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Abstract: The physicochemical properties of biologically important benzalkonium chlorides (BKCs)
and the effects of its structure on the de-chlorination of allyl chloride was studied by electrogenerated
[Co(I)(bipyridine)3]+ (Co(I)) using an electrochemical technique. The results of [Co(II)(bipyridine)3]2+

(Co(II)) cyclic voltammetry in the presence of BKC demonstrates Co(II)/Co(III) redox couple
for physicochemical analysis of BKC and Co(II)/Co(I) redox couple for catalytic application.
Cyclic voltammetry over a range of scan rates and BKC concentrations revealed the BKC-bound
Co(II)/Co(III) micelles showed that the identification of cmc and association of the probe Co(II)
species, associated more in the hydrophobic region. In addition, change in diffusion coefficient
value of Co(II)/Co(III) with BKC concentration demonstrates the association of Co(II) in micellar
hydrophobic region. The beneficial effects of BKC could be accounted for by considering the
benzyl headgroup-Co (II) precatalyst-volatile organic compounds (VOCs) (allyl chloride here)
substrate interaction. Chromatography/mass spectroscopy (GC/MS) revealed 100% complete
de-chlorination of allyl chloride accompanied by three non-chloro products. This is the first report
of benzyl headgroup-induced micellar enhancement by an electrochemical method, showing that it
is possible to use hydrophobic benzyl headgroup-substitution to tune the properties of micelles for
various applications.
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1. Introduction

Benzalkonium chloride (BKC) is used primarily as a preservative and antimicrobial agent, as well
as a surfactant. The compound has potent biocidal activity, killing microorganisms, and inhibiting their
growth [1,2], but is friendlier to human skin, which is why it is used as an ingredient in antibacterial
hand wipes, antiseptic creams, and anti-itch ointments. Other than the medicinal field, BKC has a
beneficiary role as a surfactant particularly in the corrosion resistance of carbon steel because of its
strong adsorption and hydrophobicity [3]. To stabilize and increase the porosity during the preparation
of porous carbon, BKC is used greatly as porosity stabilizer [4]. In solubilized media, BKC is used
as the supporting electrolyte during the electrochemical reduction of CO2 reduction in methanol at
room temperature [5,6]. Benzalkonium chloride has been applied to remove biofilms on marine-based
sensors or optical components [7,8], which highlights the need to determine the diffusion coefficient
for BKC in water. Smith et al. [9] developed a membrane diffusion method and derived the diffusion
coefficient for BKC with C12 and C14 in water. Ultrafiltration or ultracentrifugation methods have
been adopted to determine the partition coefficient of BKC and the free BKC surfactant concentration
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in micellar solutions [10,11]. In the biological and chemical fields, both solubilization and stabilization
play important roles in their specific applications. A detailed mechanistic aspect to understanding
BKC micelles is still lacking, particularly in the electrochemical field.

With the exception of BKC, many other self-aggregated surfactant monomers have been
used to solubilize redox species in solution, and they have been analyzed by the electrode
surface [12,13]. Advantageous of this phenomena used to harvest the physicochemical properties of
the various surfactant solutions by single potential step chronoamperometry [14,15] and diffusion
limiting current at micro-electrodes techniques [16,17]. Despite the interesting physicochemical
identification of surfactants in electrochemistry, the mediated catalytic reduction of halo compounds,
such as 4-bromobiphenyl, 4,4’-dichlorobiphenyl, allyl chloride, and PCB (Polychlorinated biphenyls)
mixtures, catalyzed by different organic and inorganic mediators, e.g., 9-phenylanthracene [18],
[Co(bpy)3]2+ (where bpy = 2,2’-bipyridine) [19,20], zinc phthalocyanine [21], etc., have been observed
in aqueous solutions of various surfactants, such as CTAB (Cetyltrimethylammonium bromide),
SDS (Sodiumdodecyl sulfate), and film-forming dodecyl dimethyl ammonium bromide. In a recent
study, the cobalt polypyridine complex-mediated de-chlorination of several chlorinated pesticides with
significantly enhanced catalytic rates was achieved in a surfactant-containing aqueous solution [22].
In addition, our previous study reported the electrocatalytic dehalogenation of allyl chloride and its
methyl-substituted derivative β-methyl allylchloride mediated by electrogenerated [Co(I)(bpy)3]+ at a
glassy carbon electrode in aqueous solutions of cationic micelles [23–25].

