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Abstract: Synthetic rubbers fabricated from 1,3-butadiene (BD) and its substituted monomers have
been extensively used in tires, toughened plastics, and many other products owing to the easy
polymerization/copolymerization of these monomers and the high stability of the resulting material
in manufacturing operations and large-scale productions. The need for synthetic rubbers with
increased environmental friendliness or endurance in harsh environments has motivated remarkable
progress in the synthesis of BD and its substituted monomers in recent years. We review these
developments with an emphasis on the reactive routes, the products, and the synthetic strategies
with a scaling potential. We present reagents that are primarily from bio-derivatives, including
ethanol, C4 alcohols, unsaturated alcohols, and tetrahydrofuran; the major products of BD and
isoprene; and the by-products, activities, and selectivity of the reaction. Different catalyst systems are
also compared. Further, substituted monomers with rigid, polar, or sterically repulsive groups, the
purpose of which is to enhance thermal, mechanical, and interface properties, are also exhaustively
reviewed. The synthetic strategies using BD and its substituted monomers have great potential
to satisfy the increasing demand for better-performing synthetic rubbers at the laboratory scale;
the laboratory-scale results are promising, but a big gap still exists between current progress and
large scalability.

Keywords: Synthetic rubber; 1,3-butadiene synthesis; biomass-derived feedstock; sustainability;
functional substituents

1. Introduction

“Rubber” was coined by a chemist named Joseph Priestley in 1770. It has since come to be regarded
as the “wheel” of civilization. Today, the term “rubber” is related to any material characterized by
properties similar to those of natural rubber (NR). Attributed to the well-known importance of rubber
since World War II, much effort has gone into producing rubbers by various synthetic routes [1].
In 2017, around 15.05 billion kilograms of synthetic rubbers were produced worldwide. The most
prevalent synthetic rubber is styrene-butadiene rubber (SBR) which is derived from a copolymer
of 1,3-butadiene (BD) and styrene. SBR has good aging stability and abrasion resistance [2], and it
occupies about half of the market for car tires. Also widely used in tires is butadiene rubber (BR); it is
made solely from the BD monomer and shows excellent wear resistance, good cold resistance, lower
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heat generation, and dynamic performance. Unfortunately, BR still falls short of meeting the goal of
producing rubbery materials that are more environmentally friendly or robust to harsh environments.
For example, BR needs to be blended with SBR and/or NR when it is used for sidewall and tread.
A lot of effort has been made to clarify the nature of BR and its blends (such as with SBR and NR),
and significant progress has been achieved in the regulation of the structure and performance of the
polymer [3–5].

When used in tires, the elastic properties of synthetic rubbers made from 1,3-dienes play a primary
role and are enormously affected by the microstructures of the repeating units, especially the presence
or absence of a side substituent [6]. For example, cis-1,4-polybutadiene shows flexibility and excellent
strong deformation tolerance [7,8] due to its low glass transition temperature (Tg) of −94 ◦C, which is
much lower than that of the cis-1,4-polyisoprene with a –CH3 group at 2-C (from −64 to −70 ◦C) [9].
The latter, known as isoprene rubber (IR, the major component of NR), has excellent overall rubbery
properties and is widely used as a synthetic substitute for NR without blending with other polymers.
Therefore, IR can be used for carcass and off-the-road tires without blending with other rubbery
materials. It can be easily concluded that the side substituent of 1,3-butadienes plays a crucial role in
tuning the properties of the resulting materials.

However, serious problems are encountered when these polydienes are used for the production
of mechanical engineering goods, such as heavy-lorry tires and aircraft tires, due to their
inadequate mechanical properties (e.g., tensile strength, elongation at break, and tear resistance) [10].
Therefore, substituted butadienes are used to form polydienes with some BD derivatives, such as
2-phenylbutadiene, making it likely that a solution to these problems will be found. To this end, a
functionalized 1,3-diene containing a rigid group is necessary.

On the other hand, it is well-known that tires are made by blending synthetic rubbers with
inorganic fillers, such as carbon black and silica. Unfortunately, polydienes containing solely carbon
and hydrogen always exhibit poor surface properties and low adhesive properties. Therefore, in the
manufacturing of tires, fillers such as hydrophilic silica are completely incompatible with synthetic
rubbers, as the resulting tires have poor tear resistance, abrasion resistance, and static toughness
properties [11]. To solve this problem, considerable attention has been paid to the synthesis of
polar-functionalized dienes because it is very difficult to modify inorganic fillers [9]. The incorporation
of these kinds of monomers into copolymers and/or homopolymers can significantly improve the
existing properties of synthetic rubbers. For example, nitrile butadiene rubber (NBR) can enhance the
wear resistance of tires. Additionally, NBR is also widely used for seals, hoses, and gloves. In this
respect, the polar-functionalized 1,3-diene attracts a lot of attention.

Accordingly, considering the entropy-elasticity of synthetic rubbers, various side substituents
in 1,3-butadienes affect the properties of the resulting materials. To attain rubbers with tunable
properties for meeting different requirements, introducing designed substituents into 1,3-butadiene is
a promising strategy; it is also a great challenge, but this makes the success all the more rewarding.
Functionalized monomers are also used to enhance the properties of synthetic rubbers, either by
monopolymerization or copolymerization. In the present review, we highlight the following: (1) the
production of BD and IP, which are in large demand in industry; (2) the synthesis of 2-substituted
1,3-butadienes with rigid groups, such as adamantly, phenyl, and its derivatives, which can be used
to enhance the thermal and mechanical properties of the synthetic rubbers; and (3) the synthesis of
polar-functionalized 1,3-butadienes containing O, Si, and N atoms and their unique properties for
special applications. BD and IP are the basic monomers of the synthetic rubbers consumed widely in
the automotive industry. Both BD and IP are mainly supplied by ethylene plants as by-products of
naphtha cracking; taking sustainability into account, the alternative routes are urgently required [12].
The synthetic processes of substituted 1,3-butadienes always suffer from complicated operations under
rigorous conditions.
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2. Synthesis of 1,3-butadiene

At present, more than 95% of the world’s total BD is produced from either naphtha cracking or
n-butane dehydrogenation [13,14]. Unfortunately, these routes require expensive extractive distillation
with a low selectivity (for BD) of around 4–5%. Besides that, the shale gas revolution has led to a
decrease in the production of naphtha-based ethylene, which could reduce the production of BD
too [15,16]. Additionally, the global supply of BD faces trouble due to the variation in chemical
feedstock and the unstable price of petrochemicals. In Japan, 3 out of 15 ethylene production plants
have been shut down in the 3 years before June 2016. [17] Therefore, the industry urgently calls for the
development of an alternative process to produce BD without depending on petroleum.

