocarvone 14, myrtenal 15, and myrtenol 16, while 3-
carene 3 gave several allylic ketones, such as 3-carene-5-one (46%), 2-carene-4-one (14%) and 3-
carene-2-one (11%). On the other hand, limonene 2 and α-pinene 1 gave allylic oxidation products 
and epoxides, with a molar ratio of allylic products vs. epoxides of 1.4 and 2–2.5, respectively. 

In 2007, Kholdeeva immobilized on hydrothermally stable silicates, such as mesoporous cellular 
foams (MCFs) or mesostructured materials (SBA-15), a cobalt-substituted polyoxometalate 
([Bu4N]4H[PW11Co(H2O)O39]) via an electrostatic binding between the CoPOM and the amino-
modified support [75]. FTIR and DRS-UV-vis (Diffuse reflectance spectroscopy) analyses prove the 
retention of the CoPOM on the support. In aerobic conditions, the oxidation of α-pinene 1 could be 
oriented toward the formation of allylic oxidation products, such as verbenone 8 and verbenol 32 
with selectivities up to 70% (at 20% conversion) or to epoxide as major product, using 2-
methylpropanal as co-oxidant (Table 22). 
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Table 20. Allylic oxidation of α-pinene. Comparison of various shaped MnO2 catalysts a (adapted
from reference [70]).

Entry Morphology d(XRD)
b (nm) SBET

c (m2 g−1) Conversion d (%) Selectivty e (%)

1 Lotus 7 145 94 87

2 Rods 7.3 92 80 70

3 Spheres 7.5 109 86 79

4 Agglomerates 6.5 56.9 81 87.5

5 Bulk - 3 64 59
a Reaction conditions: Catalyst (55 mg), substrate (25.2 mmol), O2 (1 bar), 75 ◦C b Crystallite size determined from
XRD line broadening. c BET surface area. d Conversion of α-pinene, determined by GC analyses. e Selectivity in
verbenone determined by GC analysis.

Cobalt catalysts. At the end of 1990s, molecular cobalt complexes, such as Co(NO3)2 or

Co(4-MeC5H3N)2Br2, proved to be active for the oxidation of α-pinene 1 with promising
selectivities [71–73]. Their supported analogs have also been widely studied. For instance, Gusevskaya
et al. used inexpensive cobalt- and manganese-substituted ferrites as heterogeneous materials in the
solventless and mild oxidation of model monoterpenes (Table 21), with molecular oxygen (1 bar O2) [74].
From characterization studies, the substitution of iron by cobalt or manganese species in the ferrite
structure preferentially occurred at octahedral positions. First, cobalt-containing ferrites seem to be
slightly more active with higher TONs, compared to the manganese ones (Table 21). On one hand, the
cobalt-catalyzed oxidation of β-pinene 12 and 3-carene 3 mainly afforded the allylic mono-oxygenated
products. At 37% conversion, β-pinene 12 was equally transformed with a high global selectivity of
95% into trans-pinocarveol 13, pinocarvone 14, myrtenal 15, and myrtenol 16, while 3-carene 3 gave
several allylic ketones, such as 3-carene-5-one (46%), 2-carene-4-one (14%) and 3-carene-2-one (11%).
On the other hand, limonene 2 and α-pinene 1 gave allylic oxidation products and epoxides, with a
molar ratio of allylic products vs. epoxides of 1.4 and 2–2.5, respectively.

In 2007, Kholdeeva immobilized on hydrothermally stable silicates, such as mesoporous
cellular foams (MCFs) or mesostructured materials (SBA-15), a cobalt-substituted polyoxometalate
([Bu4N]4H[PW11Co(H2O)O39]) via an electrostatic binding between the CoPOM and the
amino-modified support [75]. FTIR and DRS-UV-vis (Diffuse reflectance spectroscopy) analyses
prove the retention of the CoPOM on the support. In aerobic conditions, the oxidation of α-pinene
1 could be oriented toward the formation of allylic oxidation products, such as verbenone 8 and
verbenol 32 with selectivities up to 70% (at 20% conversion) or to epoxide as major product, using
2-methylpropanal as co-oxidant (Table 22).
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Table 21. Aerobic oxidation of terpenic olefins with Co- and Mn-substituted ferrites a (adapted from
reference [74]).