In the present investigation, physicochemical analysis of BKC with an alkyl chain length of
C16 was analyzed using an electrochemical method. For this purpose, in the first part of the
study, the [Co(II)(bpy)3]2+/[Co(III)(bpy)3]3+ redox reaction in BKC surfactant was studied by CV
(Cyclic voltammetry) and some key parameters, such as the cmc (critical micellar concentration),
micellar diffusion coefficient, and relative association constants of the oxidized species were estimated,
as done for other surfactants [26–31]. Following this, the effects of BKC on allyl chloride catalysis were
examined by product analysis and discussed.

2. Results and Discussion

2.1. Selection of Redox Couple

According to Figure 1, two redox couples for [Co(II)(bpy)3]2+ redox system were found. One was
related to Co(II) to Co(III) oxidation and another one was for Co(II) to Co(I) reduction. One mM
of [Co(II)(bpy)3]2+ in 0.1 M Na2SO4 medium shows highly reversible redox behavior of Co(II) to
Co(III) (A1 and C1) oxidation (Figure1, curve a), but complicated redox peaks were observed in
the case of Co(II) to Co(I) reduction (C2 and A2). At the same time, addition of 10 mM BKC led to
the reversible Co(II)/Co(III) redox couple becoming quasi-reversible or diminished according to the
BKC concentration. Surprisingly, the reduction couple Co(II)/Co(I) became reversible without any
complications (Figure1, curve b).
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Figure 1. Voltammetry responses of 1 mM [Co(II)(bpy)3]2+ on a GCE (Glassy carbon electrode) in 0.1 
M Na2SO4 without (a) benzalkonium chloride (BKC) and (b) with 10 mM BKC at scan rate of 25 mVs−1. 

It is more realistic that the Co(II)/Co(III) redox couple can be considered for the BKC aggregates 
and its physicochemical analysis due to effective change in peak current and potential with BKC 
concentration, Equation (1). Because of the reversible redox behavior in presence of BKC, the 
Co(II)/Co(I) redox couple can be considered for catalytic reduction analysis, as the reversibility is one 
of the mediated electrocatalytic processes [32] and solubilities of the VOCs in the micellar medium 
(Equation (2)). 

[Co(II)(bpy)3]2+ + BKC  M-[Co(II)(bpy)3]2+  M-[Co(III)(bpy)3]3+ + e− (1) 

M-[Co(II)(bpy)3]2+ + e−   M-[Co(I)(bpy)3]+     (M = BKC micelles) (2) 

2.2. cmc and Solubilization Constant Evaluation of BKC by CV using [Co(II)(bpy)3]2+/[Co(III)(bpy)3]3+ Redox 
Couple 

In Figure 2, the peak current initially shows constant from 0.01 mM up to 0.48 mM, then there is 
a sudden drop in current when the concentration of BKC (cBKC) is increased to 10 mM. A similar trend 
is followed at all scan rates studied. This sudden variation in ipA1 with cBKC may identify the 
aggregation of monomer amphiphiles forming higher oligomers of BKC, which in turn predicts the 
cmc values for BKC. The break point value ca. 0.48 mM is near to the cmc of BKC observed in water 
from surface tension measurements, viz. 0.35 mM [33], and from light scattering measurements, viz. 
0.4 mM [34]. The light scattering study also reports a value 0.02 mM for the cmc of BKC in 0.04 M 
NaCl [34]. The present study almost correlates with cmc of the light scattering measurements. 
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Figure 1. Voltammetry responses of 1 mM [Co(II)(bpy)3]2+ on a GCE (Glassy carbon electrode) in 0.1 M
Na2SO4 without (a) benzalkonium chloride (BKC) and (b) with 10 mM BKC at scan rate of 25 mVs−1.