The first production of BD from ethanol, carried out by Ipatiev in Russia in 1903, had a very low
yield of 1.5% [18], and great improvements were achieved by Lebedev’s group using an undisclosed
composition [19]. A high yield and a BD selectivity of up to 70% under atmospheric pressure at 350
◦C were reported. Interessen-Gemeinschaft Farbenindustrie AG (IG Farben) reported that magnesia
catalysts promoted by Cr or Co exhibited a BD yield of 60% [20]. Subsequently, the ethanol-to-BD
route was abandoned in the US and most European countries as this technology was deemed poorly
competitive compared with the production of BD from petrochemical sources [21]. Currently, a return
to the old ethanol-to-BD production route is gaining renewed interest because of its remarkable capacity
for producing bio-ethanol and potential environmental benefits [22]. BD formation from ethanol has
been studied intensively, and several possible BD formation proposals have been debated [19,23–35].
A reaction network proposed by Quattlebaum et al. is presented in Figure 1 [30]. Obviously, BD
formation involves dehydrogenation, aldol condensation, hydrogenation, and a dehydration reaction,
which implies that various active sites such as basic, acidic, and metallic species are required for an
efficient catalyst in this reaction. Unfortunately, it seems very difficult to develop these multifunctional
catalysts. Benefiting from an understanding of the reaction pathway, a more efficient two-step process
employing acetaldehyde/ethanol as feedstock was developed (Figure 2), but there is still a lot of work
to do to realize a BD production process with a yield higher than 90%. Although extensive studies have
been performed over the past 3 years [36–47] (Table 1), as well as several published reviews [17,48–53],
the development of efficient processes and robust catalysts still remains a challenge and issues related
to carbon efficiency, catalyst cost, toxicity, feedstock tolerance and backend optimization need further
investigation [49].
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Table 1. Synthesis of BD from ethanol over various catalyst systems recently.

Catalyst Reaction
Temperature ◦C Conversion% BD Selectivity

% Ref. BD Formation
rate/mmol (gcat.h)−1

ZnO–MgO/H–β280 350 43.6 63.4 [36] 0.92
NaZn1Zr10Oz–H 350 54.4 28 [37] 9.07

Cu/MCF–Zr/MCF 235, 400 96 37 [38] 25.92
MgO–SiO2–500 a 500 Total 29.7 80.7 [39] 0.96

Talc/Zn 400 48.4 61.0 [40] 8.53
MgO–SiO2 (65:35) 450 95 77 [41] 25
3%Au/MgO–SiO2 300 >45 ~60 [42] 2.4
Ag/Zr(3.3)BEA(38) 320 15 ~60 [43] 10.3

Cu/SiO2 MgO/H–β280 100, 300 - 33% yield [44] -
Ta3.0SiBEA–EtOH/AA=3.2 350 58.9 73.1 [45] -
2%ZrO2/NanoSiO2–500 a 320 58.52 93.18 [46] -

5 % Ag/MgO–SiO2 275 >50 >28 yield [47] -
2.5% Cu-2.5%wt
Ag/MgO–SiO2

300 60 >40 yield [47] -

a Acetaldehyde was co-fed with ethanol.

Next to ethanol, alternative bio-derived C4 alcohols, such as 1,3-butanediol (1,3-BDO),
2,3-butanediol (2,3-BDO), and 1,4-butanediol (1,4-BDO), are regarded as promising feedstocks to
produce BD, and their use in BD synthesis has been demonstrated (Figure 3). Makshina et al. [49]
summarized this part based on many research efforts as well as reviews. They have mainly
concentrated on the dehydration and deoxydehydration of these C4 alcohols to BD from the aspects of
mechanistic and catalytic chemistry. Very recently, Jing et al. [55] studied the dehydration of 1,3-BDO
to BD over aluminosilicates. The best result was achieved over H–ZSM–5 (silica/alumina = 260) with
a BD yield of 60% at 300 ◦C. They pointed out that the good catalytic performance of the catalysts is a
result of the presence of Brønsted acid sites with weak and medium strength. Accompanied by the
unavoidable formation of carbon deposits, the conversion decreases from 100% to 80% after a 102 h
run. Subsequently, Al–doped SBA–15 catalysts were applied for this reaction [56]. The highest BD
yield, 59%, was achieved over Al–SBA–15 (silica/alumina = 76), with stable activity in long-term runs.
Notably, the operation is performed at a relatively low temperature (200 ◦C).

Zeng et al. [57] studied the direct conversion of 2,3-BDO to BD over alumina catalysts with a wide
range of temperatures from 240 to 450 ◦C. They clarified that 3-buten-2-ol (3B2OL) is a key intermediate
in the dehydration of 2,3-BDO to BD by DFT, and 3B2OL can be easily converted to methyl ethyl ketone
(MVK) rather than BD in the presence of sodium-modified alumina catalysts because of the natural
basicity of the catalysts. The experimental results suggest that a higher selectivity to BD is obtained
under a higher reaction temperature. Fang et al. [58] conducted the dehydration of 1,3-BDO to BD
over a series of Ce@MOR catalysts with a flower-like morphology at 350 ◦C. Ce@MOR with Si/Ce at
an atomic ratio of 50 presents a high 1,3-BDO conversion of 100% but a poor selectivity of 46% to BD.
The high activity of Ce@MOR is attributed to the high density of Brønsted acid sites with medium
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strength. Nguyena et al. [59] reported the dehydration of 2,3-BDO to BD over a GdPO4 catalyst which
resulted in the complete conversion of 2,3-BDO and a selectivity of 58% to BD at 300 ◦C. Both the
fresh and regenerated GdPO4 displayed relatively stable catalytic activity in a 50 h run. Kim et al. [60]
carried out the direct dehydration of 2,3-BDO over silica-supported sodium phosphates catalysts at
400 ◦C. These findings show that the conversion of 2,3-BDO can be easily tuned up to 100%, while
the selectivity to BD never exceeds 70%. All of these studies confirm that Brønsted acid sites with
weak and medium strength are a key factor in the conversion of butanediols (BDOs) to BD. A great
improvement was observed by Tsukamoto [61], who investigated the dehydration of 2,3-BDO to BD
over SiO2-supported CsH2PO4 catalysts at 350 ◦C. The highest conversion of 2,3-BDO (>99.9%) and an
excellent selectivity to BD (91.9%) were obtained over 10% CsH2PO4, with a slight decrease over an
8 h run. This impressive catalytic activity is ascribed to a combination of the proper acid–base sites of
Cs phosphate and the large ionic radius of Cs+, which is significantly different from Na+ [57].
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Evolution from reagents and intermediates to the target BD is labeled by arrows, and the by-products
are produced during Dehydration 1.