Entry Substrate Catalyst Conversion b

(%)
Sallyl

b (%) SEpox
b (%) TON c

1a
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Table 22. Effect of 2-methylpropanal on the aerobic oxidation of α-pinene 1 with cobalt-substituted
polyoxometalate on amino-modified supports a (adapted from reference [75]).

Entry Catalyst

With 2-Methylpropanal at 25 ◦C b Without 2-Methylpropanal at 50 ◦C

Conv. (%)
Yield c (%)

Conv. (%)
Yield c (%)

Campholenic
Aldehyde

α-Pinene
Epoxide Verbenone Verbenol

1 Co-POM 77 8 (10) 67 (87) 45 16 (36) 11 (24)
2 Co-POM/NH2-SBA-15 95 15 (16) 72 (76) 46 12 (26) 6 (13)
3 Co-POM/NH2-MCF 96 d 8 (8) 90 (94) 43 10 (23) 6 (14)
a Conditions: Catalyst (6 × 10−4 mmol), α-pinene (0.1 mmol), 1 bar O2, CH3CN, 1 h. b 2-methylpropanal (0.4 mmol).
c GC yield based on initial α-pinene (inside parentheses, CG yield based on α-pinene consumed). d After 2 h.

Similarly, cobalt-containing MCM-41 catalysts were prepared by direct incorporation of cobalt
species into the support by a hydrothermal treatment [76]. Characterization showed that the metal
was mainly introduced on the surface as isolated Co2+ species. This catalyst was efficient for the mild
and solventless aerobic oxidation of isolongifolene 50 into the corresponding ketone 51 with selectivity
up to 90% (Scheme 13).
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Originally, reeds (Phragmites communis) leaves were used as an eco-respectful template to synthesize
cobalt-doped mesoporous silica (Co/SiO2/PC) [77]. This catalyst is efficient for the mild aerobic oxidation
of limonene 2, with a complete conversion in 18 h and a 40% selectivity in carvone 9 in acetic anhydride
(Figure 14). Hot catalyst filtration experiments proved the heterogeneous nature of the material
Co/SiO2/PC, which can be reusable over three runs.
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Nickel catalyst. Chloromethylated polystyrene-crosslinked with 2-aminopyridine was used as a

macromolecular support for anchoring nickel(II) complex [78]. The obtained catalyst proved to be
efficient and reusable for the oxidation of two terpenic olefins (α-pinene 1 and limonene 2) in the
presence of t-BHP in aqueous solution with high TurnOver Frequencies (Table 23).

Table 23. Polymer-anchored nickel(II) complex in allylic oxidation of model terpenes a (adapted from
reference [78]).

Entry Substrate Conversion b (%)
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Copper catalysts. Copper catalysts are also relevant for the allylic oxidation of terpenic olefins.

For instance, activated carbon-supported CuCl2 (CuCl2/AC) was used in the liquid phase oxidation
of (+)-3-carene 3 with tert-butylhydroperoxide and dioxygen [79]. After optimization of the reaction
conditions (45 ◦C, 3 eq. t-BHP), the substrate was completely converted into (−)-3-carene-2,5-dione 10
with a 78% selectivity in 12 h (Scheme 14). The optimized conditions were extended to α-pinene 1,
leading to the formation of verbenone 8 with a 28% yield at 40 ◦C and up to 77% at 70 ◦C.
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Scheme 14. Synthesis of (−)-3-carene-2,5-dione via a Cu-catalyzed-oxidation process (adapted from
reference [79]).