It is more realistic that the Co(II)/Co(III) redox couple can be considered for the BKC aggregates
and its physicochemical analysis due to effective change in peak current and potential with
BKC concentration, Equation (1). Because of the reversible redox behavior in presence of BKC,
the Co(II)/Co(I) redox couple can be considered for catalytic reduction analysis, as the reversibility is
one of the mediated electrocatalytic processes [32] and solubilities of the VOCs in the micellar medium
(Equation (2)).

[Co(II)(bpy)3]2+ + BKC 
 M-[Co(II)(bpy)3]2+ 
 M-[Co(III)(bpy)3]3+ + e− (1)

M-[Co(II)(bpy)3]2+ + e− 
 M-[Co(I)(bpy)3]+ (M = BKC micelles) (2)

2.2. cmc and Solubilization Constant Evaluation of BKC by CV using [Co(II)(bpy)3]2+/[Co(III)(bpy)3]3+

Redox Couple

In Figure 2, the peak current initially shows constant from 0.01 mM up to 0.48 mM, then there
is a sudden drop in current when the concentration of BKC (cBKC) is increased to 10 mM. A similar
trend is followed at all scan rates studied. This sudden variation in ipA1 with cBKC may identify the
aggregation of monomer amphiphiles forming higher oligomers of BKC, which in turn predicts the
cmc values for BKC. The break point value ca. 0.48 mM is near to the cmc of BKC observed in water
from surface tension measurements, viz. 0.35 mM [33], and from light scattering measurements, viz.
0.4 mM [34]. The light scattering study also reports a value 0.02 mM for the cmc of BKC in 0.04 M
NaCl [34]. The present study almost correlates with cmc of the light scattering measurements.
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Figure 2. Anodic peak (A1) current as a function of BKC concentration for the oxidation of 1 mM 
[Co(II)(bpy)3]2+ on a GCE in 0.1 M Na2SO4 solution at various scan rates. 

According to Figure 3, there is almost no change in E1/2 (difference in A1 and C1 peak potential) 
values with increasing BKC concentration up to 0.48 mM, but there is a positive E1/2 value shift in 
subsequent concentrations from 1 to 4.8 mM of BKC (Figure 3 shows a definite E1/2 value of 2.2 mM). 
The shifts in potential can be correlated directly with the relative extent of the solubilization of the 
redox components within the micelles [26,27,30,31] using Equation (3): 

E1/2,M-Wr = EW0’ + (RT/nF)ln(KR/KO) (3) 
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The experimentally measured E1/2M-W in the presence of BKC and E1/2W without BKC difference 
is 25 mV (E1/2M-W = 95 mV and Ew0' = 70 mV), which is giving rise to the partition coefficient ratio 
KCo(II)/KCo(III) for Co(III)/Co(II) redox couple to be 2.9. This implies a preferential partitioning of 
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Figure 2. Anodic peak (A1) current as a function of BKC concentration for the oxidation of 1 mM
[Co(II)(bpy)3]2+ on a GCE in 0.1 M Na2SO4 solution at various scan rates.

According to Figure 3, there is almost no change in E1/2 (difference in A1 and C1 peak potential)
values with increasing BKC concentration up to 0.48 mM, but there is a positive E1/2 value shift in
subsequent concentrations from 1 to 4.8 mM of BKC (Figure 3 shows a definite E1/2 value of 2.2 mM).
The shifts in potential can be correlated directly with the relative extent of the solubilization of the
redox components within the micelles [26,27,30,31] using Equation (3):

E1/2,M-W
r = EW

0’ + (RT/nF)ln(KR/KO) (3)
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Figure 3. E1/2 versus log(v) plots for the oxidation of 1 mM [Co(II)(bpy)3]2+ on a GCE in 0.1 M Na2SO4

at various concentrations of BKC.