However, the direct dehydration of C4 alcohols into BD always needs a high reaction temperature.
As BD can be readily obtained via the dehydration of unsaturated C4 alcohols (UOLs) over solid acid
catalysts, a novel path way to produce BD from C4 alcohols via the dehydration of C4 alcohols to their
corresponding UOLs was developed, and it is performed at a relatively low temperature. Sato’s group
has done a lot of work in this field. Duan et al. have reviewed the dehydration of BDOs to UOLs in
connection with their further dehydration to BD [17].
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Not long ago, Duan et al. [62] investigated the dehydration of 2,3-BDO to 3B2OL over modified
monoclinic ZrO2 catalysts, suggesting that BaO/ZrO2, SrO/ZrO2, and CaO/ZrO2 have good catalytic
capacities. The optimized data were observed over BaO–0.0452–800 with a 2,3-BDO conversion of
72.4% and a 3B2OL selectivity of 74.4% during the early stage of 5 h at 350 ◦C. Unfortunately, a
decrease in catalytic activity occurred over a long-term operation of 25 h. This is due to the formation
of Perovskite compounds, such as BaZrO3, which are inactive for the reaction. The modified monoclinic
ZrO2 also presents high catalytic activity for the dehydration of 1,4-BDO to 3-buten-1-ol (3B1OL),
especially 7–CaO+2–ZrO2/m–ZrO2–800, which produces an excellent 1,4-BDO conversion of 95.2%
and a high 3B1OL selectivity of 89.3% at 350 ◦C [63]. Then, the dehydration of UOLs to BD was
conducted by Sun et al. [64] over solid acid catalysts, like SiO2–Al2O3, Al2O3, TiO2, and ZrO2, and
basic rare earth metal oxides, including Yb2O3 and CeO2. This suggests that acid catalysts have a higher
activity for the dehydration of 2B1OL and 3B2OL than the rare earth metal oxides. The 10SiO2/Al2O3

catalyst shows the highest 2-buten-1-ol (2B1OL) conversion (92.5%) and selectivity (75.0%) at 260
◦C, but there is a rapid deactivation. Modified 10SiO2/Al2O3 with Ag can enhance the catalytic
activity and inhibit the formation of carbon deposits. The best result of the dehydration of 2B1OL was
achieved over 5Ag–SiO2/Al2O3, displaying a BD selectivity of 94.6% at a conversion of 99.1% at 260 ◦C.
Also, 5Ag–SiO2/Al2O3 efficiently inhibits catalytic deactivation, with a slight decrease in the 2B1OL
conversion (from 99.4% to 96.2%) and BD selectivity (from 95.0% to 87.1%) after 10 h. In contrast, the
rare earth metal oxides, such as CeO2, show poor activity for the dehydration of 2B1OL and 3B2OL
to BD, but they have a remarkable activity in the dehydration of 3B1OL to BD, which is attributed
to the weak basicity and the redox nature of CeO2 via Ce4+–Ce3+. The synthesis of BD from 3B1OL
over the acid catalysts shows a much lower BD yield resulting from the C–C cleavage of 3B1OL to
propylene. Thus, it is concluded that the dehydration mechanism of 3B1OL to BD is quite different
from the dehydration of 2B1OL and 3B2OL.

Therefore, Wang et al. [65] studied the production of BD by the dehydration of 3B1OL and
1,4-butanediol over rare earth oxides, such as Lu2O3 and Yb2O3. The optimal result of the dehydration
of 3B1OL was obtained with a high conversion of 99.6% and a good BD selectivity of 96.7% over
the Yb2O3 catalyst at 340 ◦C. Accordingly, the direct dehydration of 1,4-BDO to BD over Yb2O3 also
exhibited excellent a catalytic performance with a yield of 96.6% at 360 ◦C. Thus, producing BD
from bio-derived C4 alcohols and especially unsaturated C4 alcohols via the dehydration process is
a promising route, although a large amount of work still needs to be done, especially for improving
catalyst life for industry usage.

Tetrahydrofuran (THF) can also easily generate 1,4-BDO, which comes from five-carbon sugars
such as xylose or furfural [66–69]. Therefore, Abdelrahman et al. [70] developed a novel way to
synthesize BD via the catalytic ring-opening dehydration of THF, which is conducted in the presence of
a solid acid catalyst with a high selectivity of 85–99% to BD at a high THF conversion of 89% (Figure 4).
These encouraging data were obtained at 400 ◦C with a space velocity of 0.2 s−1. Unfortunately,
the conversion of THF significantly decreases to 8.9% with a turning space velocity of up to 9.7 s−1.
Therefore, a large change in this route must be implemented to improve the BD formation capacity.
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3. Synthesis of Isoprene

Isoprene (IP), also called 2-methyl-1,3-butadiene, is well-known as an irreplaceable monomer of
synthetic natural rubber. It is a colorless liquid with a characteristic odor, and it is highly significant for
producing stereoregular polyisoprene because of the ability to purposefully manipulate its properties.
The huge demand for this kind of material inspires the rapid development of the synthesis of
isoprene (Figure 5). The main methods used to produce isoprene in the industry have been reported
elsewhere [71]. In this review, the focus is on a promising route to produce isoprene using isobutene
and formaldehyde as starting materials via one step; this has attracted great interest both in the
industry and in academia. This process is conducted in the presence of solid acid catalysts, such
as zeolites, silver, oxide catalysts, phosphates, and heteropolyacid catalysts. Moreover, the recent
development of the isoprene synthesis using another method is also presented.