In 2014, the team of Guerra developed a novel process for the allylic oxidation of alkenes, catalyzed
by a copper-aluminum mixed oxide (Cu-Al Ox), with tert-butylhydroperoxide and a carboxylic acid [80].
In this study, the monoterpenic β-pinene 12 and the sesquiterpenic valencene 45 were investigated.
In the presence of alkylated or aromatic carboxylic acids, the reaction yielded the corresponding allylic
esters, while allylic alcohol or ketone were obtained with L-Proline. An overview of the results is
detailed in Scheme 15. Interestingly, the authors developed experimental (DoE) statistical methodology
to optimize the oxidation of valencene 45.
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trans-carveol 17). Moreover, the vanadium content in the material influenced the conversion, as well as
the distribution of products. Higher amounts of vanadium enhanced the catalytic activity, up to 18%
conversion with 1.7% vanadium content, and the campholenic aldehyde/trans-carveol ratio. As already
reported in the literature, the isomerization of α-pinene oxide 5 leading to campholenic acid is favored
on Lewis acid sites, while trans-carveol formed over Brönsted sites.

Table 24. Oxidation of α-pinene over V-VSB-5 catalysts. Influence of the Brönsted and Lewis sites a

(adapted from reference [82]).

Entry Catalyst NLAS/NBAS (mol·mol−1) b Conv. c (%) Selectivity c (mol %)

Epoxidation Allylic Oxidation

1 VSB-5 1.8 3 38 48
2 1.1% V-VSB-5 1.3 12 38 45
3 1.7% V-VSB-5 0.9 18 35 48

a Reaction conditions: Catalyst (20 mg), α-pinene (0.1 mmol), 1 bar O2, CH3CN, 60 ◦C, 5 h. b Brönsted and Lewis
acidity were determined by FTIR spectroscopy using pyridine as probe molecules. c Determined by GC analyses.

Molecular sieves based on a MCM-41 structure were also used to support vanadium species,
using VO(SO4)·H2O as metal precursor, cetyltrimethylammonium bromide salt as template and
tetraethoxysilane as silica source [83]. UV-Vis-DR and FT-IR Raman studies proved the presence of two
types of Vδ+ species, as well as oligonuclear nanoclusters (Vδ+ . . . Oδ− . . . Vδ+), which could be found
either inside or also on the wall of the support. The various V-M(x) catalysts, with x being the Si/V
molar ratio, were tested in the oxidation of α-pinene 1 with hydrogen peroxide (Table 25). Vanadium
ions proved to be the active species since no reaction occurred in their absence. A high selectivity in
ketone 8 up to 46% was observed with V-M(240) catalyst (Entry 3). Interestingly, although an increased
H2O2 conversion is observed at high metal content (Entry 1), a higher efficiency is obtained with
V-M(240), probably due to the formation of extra-framework nanoclusters and vanadium oligomers,
which are responsible for H2O2 decomposition into water. Finally, the catalyst was easily recycled over
four runs with good catalytic performances.

Table 25. Oxidation of α-pinene 1 over V-M(x) catalysts. Influence of the metal content a (adapted from
reference [83]).

Entry Catalyst Conv. b

(%)

H2O2
Conv. c

(mol %)

H2O2
Efficiency d

(mol %)