The experimentally measured E1/2M-W in the presence of BKC and E1/2W without BKC difference
is 25 mV (E1/2M-W = 95 mV and Ew

0’ = 70 mV), which is giving rise to the partition coefficient ratio
KCo(II)/KCo(III) for Co(III)/Co(II) redox couple to be 2.9. This implies a preferential partitioning of
[Co(II)(bpy)3]2+, than [Co(III)(bpy)3]3+, into the BKC micellar phase. The larger KCo(II) value for the
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association of complex than for its oxidized counterpart can be attributed to greater hydrophobic
nature of the divalent complex, supported by the reduced charge on the cobalt center, which
provides electrostatic advantage of the 2+ charge, since its electrostatic repulsion with the cationic
micellar entity is smaller. The predominance of hydrophobic interactions has also been observed
for [Co(III)(phen)3]3+/[Co(II)(phen)3]2+ couple by Davies and Hussam [30] in SDS micelles, which
collectively tells that BKC solubilize also the cationic counterpart into its micelle.

2.3. Partition Coefficient and Association Constant by Diffusion Coefficient of the Co(II)/Co(III) Redox Couple

Figure 4 shows the variation of ipA1 with v1/2 for various cBKC. The linearity is decreased with
increasing the BKC concentration, but at low scan rate, the peak current value obey linearity with
passes through the origin. The condition predicted by the Randle–Sevcik equation for a diffusion
controlled electron transfer process, namely, peak current passing through the origin and also varying
linearly with v1/2 is strictly followed only in the absence of BKC, and at low concentrations of BKC,
confirms that BKC allows C(III)/Co(II) via diffusion controlled electron transfer process. The diffusion
coefficient of the micelle-solubilized Co(II) complex, DM-W-2/3¸ was calculated from ipa1 vs. v1/2 slope
using Equation (4), which is valid for an electrode process controlled by diffusion [32]:

∂
(
ipc

)
∂
(
v1/2

) = 2.69 × 105n3/2 AgeoDM−W2/3
1/2 cM−W−Co(I I) (4)

where n is the number of electrons of the redox couple (n = 1 here); Ageo is the electrode
area, and cM-W-Co(II) is the bulk concentration of [Co(II)(bpy)3]2+ in the presence of defined BKC
concentration. DM-W2/3 values slightly decreased with BKC concentration up to 1 mM, as predicted by
the linear interaction theory [17], then sharply decreased in additional BKC concentration (Figure 5).
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Figure 5. Diffusion coefficient of surfactant bound-[Co(II)(bpy)3]2+ from CV as a function of BKC
concentration (mM).

A decrease in diffusion coefficient value when the increasing BKC concentration associates with
the larger micelle aggregates formation, which means solubilization of the Co(II)/Co(III) within the
micellar region. In the present case of the preferably polar head-confined Co(II) complex-bound BKC
micelles, their effective size could also increase due to the additional electrostatic repulsion-induced
Co(II) among the adjacent surface sites acting along the surface periphery at the micelle head/solution
boundary. These larger BKC micelles would allow the slower diffusion of Co(II) probe-solubilized
aggregates with smaller diffusion coefficients. In addition, the diffusion coefficient value change with
BKC concentration can be used to identify the cmc of BKC.

The measured diffusion coefficient of the micelle-bound Co(II) complex in the aqueous/micellar
mixture, DM-W2/3, is contributed by free complex and the bound complex. Thus, considering the
partitioning of the complex between the free and the micelle bound forms, DM-W2/3 is described
by a concentration (mole fraction) weighted average of the two forms [35–38] for a partitioning of
[Co(II)(bpy)3]2+ between micelle bound (Sn.R) and free (RW) form in the BKC micellar medium (Sn),
which can be written as

RW + Sn
Kin·R



Kout·R
Sn · R (5)

DM-W2/3 = Ff·DWR + Fb·DBKC (6)

Here, DWR is the diffusion coefficient of free [Co(II)(bpy)3]2+ measured in a 0.1 M Na2SO4 aqueous
solution without surfactant. DBKC is the diffusion coefficient of BKC micelle.