Catalysts 2019, 9, 97 8 of 25
Catalysts 2018, 8, x FOR PEER REVIEW  8 of 25 

 
 

Figure 5. Overview of isoprene (IP) production routes [71–74].



Catalysts 2019, 9, 97 9 of 25

Dumitriu et al. studied the reaction over zeolite catalysts [75,76]. The strength of the acid sites
is suggested to play a crucial role in isoprene synthesis. The weak Brønsted acid sites on zeolites are
proved to be the most efficient sites. In this respect, the highest selectivity, 99–100%, was obtained
over boralites and ferrisilicates. Nonetheless, these results were obtained in a pulse catalytic reactor,
which cannot be compared with those obtained in continuous flow systems.

Ag–Sb catalysts have been employed as catalysts in bed reactors and resulted in good activity, with
a conversion of around 81% (for formaldehyde) and selectivity of about 70% (for isoprene). However,
the activity of Ag–Sb catalysts decreases quickly and presents poor stability [77]. CuSO4/SiO2 catalysts
were developed which show a formaldehyde conversion of about 63% and selectivity of about 65%
to isoprene. It has been suggested that doping CuSO4/SiO2 with basic oxides to decrease the acidity
can greatly improve their activity. A formaldehyde conversion of 87% and selectivity of about 65%
to isoprene were obtained over CuSO4/SiO2 doped with MgO. However, the short lifetime of the
CuSO4/SiO2 catalysts impedes their application in the industry, and this deficiency can be attributed
to the decreasing number of acid sites resulting from the rapid formation of carbon deposits and the
destruction of the CuSO4 structure [78,79].

Krzywicki et al. [80] first reported the reaction of formaldehyde and isobutene over Al2O3–H3PO4

catalysts. A high H3PO4 content favors isoprene production owing to the increased number of acid
sites. However, the phosphate catalysts still displayed low activity, with an isoprene yield of 22%.
Ai et al. [81] tried to use the oxides of transition metals to improve the activity of the phosphate
catalysts. MoO3-, WO3-, and V2O5–based phosphate catalysts were employed for this reaction, using
tert-butyl alcohol as a raw material instead of isobutene. V2O5–P2O5 (P/V = 1.06) exhibited outstanding
activity, with an isoprene yield of about 60%. The author pointed out that the basic sites also play a
certain role in the synthesis of isoprene. Although the phosphate catalysts show a rather excellent
activity in both conversion and selectivity, they are characterized by rapid deactivation due to the
formation of large carbon deposits.

Therefore, catalysts with longer lifetimes and an understanding of the influence of carbon
deposition are urgently needed. Recently, Sushkevich et al. [82] conducted the condensation of
formaldehyde with isobutene over a Nb2O5–P2O5 catalyst. This catalyst is characterized by a much
longer lifetime and stable formaldehyde conversion, producing a steady isoprene yield of 57% within
more than 30 h of stream. Nb2O5–P2O5 shows high resistance to deactivation, which is ascribed to the
in situ restoration of Brønsted acid sites in the presence of water during the reaction. Moreover, spent
Nb2O5–P2O5 can be completely regenerated by calcination at 500 ◦C in an air flow. It was verified that
Lewis acid sites are responsible for the side reaction, which led to a low selectivity of 62.6%. Therefore,
supported Keggin-type heteropolyacids catalysts with weak Brønsted sites are being developed [83,84].
Most importantly, Ivanova et al. clarified that unsaturated branched carbonaceous species in carbon
deposits can generate active sites for the condensation of formaldehyde with isobutene to produce
isoprene [85]. To further identify the effect of carbon deposition on the synthesis of isoprene, our group
conducted the reaction over MoO3–P2O5 [86]. 4,4-Dimethyldioxane-1,3 (DMD) has been demonstrated
to be an important intermediate which can readily form on acid sites over a catalyst and further be
converted into isoprene in the presence of carbonaceous species. In this regard, the formation of carbon
deposits can give rise to a synergetic effect between acid species and carbonaceous species for isoprene
synthesis. Slight carbon deposition is able to shorten the induction period of the reaction, while a
large carbon deposition leads to catalyst deactivation because it attaches to Brønsted acid sites. For the
above reasons, a simple way to restore the reactivity of deactivated phosphate catalysts was developed
with the assistance of the carbon deposition [87].

Moreover, additional studies on the synthesis of isoprene by alternative routes have been reported.
Songsiri et al. [72,73] synthesized isoprene using heteropolyacids as catalysts in a liquid-phase system
under moderate conditions in which carbon deposits can be inhibited. Methyl tertiary-butyl ether
(MTBE) was used as the source of isobutene. MTBE is more available because its use as an additive in
gasoline has been prohibited in developed countries, such as the United States, Japan, and Western
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Europe. High formaldehyde conversion (>95.8%) and isoprene yield (68.3–77.5%) were achieved over
a Cs-exchanged silicotungstic acid catalyst. Unfortunately, it is still a challenge to completely separate
the catalysts from the reaction system, and a large amount of organic solvent is employed in this
process, which could result in environmental problems.

Considering environmental concerns and sustained availability, the biosynthesis of isoprene
was developed based on metabolic engineering. However, the necessary productivity has not been
achieved with microbes [88]. It was necessary to develop an alternative method for the sustainable
production of isoprene at a large scale. Therefore, it is a promising and competitive route to convert
biomass-derived feedstocks into isoprene via chemical processes. Itaconic acid from glucose [89]
was employed as raw material by Abdelrahman [74]. Firstly, itaconic acid was converted into
3-methyl-tetrahydrofuran (3-MTHF) with a yield of about 80% in a liquid phase using Pd–Re/C as a
catalyst. Then the dehydration of 3-MTHF was performed in a gas phase over a P-SPP (self-pillared
pentasil) catalyst with an isoprene selectivity of 70% at a 20–25% conversion. For this process, much
work is needed to improve the yield of isoprene, to understand the catalytic pathway, and to develop a
more efficient catalysts. Extensive research on IP synthesis is urgently required, and the exploration of
novel platform chemicals faces challenges, but success would be greatly rewarding.