Selectivity e (%)
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Recently, several oxidized metal complexes (VOIV, MnII, FeII, CoII, NiII and CuII), modified by a 
Schiff base ligand, namely HMIMMPP for 4-(((2-hydroxy-5-methylphenyl)imino)methyl)-3-methyl-
1-phenyl-1H-pyrazol-5-ol, were entangled in the zeolite Y matrix through a two-step process (Figure 
15a) and compared in the oxidation of α-pinene 1 with tert-butylhydroperoxide in acetonitrile (Figure 
15b) [84]. The reaction gave verbenol 32 and verbenone 8 as major products, with small amounts of 
myrtenol (6–7%), campholene aldehyde (3–4%) and epoxide (2–4%) as co-products. The conversion 
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Recently, several oxidized metal complexes (VOIV, MnII, FeII, CoII, NiII and CuII), modified
by a Schiff base ligand, namely HMIMMPP for 4-(((2-hydroxy-5-methylphenyl)imino)methyl)-3-
methyl-1-phenyl-1H-pyrazol-5-ol, were entangled in the zeolite Y matrix through a two-step process
(Figure 15a) and compared in the oxidation of α-pinene 1 with tert-butylhydroperoxide in acetonitrile
(Figure 15b) [84]. The reaction gave verbenol 32 and verbenone 8 as major products, with small
amounts of myrtenol (6–7%), campholene aldehyde (3–4%) and epoxide (2–4%) as co-products. The
conversion is influenced by the metal, increasing in the following order: Mn < Fe < Ni < Cu < Co < VO.
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The [VO(HMIMMPP)(H2O)]-Y catalyst showed the highest conversion (45.3%) with a 40.7% selectivity
in ketone. This process could also be considered as eco-responsible with a good catalyst’s recycling.Catalysts 2019, 9, 893 31 of 38 
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3.3. Aqueous Suspensions of Ruthenium Nanoparticles 

Nanometer-sized metal particles with a behavior located at the interface between molecular 
complexes and heterogeneous catalysts, are considered as relevant catalysts owing to their novel 
surface reactivities and thus original activities and/or selectivities for many reactions [86]. Although 
Co3O4 nanoparticles in organic media (DMF) were reported for the epoxidation of α-pinene 1 [87], 
the use of metallic nanoparticles finely dispersed in water, as a cheap, available and benign solvent 
[88,89], has not been described yet. In that context, our team have very recently developed aqueous 
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catalyst for the α-pinene oxidation using hydrogen peroxide [85]. From UV-vis analyses, the active
species are present in tetrahedrally coordinated Ti4+ ions. An increase in the titania content did not
improve the conversion, due to a rapid consumption of the oxidant at the early stage of the reaction.
The yield of oxidation products, mainly verbenone 8, verbenol 32 and campholenic aldehyde 26, was
increased with an extra dose of oxidant after 1 h of reaction (Scheme 16). As previously reported, the
selectivity with Ti-MCM-41 catalyst, prepared by hydrothermal synthesis, differs from those prepared
by a post-synthetic approach, which are in favor of epoxides [42].
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3.3. Aqueous Suspensions of Ruthenium Nanoparticles

Nanometer-sized metal particles with a behavior located at the interface between molecular
complexes and heterogeneous catalysts, are considered as relevant catalysts owing to their novel surface
reactivities and thus original activities and/or selectivities for many reactions [86]. Although Co3O4

nanoparticles in organic media (DMF) were reported for the epoxidation of α-pinene 1 [87], the use of
metallic nanoparticles finely dispersed in water, as a cheap, available and benign solvent [88,89], has not
been described yet. In that context, our team have very recently developed aqueous suspensions of
ruthenium (0) nanoparticles, stabilized with a hydroxyethylammonium salt (HEA16Cl) and possessing
sizes around 2.0 nm, for the mild allylic oxidation of α-pinene, with tert-butylhydroperoxide in neat
water (Figure 16) [90]. After optimization of the reaction conditions, verbenone 8 was obtained
as major product with a yield up to 41%, alongside 2-hydroxy-3-pinanone 54 (<7%) as co-product.
The sequential addition of the oxidant (2 × 1.5 equiv.) enables to increase the ketone yield.



Catalysts 2019, 9, 893 32 of 39
Catalysts 2019, 9, 893 32 of 38 

 

 
Figure 16. Ammonium surfactant-stabilized ruthenium nanoparticles for oxidation of α-pinene 1 in 
neat water (adapted from reference [90]). 

This catalytic system was extended to valencene 45, leading to the formation of the 
corresponding nootkatone 46 with a 60% isolated yield in water, at room temperature (Scheme 17). 
This result is quite similar to the one obtained with a Cu-Al-Ox catalyst used in acetonitrile at 80 °C 
[78]. This oxyfunctionalized molecule constitutes an important flavoring constituent due its citrusy, 
woody, peely, and grapefruitlike aroma profile [91] and is also a natural insect repellent [92]. 