Ff = mole fraction of free
[
Co(III)(bpy)3

]2+
=

[RW]

[RW] + [Sn · R]
(7)

Fb = mole fraction of micelle bound
[
Co(II)(bpy)3

]2+
=

[Sn · R]
[RW] + [Sn · R]

(8)

Since Ff + Fb=1, Equation (6) can be expressed in terms of diffusion parameters as

Ff = (DM-W2/3 − DBKC)/(DWR − DBKC) (9)

Fb = (DM-W2/3 − DWR)/(DBKC − DWR) (10)
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KR = [Sn·R]/[RW] = Fb/Ff = (DM-W2/3 − DWR)/ (DBKC − DM-W2/3) (11)

Thus, Equations (9)–(11) are a method to calculate Ff, Fb, and KR, respectively, from diffusion
coefficient values. Mandal and Nair [39] have adopted this method to calculate the partition parameters
and the mole fractions in the micellar phase for three redox forms of [Co(en)3](ClO4)3 in CTAB
and CPC (Cetylpyridinium chloride) micellar solution. By substituting experimentally measured
diffusion coefficient values in Equations (7)–(9), the micellar solubilization constant, KCo(II), fractions
of solubilized and free probe molecules are calculated to be 3.8 × 104 M−1 using the values of
DWR = 3.42 × 10−6 cm2 s−1 and DBKC = 0.39 × 10−6 cm2 s−1 [40]. The calculated thermodynamic
parameters are presented in Table 1. The micelle solubilized fraction of Co(II) species is negligible up
to 0.1 mM of BKC, and gradually increases up to 2.2 mM, where Co(II) is partitioned equally into the
micellar phase. The partition coefficient, KCo(II), increases with cBKC and shows linear segment with
slope (Figure 4) {KCo(II)/ [BKC]} = 3.8 × 102 M−1. The corresponding association constant is, therefore,
3.9 × 104 M−1 (KCo(II) × n, n = 102 for BKC), which confirms the BKC allows the probe molecule
(Co(II)) equally distributed in the micellar system.

Table 1. Experimentally measured diffusion coefficient of [Co(II)(bpy)3]2+ complex in micellar solutions
by CV (DM-W2/3), mole fraction of micellar bound Co(II) complex (Fb), mole fraction of unbound Co(II)
complex (Ff), and partition coefficient of Co(II) complex (KCo(II)) in 0.1 M Na2SO4 containing different
concentrations of BKC.

cBKC/mM DM-W2/3/10−6 cm2 s−1 Fb
a Ff

b KCo(II)
c

0.00 3.42 - - -
0.01 3.29 0.05 0.96 0.04
0.022 3.63 −0.07 1.07 −0.06
0.048 3.43 −0.04 1.00 −0.04
0.10 3.29 0.04 0.96 0.04
0.22 3.03 0.12 0.88 0.14
0.48 2.97 0.14 0.86 0.17
1.00 2.82 0.19 0.81 0.24
2.20 2.01 0.45 0.55 0.83

a Fb = (DM-W2/3 −DWR)/(DBKC −DWR); b Ff = (DBKC −DM-W2/3)/(DBKC −DWR); c KCo(II) = (DWR −DM-W2/3)/(DM-W2/3 −DBKC).