1,3-Pentadiene (piperylene) has similar properties to isoprene and is a large-scale by-product
accompanying the production of isoprene. It is widely used in the production of sticky tapes, adhesives,
and plastics. In Russia, 1,3-pentadiene is also used to produce liquid rubber, which is intensively used in
paint and varnish industry [90–92]. Moreover, many studies have focused on the potential application
of poly(1,3-pentadiene) in the domain of elastomers. All of these factors inspire wide interest to study
the production of 1,3-pentadiene [93–95]. From the view of sustainable development, many efforts have
been made to develop alternative technologies for producing 1,3-pentadiene based on biomass-derived
feedstocks [96–99]. Recently, Sun et al. [100] developed a novel two-step synthetic approach using
xylitol as a resource (Figure 6). Xylitol is industrially produced by extracting hardwoods or corncobs.
In the first step, the deoxydehydration (DODH) of xylitol was conducted at 235 ◦C in the presence of
formic acid to give 2,4-pentadien-1-ol, 1-formate (2E), with an optimized yield of 62.9%, followed by
deoxygenation to obtain 1,3-pentadiene over a Pd/C catalyst at 100 ◦C. The total yield of 1,3-pentadiene
reached 51.8%. Kumbhalkar et al. [101] employed 2-methyltetrahydrofuran (2-MTHF) which can be
easily obtained from biomass-derived intermediates (levulinic acid and furfural, etc.), as the starting
material to produce 1,3-pentadiene in a continuous system. This reaction is conducted at 350 ◦C, and
the catalyst undergoes deactivation from the formation of carbon deposits in the presence of dienes.
Therefore, a decrease in the conversion of 2-MTHF (from 100% to 77%) and yield of 1,3-pentadiene
(from 67.8% to 51.8%) was observed over a period of 58 h.
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4. Rigid-Group Functionalized 1,3-butadienes

4.1. Synthesis of 2-(1-adamantyl)-1,3-butadiene

Due to its highly symmetrical and rigid tricyclic structure, adamantane features chemical and
thermal stability, hydrophobic character, and UV transparency. It has been introduced into polymers
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to improve their thermal and mechanical properties [102–111]. Therefore, introduction of adamantyl
into 1,3-dienes is explored as presented in Figure 7 [112,113].
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Firstly, methylmagnesium iodide is prepared by adding methyl iodide and magnesium into
diethyl ether. 1-Adamantanecarboxylic acid (Figure 7a) and thionyl chloride are charged into a vessel,
and the mixture is heated to 80 ◦C and then left for 2 h with stirring. After the reaction, thionyl
chloride is removed to afford a white solid of 1-adamantanecarbonyl chloride (Figure 7b) under
reduced pressure. Then, diethyl ether and CuCl are added to 1-adamantanecarbonyl chloride under a
N2 atmosphere, followed by the dropwise addition of methylmagnesium iodide at 0 ◦C under a N2

atmosphere. After stirring at room temperature for 30 min, the reaction is quenched with 2 N HCl.
The mixture is extracted with diethyl ether. Then, the organic layer is dried over anhydrous MgSO4.
After the removal of the solvent, the product (Figure 7c) is obtained. In an ice/water bath under a N2

atmosphere, the THF solution of vinyl bromide is added dropwise to magnesium, which is activated
with 1,2-dibromoethane and stirred at this temperature for another 1 h, then at room temperature
for 1 h. Prior to the addition of the THF solution of the product in Figure 7c, the reaction mixture is
cooled down to 0 ◦C. Finally, stirring at room temperature overnight is maintained. The reaction is
quenched with 2 N HCl, and diethyl ether is used to extract the reaction system. After the evaporation
of the solution, the product (Figure 7d) is obtained. The solution of the product (Figure 7d) in benzene
refluxes for 2 h in the presence of p-toluenesulfonic acid. After cooling, the organic layer is separated
and dried. The solvent is removed to afford the final product (Figure 7e).

4.2. Synthesis of 2-phenyl-1,3-butadienes

2-Phenyl-1,3-butadiene (2-PB) can be regarded as either an α-vinyl-substituted styrene or
2-phenyl-substituted 1,3-butadiene. Therefore, 2-PB is a unique monomer because of the importance
of styrene and 1,3-butadiene in synthetic rubbers. Moreover, with a phenyl group replacing methyl,
Poly(2-PB) exhibits distinctive properties compared with polyisoprene. Moreover, Poly(2-PB) can
also be used to produce high-temperature thermoplastics with a Tg as high as 325 ◦C [114]. Since the
successful synthesis of 2-PB by Marvel, [115] it received much attention [116,117].

As displayed in Figure 8, vinyl bromide and magnesium are used to prepare the THF solution
of vinylmagnesium bromide, followed by the addition of acetophenone (Figure 8a). The mixture
must be maintained under gentle reflux and then maintained with stirring for 1 h. A saturated
aqueous solution of ammonium chloride is applied for the hydrolysis process to obtain the crude
product. After the distillation and removal of the solvent, methylphenylvinylcarbinol (Figure 8b) is
afforded with a yield of 75%. Methylphenylvinylcarbinol, aniline hydrobromide, and hydroquinone
are charged into a round-bottomed flask equipped with a Vigreux column. The mixture is heated
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at 100 ◦C in an oil bath, followed by gentle distillation with the temperature increasing to 150 ◦C.
The fraction with a b.p. of 57–63 ◦C is collected and dried by anhydrous calcium chloride to obtain
2-PB (Figure 8c). Recently, Yao et al. [118] used acetophenone as the starting material to prepare 2-PB
via elaborate manipulations, which are performed under a dried and oxygen-free atmosphere, and
the solvents involved in the reaction must be purified. In the typical procedure, acetophenone is first
converted into 2-phenylbut-3-en-2-ol in the presence of vinylmagnesium bromide at 0 ◦C, followed by
a dehydration reaction to afford 2-PB in the presence of pyridinium p-toluenesulfonate at 80 ◦C; THF
and toluene are employed as solvents, respectively. Similar to 2-PB, 1-phenyl-1,3-butadiene (1-PB) and
1-(4-methypenyl)-1,3-butadiene (1-MPB) have also gained much attention [120–125].Catalysts 2018, 8, x FOR PEER REVIEW  12 of 25 
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Moreover, Yao et al. synthesized 2-(4-methoxyphenyl)-1,3-butadiene (2-MOPB) through the
dehydration of 2-(4-methoxyphenyl) but-3-en-2-ol in the presence of pyridinium p-toluenesulfonate
which is used as a dehydrating agent. The manipulations were conducted under mild conditions,
with a moderate yield of 46% [119]. Phenyl-1,3-butadiene derivatives provide a promising platform
for the synthesis of polar-group functionalized 1,3-butadienes by introducing substituents into
phenyl [126–128]. In our previous work, 4-methyl-4-phenyl-1,3-dioxane (MPD) was synthesized
via Prins condensation of alpha-methylstyrene with formaldehyde and MPD could be easily converted
into 2-PB over solid acid catalysts at above 250 ◦C [129]. Notably, 2-PB can hardly be modified with
functional groups in the presence of a conjugated bond. However, it is possible to introduce functional
groups into MPD, and then the functionalized MPD can be easily converted into functionalized 2-PB
and 1-PB (Figure 9). Therefore, this is a promising candidate route for the synthesis of 2-PB with
functional groups on a large scale.
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isoprene (Figure 11h) in a dry ice/acetone bath (maintained below –20 °C) to obtain 
1,4-dibromo-2-methyl-2-butene (Figure 11i) with a yield of 100%. Following the addition of 
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Figure 9. A straightforward way to synthesize 2-phenyl-1,3-butadiene [129].

