Bifunctional electrocatalyst of low-symmetry mesoporous titanium dioxide modified with cobalt oxide for oxygen evolution and reduction reactions

Mabrook S. Amer,¹ Mohamed A. Ghanem,^{1*}, Prabhakarn Arunachalam,¹ Abdullah M. Al-Mayouf,¹ and Sultan M. Hadadi²

- ¹ Electrochemical Science Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- ² King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- * Correspondence: mghanem@ksu.edu.sa; Tel.: +966 114670405

Supporting materials

Figure S1 (a) TEM image for $Co_3O_4(7)/lsm$ -TiO₂ with cobalt oxide nanoparticles, and (b) High magnification TEM showing the crystal fringes of the TiO₂ and Co₃O₄ nanoparticles.

Figure S2 XRD spectra of Co₃O₄(3)/*lsm*-TiO₂, Co₃O₄(3)/*hm*-TiO₂ and Co₃O₄(3)/*bulk*-TiO₂.

Figure S3 plot for the effect of varying cobalt content on the average crystallite size of the $Co_3O_4(x)/lsm$ -TiO₂ catalysts.

Figure S4 SEM-EDX elements mapping of Co(3)/hm-TiO₂.

Figure S5 SEM-EDX elements mapping of Co(3)/lsm-TiO₂ catalyst.

Tuble 61. The atomic contents of Co, 11, O in tom 1102 and Cosspon 1102 decording to the At 9 reports.								
Catalyst	O /atom %	Ti /atom %	Co /atom %	Co/(Co+Ti) %				
lsm-TiO2	64.57	35.43	0	0				
C03O4(3)/ <i>lsm</i> -TiO2	70.90	28.25	0.85	2.92				

Table S1. The atomic contents of Co, Ti, O in *lsm*-TiO₂ and Co_{3.0}/*lsm*-TiO₂ according to the XPS reports

Figure S6 Mott–Schottky plot of pure *lsm*-TiO₂ and Co₃O₄ modified *lsm*-TiO₂ electrodes measured at 500 Hz.

Figure S7 LSV curves of $Co_3O_4(3)/lsm$ -TiO₂ at a scan rate of 10 mV s⁻¹ and a rotation speed of 500, 1000, 1500, 2000, 2500, and 3000 rpm in O₂-saturated 1.0 M KOH,

Turnover frequency (TOF) calculation method

The calculation of mass activity, specific activity, and turnover frequency (TOF) in this work is based on literature published by Gao *et al.* [52], and the details are shown below.

The values of mass activity (A g^{-1}) were calculated from the catalyst loading m (0.8 mg cm_{geo}⁻²) and the measured current density j (mA cm_{geo}⁻²) at η = 0.370 V:

mass activity =
$$\frac{j}{m}$$

The values of specific activity (mA cm⁻²) were calculated from the BET surface area SBET (m²g⁻¹), catalyst loading m (0.8 mg cm_{geo⁻²}), and the measured current density j (mA cm_{geo⁻²}) at η = 0.370 V:

specific activity =
$$\frac{j}{10.S_{BET}.m}$$

The values of turnover frequency (TOF) were calculated by assuming that every metal atom is involved in the catalysis (lower TOF limits were calculated):

$$\text{TOF} = \frac{jS_{geo}}{4F.n}$$

Here, j (mA cm_{geo⁻²}) is the measured current density at $\eta = 0.370$ V, S_{geo} (1.0 cm²) is the surface area of FTO electrode, the number 4 means 4 electrons per mole of O₂, F is Faraday's constant (96485.3 C mol⁻¹), and n is the moles of the metal atom on the electrode calculated from m and the molecular weight of the coated catalysts.

Table S2 comparison of OER performance for $Co_3O_4(3)/lsm$ -TiO₂ with other reported OER electrocatalysts in alkaline media.

		Onset	η at 10	Tafel	Mass activity at 1.6	
Catalyst	[KOH]/mole	potential (V vs RHE)	mA cm ⁻² (mV)	slope mV dec [.]	V vs RHE (A g^{-1})	Ref.
		(*****	()	1		
Co ₃ O ₄ (3)/ <i>lsm</i> -	0.1	1.65	445	87	4.25	This
TiO ₂	1.0	1.48	350	54	41.8	Work
	5.0	1.45	243	71	88.9	
Co-TiO ₂ NCs	0.1	1.60	N/A	67	N/A	S1
Cobalt- Black	1.0	1.582	352	65	N/A	S2
TiO ₂ NAs						
Co–S/Ti mesh	1.0	1.549	361	64	N/A	S3
Co ₃ O ₄ /MWCNT	0.1	1.51	390	65	N/A	S4
meso-Co ₃ O ₄ -35	0.1	1.520	411	80	63	S5
meso-Co ₃ O ₄ -100	0.1	1.53	426	66	53	S5
Co ₃ O ₄ NPs	0.1	~ 1.57	449	63	31	S5
CoO/CNT	1.0	1.54	550	108	43	S6
meso-Co ₃ O ₄	1.0	N/A	476	N/A	22	S7
6 nm Co ₃ O ₄ NPs	1.0	-	328	~70	35	S8
meso-Co ₃ O ₄	1.0	1.58	353	84	21.3 at 0.4 V	S9
Co ₃ O ₄ /Fe ₃ O ₄	1.0	-	322	78	34.4 at 0.4 V	S9
mesoporous						
Co ₃ O ₄ @CoO SC	0.5	-	430	89	234 at 0.4 V	S10
NiCo2O4/NiO	1.0	1.55	361	61	29.31 at 1.65 V	S11
NiCo ₂ O ₄	1.0	-	431	139	8.05 at 1.65 V	S11

References

[S1] D. M. Jang, I. H. Kwak, E. L. Kwon, C. S. Jung, H. S. Im, K. Park, J. Park, J. Phys. Chem. C, 119 (2015) 1921–1927.
[S2] Y. Yang, L. C. Kao, Y. Liu, K. Sun, H. Yu, J. Guo, S. Y. H. Liou, M. R. Hoffmann, ACS Catal., 8 (2018) 4278–4287.

[S3] T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He, A. M. Asiri, Electrochem. Commun., 60 (2015) 92–96.

[S4] X. Lu, C. Zhao, J. Mater. Chem., A 1 (2013) 12053-12059.

[S5] Y. Sa, K. Kwon, J. Cheon, F. Kleitz, S. Joo, J. Mater. Chem. A, 1 (2013) 9992–10001.

[S6] J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng, Y. Xie, Nano Res., 5 (2012) 521–530.

[S7] H. Tüysüz, Y. J. Hwang, S. B. Khan, A. M. Asiri and P. Yang, Nano Res., 6 (2013) 47-54.

[S8] A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell T. D. Tilley, J. Phys. Chem. C, 113 (2009) 15068–15072.

[S9] D. Feng, T.-N. Gao, M. Fan, A. Li, K. Li, T. Wang, Q. Huo, Z.-A. Qiao, NPG Asia Mater., 10 (2018) 800-809.

[S10] C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng, H. M. Chen, Nat. Commun., 6 (2015) 8106.

[S11] C. Mahala, M. Basu, ACS Omega, 2 (2017) 7559-7567.