2.4. BKC Effect on Catalysis by Product Analysis

As shown in Figure 1, curve b, the C2 and A2 redox couple in the presence of 0.1 M BKC
was adopted to check the catalytic reduction of allyl chloride (a model VOC solution). The CV
of [Co(II)(bpy)3]2+ in different surfactant with various substrates proved its mediated catalytic
reduction [19,23–25]. The product identification may lead to the effectiveness of BKC in catalytic
reaction on allyl chloride. Figure 6 shows the current response during the bulk electrolysis of allyl
chloride (5 mM), [Co(II)(bpy)3]2+ (1 mM, the 5:1 ratio of allylchloride to cobalt enables to follow pseudo
first order condition), and BKC (100 mM) in 0.1 M Na2SO4 solution. The current sharply increased
and reached to 4 mA in 2 h and started to decrease a little, which indicates the reduction reaction was
enabled without blocking and the reaction was completed in 2 h. Figure 7A’,B’ presents GC/MS data
of the reduction products collected from a 3-h electrolyzed solution of allyl chloride. They show three
GC peaks at three different rt (3.59, 4.28, and 6.12) (Figure 7A’) corresponding to the fragment ions at
m/z = 82, 138, and 136 in their respective mass spectrum (Figure 7B’). The three compounds predicted
by these fragment ions at the above m/z are likely to be 1,5-hexadiene (3) (m/z = 82), 1,4,8-nonatriene
(4) (m/z = 138), and 1,8-nonadiene (5) (m/z = 136). The absence of an allyl chloride substrate GC peak
(rt = 3.22) in the GC spectrum for the electrolyzed solution confirms the complete degradation of allyl
chloride by the BKC micelle solubilized Co(I) mediation process. Scheme 1 presents the possible allyl
chloride reduction mechanism based on the results of both CV and bulk electrolysis, accounting for
these three reduction products.
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Figure 7. (A,A’) Gas chromatograms and (B,B’) mass spectra of different systems: (A,B) pure AC
(allyl chloride); (A’,B’) AC degradation products from constant-potential bulk electrolysis using a
carbon plate cathode of 5 mM ally chloride + 1 mM [Co(II)(bpy)3]2+ + 100 mM BKC in a 0.1 M Na2SO4

aqueous solution. Potential applied = −1300 mV (SCE). Mass spectra are given for different retention
times (rt) indicated in the figure.
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Scheme 1. Mechanism of electrocatalytic ally chloride reduction mediated by M-[Co(I)(bpy)3]1+ in the
presence of BKC surfactant.

As shown in Scheme 1, the mechanism for the formation of degradation products (3), (4), and
(5) begins with heterogeneous electron transfer to convert the BKC micelle bound-Co(II)(bipyridine)
precursor to the BKC-Co(I) complex catalyst in Reaction (1’), which is followed by a reaction with
the substrate allyl chloride to form a {M-[Co(I)(bpy)3]+···ally chloride} complex according to Reaction
(3). The Co(I) within the mediator–substrate complex could transfer an electron electrocatalytically
to the adjacent allyl chloride to give the allyl radical (2) and a Cl− ion and regenerate the precursor
Co(II) species in a slow rate-determining step (Reaction (4’)). The radical (2) formed could dimerize
immediately to form the GC/MS identified 1,5-hexadiene (3) (m/z = 82) (Reaction (5)). Alternatively,
the radical (2) could react with the product, i.e., 1,5-hexadiene (3) in Reaction (6), to give an
intermediate radical (6), which upon eliminating a hydrogen radical (Reaction (7)) forms a product,
i.e., 1,4,8-nonatriene (4) (m/z = 136). The same intermediate radical (6), upon abstracting a hydrogen
radical (reaction 8), affords the other GC/MS identified product, 1,8-nonadiene (5) (m/z = 138). Note
that TDTAB (tetradecyltrimethlyammonium bromide) surfactant solubilized b-methyl allyl chloride
found a chlorinated product [24] and TS-1 (Titanium silicate-1) in ethanol with H2O2 produced 99%
epichlorohydrin [41], but the unusual and complete non-chlorinated products formation could be due
the stabilization by the BKC micellar solution, evidenced by the high partition coefficient and diffusion
coefficient, into its hydrophobic region. Also, the stabilization of chemicals in BKC is evidenced by slow
drug delivery in antibacterial drugs [42]. The above ally chloride reduction mechanism satisfactorily
accounts for the GC/MS-identified degradation products, and for the stoichiometry coefficient σ = 1,
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because one mole of mediator is needed to reduce 1 mole of the substrate. On the other hand, the
source for OH· radical (in Reaction (8)) could not be accounted for, and the reaction intermediates have
not been identified or characterized independently.