5. Polar-Group Functionalized 1,3-butadienes

A large number of functionalized dienes with polar groups containing O, N, and Si, such as
vinyloxy, ethoxymethyl, cyanomethyl, amine derivatives, alkyloxysilyl, alkylsilyl, alkyloxymethyl,
N,N-dialkylamino dimethylsilyl, etc., have been reported.

2-Vinyloxy-1,3-butadiene is a potentially valuable building block and monomer, as it can be
taken as either a functionalized 1,3-butadiene or vinyl ether (CH2=CHOR). It has been synthesized
by a hydrative trimerization reaction using acetylene and water as raw materials at 80–115 ◦C
in the KOH·H2O/DMSO system (Figure 10) [130,131]. It is suggested that one molecule of
acetylene reacts with one molecule of water to form acetaldehyde (Figure 10c), which undergoes
ethynylation in the presence of another molecule of acetylene to give acetylenic alcohol (Figure 10d),
followed by the vinylation to afford (Figure 10e). After isomerization of acetylene-allene-diene,
2-vinyloxy-1,3-butadiene is obtained [132]. Recently, Vitkovskaya et al. studied the mechanism of this
reaction by using the MP2/6-311++G**//B3LYP/6-31+G* quantum chemical framework [133,134].
They clarify that the formation of acetaldehyde and its ethynylation occur in complexes of
5DMSO·KOH, and the addition of the hydroxide ion to the acetylene molecule is the rate-determining
step of this reaction.

Catalysts 2018, 8, x FOR PEER REVIEW  13 of 25 

 

 
Figure 9. A straightforward way to synthesize 2-phenyl-1,3-butadiene [129]. 

5. Polar-Group Functionalized 1,3-butadienes 

A large number of functionalized dienes with polar groups containing O, N, and Si, such as 
vinyloxy, ethoxymethyl, cyanomethyl, amine derivatives, alkyloxysilyl, alkylsilyl, alkyloxymethyl, 
N,N-dialkylamino dimethylsilyl, etc., have been reported. 

2-Vinyloxy-1,3-butadiene is a potentially valuable building block and monomer, as it can be 
taken as either a functionalized 1,3-butadiene or vinyl ether (CH2=CHOR). It has been synthesized 
by a hydrative trimerization reaction using acetylene and water as raw materials at 80–115 °C in the 
KOH·H2O/DMSO system (Figure 10) [130,131]. It is suggested that one molecule of acetylene reacts 
with one molecule of water to form acetaldehyde (Figure 10c), which undergoes ethynylation in the 
presence of another molecule of acetylene to give acetylenic alcohol (Figure 10d), followed by the 
vinylation to afford (Figure 10e). After isomerization of acetylene-allene-diene, 
2-vinyloxy-1,3-butadiene is obtained [132]. Recently, Vitkovskaya et al. studied the mechanism of 
this reaction by using the MP2/6-311++G**//B3LYP/6-31+G* quantum chemical framework [133,134]. 
They clarify that the formation of acetaldehyde and its ethynylation occur in complexes of 
5DMSO·KOH, and the addition of the hydroxide ion to the acetylene molecule is the 
rate-determining step of this reaction. 

 
Figure 10. The pathway of synthesis of 2-vinyloxy-1,3-butadiene [130–132]. 

2-Ethoxymethyl-1,3-butadiene is synthesized as shown in Figure 11 [135–137]. The prepared 
2-bromomethyl-1,3-butadiene (Figure 11a) is added dropwise to sodium ethoxide solution at 0 °C, 
followed by stirring overnight at 40 °C; 2-ethoxymethyl-1,3-butadiene (Figure 11b) is obtained after 
distillation under reduced pressure at a yield of 63%. Dry THF is employed as the solvent. The used 
2-bromomethyl-1,3-butadiene can be synthesized as follows: firstly, bromine is added dropwise to 
isoprene (Figure 11h) in a dry ice/acetone bath (maintained below –20 °C) to obtain 
1,4-dibromo-2-methyl-2-butene (Figure 11i) with a yield of 100%. Following the addition of 
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU), 1,4-dibromo-2-methyl-2-butene is 
converted into 2-bromomethyl-1,3-butadiene which is collected by applying a vacuum. 
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2-Ethoxymethyl-1,3-butadiene is synthesized as shown in Figure 11 [135–137]. The prepared
2-bromomethyl-1,3-butadiene (Figure 11a) is added dropwise to sodium ethoxide solution at 0 ◦C,
followed by stirring overnight at 40 ◦C; 2-ethoxymethyl-1,3-butadiene (Figure 11b) is obtained
after distillation under reduced pressure at a yield of 63%. Dry THF is employed as the solvent.
The used 2-bromomethyl-1,3-butadiene can be synthesized as follows: firstly, bromine is added
dropwise to isoprene (Figure 11h) in a dry ice/acetone bath (maintained below –20 ◦C) to
obtain 1,4-dibromo-2-methyl-2-butene (Figure 11i) with a yield of 100%. Following the addition
of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU), 1,4-dibromo-2-methyl-2-butene is
converted into 2-bromomethyl-1,3-butadiene which is collected by applying a vacuum.
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2-Cyanomethyl-1,3-butadiene can be used for the production of synthetic rubbers that show
excellent oil and solvent resistance, as well as adhesive properties owing to the introduction of cyano
into butadiene [138]. As is known, a higher acrylonitrile content in NBR can give rise to a higher
resistance to hydrocarbons and impermeability to gases, but it also leads to lower resilience and
temperature flexibility [145,146], which indicates that oil resistance and low-temperature flexibility
are mutually incompatible. Cyano-substituted monomers could provide an ideal solution to this
problem [139]. Jing et al. [138,139] synthesized 2-cyanomethyl-1,3-butadiene in three steps, with the
synthesis of 2-bromomethyl-1,3-butadiene from isoprene and Br2 via the first two steps (Figure 11).
In the third step, sodium cyanide, acetonitrile, and tetrabutylammonium chloride are added into the
reaction mixture. After stirring at room temperature for 48 h, the mixture is quenched, extracted,
washed, and distillated to afford 2-cyanomethyl-1,3-butadiene (Figure 11c). The total yield is
about 35%.