 
Scheme 17. Production of nootkatone, catalyzed by ammonium-protected ruthenium nanoparticles. 

3.4. Conclusions 

Allylic oxidations, which enable the transformation of olefin compounds into allyl alcohols or 
α,β-unsaturated ketones, constitute a relevant Csp3-H functionalization, afforded synthetic and 
value-added target molecules for flavoring and pharmaceutical industries. Terpenes, available from 
renewable sources, are relevant starting materials for these reactions. The bibliographic study, 
detailed in this part, showed that various catalysts, either molecular complexes or heterogeneous 
catalysts, can be used for the allylic oxidations of various terpenic olefins. The Figure 17 gives a 
comparison of different catalysts used for the allylic oxidation of α-pinene 1, one of the most studied 
terpenic olefin. The reaction is usually carried out in organic solvents (dichloromethane, acetone, 
acetonitrile), in the presence of various oxidants such as tert-butylhydroperoxide (t-BHP), hydrogen 
peroxide (H2O2), as well as dioxygen. In many cases, the allylic product, verbenone 8, was obtained 
with low to medium yields, from 10 to 55%. However, two heterogeneous catalysts lead to yields up 
to 80% in 8. First, a mechanochemically activated iron-pillared montmorillonite material allowed a 
complete conversion of the substrate with an 84% isolated yield in verbenone 8. Nevertheless, this 
reaction proceeded with large amounts of oxidant (10 eq.) and in 50 h, that is to say more than two 
days [68]. In 2013, a hierarchically ordered porous lotus-shaped nanostructured MnO2 catalyst was 
found pertinent for this transformation, with an 82% yield in verbenone 8 [70]. However, the 
reproducible synthesis of this catalyst remains complex. 

 

Figure 16. Ammonium surfactant-stabilized ruthenium nanoparticles for oxidation of α-pinene 1 in
neat water (adapted from reference [90]).

This catalytic system was extended to valencene 45, leading to the formation of the corresponding
nootkatone 46 with a 60% isolated yield in water, at room temperature (Scheme 17). This result
is quite similar to the one obtained with a Cu-Al-Ox catalyst used in acetonitrile at 80 ◦C [78].
This oxyfunctionalized molecule constitutes an important flavoring constituent due its citrusy, woody,
peely, and grapefruitlike aroma profile [91] and is also a natural insect repellent [92].
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3.4. Conclusions

Allylic oxidations, which enable the transformation of olefin compounds into allyl alcohols
or α,β-unsaturated ketones, constitute a relevant Csp3-H functionalization, afforded synthetic and
value-added target molecules for flavoring and pharmaceutical industries. Terpenes, available from
renewable sources, are relevant starting materials for these reactions. The bibliographic study, detailed
in this part, showed that various catalysts, either molecular complexes or heterogeneous catalysts,
can be used for the allylic oxidations of various terpenic olefins. The Figure 17 gives a comparison of
different catalysts used for the allylic oxidation of α-pinene 1, one of the most studied terpenic olefin.
The reaction is usually carried out in organic solvents (dichloromethane, acetone, acetonitrile), in the
presence of various oxidants such as tert-butylhydroperoxide (t-BHP), hydrogen peroxide (H2O2),
as well as dioxygen. In many cases, the allylic product, verbenone 8, was obtained with low to medium
yields, from 10 to 55%. However, two heterogeneous catalysts lead to yields up to 80% in 8. First,
a mechanochemically activated iron-pillared montmorillonite material allowed a complete conversion
of the substrate with an 84% isolated yield in verbenone 8. Nevertheless, this reaction proceeded
with large amounts of oxidant (10 eq.) and in 50 h, that is to say more than two days [68]. In 2013,
a hierarchically ordered porous lotus-shaped nanostructured MnO2 catalyst was found pertinent for
this transformation, with an 82% yield in verbenone 8 [70]. However, the reproducible synthesis of this
catalyst remains complex.
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Although many works have been carried out for the allylic oxidation of olefinic terpenes,
most processes still suffer from some drawbacks such as moderate conversions and/or selectivities,
sophisticated catalytic systems, toxic organic solvent as well as huge amounts of oxidant, long reaction
times and difficult catalyst’s recycling. It is noteworthy to underline that two examples for the allylic
oxidation of α-pinene 1 were carried out in water as a green reaction media, with polymer-supported
nickel catalyst [41] or with aqueous suspensions of ruthenium nanoparticles [90].