3. Material and methods

3.1. Chemicals

Benzalkonium chloride was purified by repeated washing with anhydrous ether [43].
Allyl chloride was distilled twice (BP = 46 ◦C) prior to use. The Co(II)-tris-bipyridine perchlorate
complex was prepared using the procedure reported elsewhere [44]. All other reagents and solvents
were of AR grade and used as received.

3.2. Electrochemical Studies

The CV experiments were carried out using a Wenking potentiostat (ST 72, Gerhard Bank
Elektroniks, Göttingen, Germany), a Wenking signal generator (VSG 83, Gerhard Bank Elektroniks,
Göttingen, Germany) and a X-Y-t recorder (WX 2300, Graphtec, Tokyo, Japan) in combination.
A conventional gas-tight three-electrode electrolysis cell was used with a glassy carbon disk, a Pt plate,
and a dip type saturated calomel electrode (SCE) as the working, counter, and reference electrodes,
respectively. Before each experiment, the GCE surface was polished using a fine mesh alumina on a
velvet cloth followed by ultrasonic cleaning in double distilled water and washing with methanol.
Charcoal-treated double distilled water was used to prepare all experimental solutions. Dry nitrogen
was used to degas the solutions and the temperature was maintained at 25 ± 0.2 ◦C for all experiments.

Bulk electrolysis for the de-chlorination products was carried out using a large-sized carbon plate
cathode in a divided cell containing 250 mL of a stirred electrolyte solution under a N2 atmosphere
with Pt as the anode at a constant potential that was 100 mV negative of the reduction peak of the
catalyst (−1300 mV) in the presence of the substrate. After approximately 3-h electrolysis, the products
from the catholyte were extracted into ether and analyzed using a Perkin-Elmer Auto System XL
gas chromatograph with a Turbo Mass Spectrometer (EI.70 eV, Perkin-Elmer, Waltham, MA, USA).
A 30 m × 0.25 mm × 1 µm capillary column (Perkin-Elmer Elite series PE-5, Perkin-Elmer, Waltham,
MA, USA) with helium as the carrier gas at a flow rate of 1.0 mL min−1 and an oven temperature
programmed between 80 and 250 ◦C at a rate of 10 ◦C min−1.

4. Conclusions

The paper reported that the benzyl headgroup-bearing BKC micelles exerted significantly different
effects on the oxidation of [Co(II)(bpy)3]2+ to [Co(III)(bpy)3]3+ as well as on the effect of electrocatalysis
by the BKC bound electrogenerated Co(I)(bpy) complex. The CV analysis with different BKC
concentrations demonstrates the identification of cmc and diffusion coefficient of BKC surfactant.
The presence of bulkier hydrophobic benzyl headgroups in BKC led to the preferred solubilization of
the Co(II) complex (KCo(II)/KCo(III) = 2.9), a more positive onset potential for Co(II) oxidation to Co(III),
and considerably larger micellar aggregates with decreasing DM-W2/3 values with concentration. These
studies clearly correlated the behavioral differences of the BKC surfactant on the different redox couples
of the same mediator. The highly stable micelle-solubilized Co(I) mediator and the total de-chlorination
of allyl chloride accompanied by three non-chloro organics as the only de-chlorination products in the
BKC solution highlight the efficiency of the hydrophobic benzyl headgroup-bearing surfactant towards
the de-chlorination process. This study also highlights the power of the CV technique as the diagnostic
electrochemical tool in characterizing the micellar systems as well as in in electrocatalytic systems.
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