Quite different from 2-cyanomethyl-1,3-butadiene, the introduction of amine groups into
dienes could remarkably change the properties of their final polymers, such as adhesion and
solubility. It has been verified that the solubility of this kind of polymer in polar solvents is
better than that of a polymer without polar-side chains, such as polybutadiene and polyisoprene.
Moreover, the polymer containing the amine always presents chemical and structural versatility.
Therefore, a lot of effort has been put into the synthesis of 1,3-butadiene containing amines
(Figure 11) [140,141]. 2-((N,N-Dimethylamino)methyl)-1,3-butadiene (Figure 11d) is synthesized
by adding 2-bromomethyl-1,3-butadiene dropwise into the mixture of diethyl amine and ether at
0 ◦C, followed by stirring overnight at room temperature. In this process, an aqueous solution
of dimethyl amine (40%) is used. After distillation, a colorless liquid product is obtained
with a 65% yield [142–144]. By a similar method, 2-((N,N-diethylamino) methyl)-1,3-butadiene
(Figure 11e) and 2-((N,N-di-n-propylamino)methyl)-1,3-butadiene (Figure 11g) are synthesized using
2-bromomethyl-1,3-butadiene and the corresponding amines, and both of their yields can reach 80%.
An alternative route is displayed in Figure 12.

The pre-prepared 2-bromomethyl-1,3-butadiene can also be synthesized as shown in
Figure 13 [144]. Prior to charging condensed SO2 as a liquid into a stainless-steel reactor, an acetone/dry
ice bath is employed to maintain the mixture temperature below –10 ◦C. After the introduction
of isoprene, methanol, and hydroquinone, the reactor is sealed and heated to 85 ◦C for 4 h with
stirring. After cooling the mixture to room temperature, deionized water is added to allow for
recrystallization of the product in Figure 13a, which is obtained with a yield of 90%. Then, the product
(Figure 13a), together with N-bromosuccinimide, benzyl peroxide, and chloroform, is charged into the
round-bottom flask equipped with a condenser. After refluxing for 20 h, evaporation of the solvent
and recrystallization of the product are carried out to afford the product in Figure 13b with a yield of
25%. A trace amount of hydroquinone and this product (Figure 13b) are charged into a preheated flask
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(170 ◦C) using an oil bath. After melting the solid, a vacuum is applied and the greenish-brown liquid
product (Figure 13c) is gained with a yield of 80% (2-bromomethyl-1,3-butadiene).
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Sato et al. [147] reported a synthetic route of 2-(triisopropoxysilyl)-l,3-butadiene in
1984; since then, this kind of functional diene has attracted wide interest. In this route,
2-(triisopropoxysilyl)-1,3-butadiene is prepared using 1,4-dichloro-2-(trichlorosilyl)-2-butene and
isopropyl alcohol as starting materials (Figure 14) [148,149]. Firstly, the solution of isopropyl alcohol in
triethylamine is added dropwise to a THF solution of l,4-dichloro-2-(trichlorosilyl)-2-butene
(Figure 14a) at 0 ◦C. After stirring overnight at 20 ◦C, the mixture is heated to 60 ◦C
and kept for several hours, followed by cooling to 0 ◦C. Hexane is applied to precipitate
the inorganic salt, which is removed using Hyflo-Super-Cel” (Johns-Manville Co.). Then,
l,4-dichloro-2-(triisopropoxysilyl)-2-butene (Figure 14b) is obtained by distillation. In the second
step, the THF solution of l,4-dichloro-2-(triisopropoxysilyl)-2-butene (Figure 14b) is dropwise added
to a mixture of zinc powder in THF under refluxing condition. After refluxing for 2 h, the reaction
mixture is cooled down to 0 ◦C. In this stage, pentane is used to precipitate the inorganic salt.
2-(Triisopropoxysilyl)-l,3-butadiene (Figure 14c) is afforded with a yield of 64% after removing the
salt and solvent. By a similar method, 2-triethoxysilyl-1,3-butadiene (Figure 14d) is synthesized from
1,4-dichloro-2-(trichlorosilyl)-2-butene and ethanol, and 2-(diisopropoxymethylsilyl)-l,3-butadiene
(Figure 14e) and 2-(dimethylisopropoxysilyl)-l,3-butadiene (Figure 14f) are synthesized
via a reaction of isopropyl alcohol with 1,4-dichloro-2- (dichloromethylsilyl)-2-butene or
l,4-dichloro-2-(dimethylchlorosilyl)-2-butene, respectively.