4. Conclusions and Perspectives

Olefinic terpenes constitute a promising source of abundant and cheap biorenewables, whose
upgrading could afford huge economic benefits, with wide applications in many chemical industries.
The most representative and viable sources of terpenes are the turpentine resins extracted from
coniferous trees [93] and the essential oils from citrics [94]. Among the various catalytic chemical
processes for the valorization of these agro-resources [95], oxidation reactions represent a relevant
methodology for the upgrading of some usual terpenes into value-added oxyfunctionalized chemicals
for the pharmaceutical, perfumery, and flavoring industries. According to the nature of the catalysts
and/or the reaction conditions, the oxidation reaction could lead to the formation of either epoxide
via the epoxidation of the double bond or allylic oxidation products via the functionalization of the
Csp3-H bond.

In the literature, many catalysts, either molecular complexes or heterogeneous materials, based
on noble metals (for instance ruthenium, gold, palladium species) but also on first row transition
metals (such as cobalt, vanadium, manganese, nickel, etc.), were used for the oxidation of model
terpenes. Classically, various oxidants such as organic ones (t-BHP or peracetic acid) or greener
ones—for instance hydrogen peroxide (H2O2) or molecular dioxygen (O2)—were used. Heterogeneous
catalytic approaches are generally industrially preferred, compared to homogeneous ones, with regard
to the associated benefits, such as easy separation of the reaction products and good durability and
recyclability of the catalysts. Nevertheless, in most cases, low to medium yields were obtained, and
high levels of selectivity remain difficult to reach with complex reaction mixtures due to the sensitivity
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of the products. Moreover, most of the oxidation processes still suffer from various drawbacks, such as
the use of too sophisticated catalysts, toxic organic solvents, and high amounts of oxidants, alongside
long reaction times and difficult catalyst recovery. Consequently, the development of new processes
for industrial plants still constitutes a target in this field.

Although great achievements have been accomplished on the upgrading of terpenic olefins
through oxidation processes, further improvements with new catalytic methodologies are still required
for industrially large-scaled and economical production of the value-added oxyfunctionalized terpenic
olefins such as epoxides or α,β-unsaturated ketones. Thus, we can highlight some strategic points, such
as (1) the design of cost-effective catalysts, which could be efficient for a large variety of terpenes with
very high level of selectivity; (2) a better understanding of the mechanism insights and structure-activity
relationships to favor the reaction selectivity; (3) control of the catalyst’s acidity or basicity to avoid the
formation of co-products; (4) the design of a easy and low-cost approach for the large-scale production
of oxyfunctionalized products with a reduced environmental footprint; and finally (5) besides noble
metals, a preference for the use of cheap and abundant first-row transition metals. Continuous
investigations of more efficient and suitable nanoparticle-based catalysts are still highly demanded,
with regard to their new surface reactivities and their potential recyclabilities under adapted conditions,
and the could also be of great value for industrial applications. This research field on nanoparticles
seems to be under-exploited, and few pertinent results were described in the literature review. New
developments of nanocatalysts in terms of shape, structure, and morphologies providing new surface
reactivities could be suitable and benefit for relevant selectivities.

This critical mini-review provides a large variety of studies for the catalytic oxidative upgrading
of renewable terpenic olefins and should be helpful to develop more efficient methodologies for these
relevant transformations.
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