2-Triethoxymethyl-1,3-butadiene is synthesized by a coupling reaction of tetraethyl
orthocarbonate and 2-(1,3-butadienyl) magnesium chloride (Figure 14) [150]. A THF solution of
tetraethyl orthocarbonate is charged into a flask equipped with a reflux condenser. A THF solution
of 2-(1,3-butadienyl) magnesium chloride is added dropwise under a N2 atmosphere at 55–65 ◦C.
Then the reaction mixture is stirred for 48 h. After the reaction, the mixture is concentrated and poured
into a NH4Cl solution containing ice, then extracted three times with ether. After removing the solvent,
distillation is employed to attain 2-triethoxymethyl-1,3-butadiene (Figure 14j).
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2-(Trimethylsilyl)-1,3-butadiene is synthesized as given in Figure 14. Trimethylsilyl chloride
is added to a solution of pre-prepared 2-(1,3-butadienyl) magnesium chloride in THF at room
temperature. Then the mixture is heated and refluxed for 3 h. After the reaction, the mixture is poured
into 2 N HCl and extracted with pentane. After removing the solvent, 2-(trimethylsilyl)-1,3-butadiene
is obtained (Figure 14k). The synthesis of pre-prepared 2-(1,3-butadienyl) magnesium chloride has
been described elsewhere [151].

2-(N,N-Dialkylamino)dimethylsilyl-1,3-butadiens are synthesized by the reactions of
1,3-butadien-2-ylmagnesium chloride with the corresponding (N,N-dialkylamino)dimethylsilyl
chloride (Figure 14) [135]. In typical procedures, 2-((N,N-diethylamino) dimethylsilyl)-1,3-butadiene
(Figure 14n) is synthesized by dropwise adding a solution of (N,N-diethylamino) dimethylsilyl
chloride (Figure 14m) to 1,3-butadien-2-ylmagnesium chloride (Figure 14h) under an atmosphere
of nitrogen at 0 ◦C. THF is used as the solvent. Followed by refluxing for 12 h, the mixture is
cooled, filtered, and washed with a solution of dry pentane/THF under a nitrogen atmosphere.
After evaporation and distillation over LiAlH4, 2-((N,N-diethylamino) dimethylsilyl)-1,3-butadiene is
afforded as a colorless liquid with a yield of 40%. According to similar procedures, (N,N-dibutylamino)
dimethylsilyl chloride (Figure 14o), (1-pyrrolidinyl)-dimethylsilyl chloride (Figure 14q), and
(N-(2′-(N′,N′-dimethylamino) ethyl)-N-methylamino)dimethylsilyl chloride (Figure 14s) are
used to synthesize 2-((N,N-dibutylamino) dimethylsilyl)-1,3-butadiene (Figure 14p) at a
13% yield, 2-((1-Pyrrolidinyl) dimethylsilyl)-1,3-butadiene (Figure 14r) at a 68% yield, and
2-((N-(2′-(N′,N′-Dimethylamino) ethyl)-N-methylamino)-dimethylsilyl)-1,3-butadiene (Figure 14t) at a
71% yield. Moreover, 1,3-butadienes with abundant functional groups at the 2-position have been
reported (Figure 15) [152,153].
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Figure 15. Reported 2-substituted 1,3-butadienes [152,153].

6. Conclusions and Outlook

1,3-Butadienes (especially IB and IP) are the basic building blocks for the synthetic rubbers
used in the tire fabrication industry, and it is needless to mention that their production still depends
on petrochemicals in industry. Taking into consideration the depletion of oil reserves, the volatile
price of petrochemicals, and the issues related to the environment, it is urgent to explore renewable
resources for the sustainable production of 1,3-butadienes, especially for those in large demand in
the industry [88,154,155]. The production of 1,3-butadienes from biomass-derived feedstocks is a
prospective route, which is increasingly competitive in polymer production [156]. With regards to
sustainability, great achievements have been obtained in the production of IB from ethanol in both
academia and the industry. Unfortunately, it is still a great challenge to improve the BD yield and to
develop robust catalysts because the aldol coupling and the dehydrogenation steps involved in this
technology cannot be efficiently performed on simple metal oxide catalysts [157].

Bio-derived C4 alcohols and especially unsaturated C4 alcohols have been declared promising
feedstocks for the production of BD via the dehydration process; even the two-step synthesis of BD
from C4 alcohols via UOLs displays a total BD yield of 96.6% over Yb2O3 at 360 ◦C. A great deal
of work still needs to be done, especially for the improving catalyst life for industry usage. For the
sustainable production of IP, a lot of efforts must be made. Although some biomass-derived chemicals,
such as itaconic acid, have been explored in the last 2 years, it is still difficult to meet the requirements
for industrial-scale production. Extensive research studies on IP synthesis are urgently required, and
the exploration of novel platform chemicals faces challenges but will be highly rewarding. Fortunately,
the US Department of Energy (DOE) “Top 10” report (the DOE outlined research needs for bio-based
products in 2004) and its revision provide guidance to choose potential candidate chemicals for IP
synthesis, as well as BD [158–160].

In contrast, functionalized 1,3-butadienes, without any research on their synthesis from
biomass-derived chemicals, are always synthesized at the lab scale by complicated operations under
rigorous conditions, e.g., without water or oxygen, such as the synthesis of these monomers with
phenyl, silicon, cyano, and amino groups. However, they play an essential role in enhancing
the existing properties of synthetic rubber, particularly for certain special applications. Therefore,
exploration of a simple catalytic route to synthesize functionalized-1,3-butadienes at a large scale is still
needed. In China, research work is ongoing in this direction at the Key Laboratory of High-Performance
Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, CAS and is
expected to continue in the next few years.
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1,3-BDO 1,3-Butanediol
1,4-BDO 1,4-Butanediol
1-MPB 1-(4-Methypenyl)-1,3-butadiene
1-PB 1-Phenyl-1,3-butadiene
2,3-BDO 2,3-Butanediol
2B1OL 2-Buten-1-ol
2-MOPB 2-(4-Methoxyphenyl)-1,3-butadiene
2-MTHF 2-Methyltetrahydrofuran
2-PB 2-Phenyl-1,3-butadiene
3B1OL 3-Buten-1-ol
3B2OL 3-Buten-2-ol
3-MTHF 3-Methyltetrahydrofuran
BD 1,3-Butadiene
BDOs Butanediols
BR Butadiene rubber
CR Chloroprene rubber
DMD 4,4-Dimethyldioxane-1,3
IP Isoprene
IR Isoprene rubber
MPD 4-Methyl-4-phenyl-1,3-dioxane
MTBE Methyl tertiarybutyl ether
MVK Methyl ethyl ketone
NBR Nitrile butadiene rubber
NB Natural rubber
SBR Styrene butadiene rubber
Tg Glass transition temperature
THF Tetrahydrofuran
UOLs Unsaturated C4 alcohols
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