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Abstract: In this work, the electrolysis, photoelectrolysis and sonoelectrolysis with diamond
electrodes of amoxicillin (AMX) and ampicillin (AMP) solutions were studied in the context of
the search for technologies capable of removing antibiotics from liquid wastes. Single-irradiation
processes (sonolysis and photolysis) were also evaluated for comparison. Results showed that AMX
and AMP are completely degraded and mineralized by electrolysis in both chloride and sulfate
media, although the efficiency is higher in the presence of chloride. The effect of the current density
on mineralization efficiency is not relevant and this may be related to the role of mediated oxidation.
Irradiation by ultraviolet light or ultrasound (US) waves does not produce a synergistic effect on the
mineralization of AMX and AMP solutions. This indicates that the massive formation of radicals
during the combined processes can favor their recombination to form stable and less reactive species.

Keywords: Anodic oxidation; diamond electrodes; UV irradiation; ultrasounds; amoxicillin;
ampicillin

1. Introduction

The development of modern society is providing continuous improvements to quality of life,
increasing food production through the use of agrochemicals and improving health with the use
of biologically active substances for the control of diseases. These chemicals may pose some
environmental risks and as a result of this, they have recently been the focus of a good deal of research
globally [1,2]. Regarding medicines, antibiotics are worth highlighting because of their extensive
consumption and extremely high potential environmental risks [3–8], reflected by the occurrence
of super-bacteria, which are becoming a very serious health problem. Often, these chemicals are
not efficiently removed in conventional wastewater treatment facilities, and consequently they are
discharged into the environment where they are accumulated [9], altering the biological cycle of many
types of organisms.

The use of beta-lactam antibiotics, such as amoxicillin (AMX) and ampicillin (AMP), represented
an important contribution to medical science from the end of World War II. These medicines are still
widely used because of their high efficiency, low cost and few side effects in humans. While ampicillin
is more suitable for the treatment of respiratory tract infections, amoxicillin has several applications
in infections of the skin and soft tissues, odontogenic infection, lower respiratory tract infection or
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urinary tract infection and otitis. Studies related to these molecules have developed because they
have been detected in different sites. For example, monitoring performed at sewage treatment stations
located in different regions of Italy showed concentrations of amoxicillin in the final effluent in the
range of 1.8 ηg L−1 to 120 ηg L−1.

The removal of antibiotics from water is neither easy nor efficient with conventional technologies.
For this reason, many advanced oxidation processes (AOPs) have been suggested and proven over
the last years [10]. Among them, photochemical oxidation, ozonation, photolysis with H2O2 and
O3, photocatalysis, and Fenton processes are worthy of mention. The main characteristic of these
processes is the generation of very reactive and oxidizing radicals, such as hydroxyl radicals. Presently,
electrolysis is one of the most interesting AOPs, and has been shown to be a very capable technology
for the elimination of organic pollutants [11–16], including antibiotics. The efficiency of this technology
depends not only on the operating conditions of the system but also on the material used as an anode.
In the case of using conductive diamond electrodes, the massive generation of hydroxyl radicals is
reported. This is a very powerful oxidant (E0: 2.80 V vs SHE) that can not only react with organics
but also promotes the generation of other oxidants, such as peroxophosphates, peroxosulfates, ozone,
and hydrogen peroxide [17–19].

The electrolysis of antibiotics has been studied previously with successful results, which suggests
that electrolysis is a technology worth evaluating [20–27]. However, these molecules are very complex
and there is a need for further investigations in order to determine the conditions in which these
processes can be optimized. Electrolysis is very efficient when the concentration of organics is in the
range of 103–104 ppm, and the concentrations of antibiotics in urine are much lower; thus, improved
knowledge about the mechanisms and possible synergies with other technologies (such as photo-
or sono-processes) could help the development of future processes which are capable of solving the
problem efficiently [28–31].

In this context, the goal of the present study is to evaluate the applicability of electrochemical
oxidation with diamond anodes to remove waste consisting of mixtures of amoxicillin and ampicillin,
clarifying the effects of the current density and supporting electrolyte on the performance of the
process. In order to improve this performance, irradiation by UV light and ultrasounds during
electrolysis is also evaluated, with the final aim of explaining the way in which the process mediated
by electrogenerated oxidants affects amoxicillin/ampicillin oxidation. As seen in Table 1, the chemical
structure of both molecules is quite similar. Hence, initially it may be expected that both molecules
will be oxidized at similar rates and as a result of similar mechanisms. Similarities and differences
found are expected to clarify mechanisms.

Table 1. Chemical structure of amoxicillin and ampicillin.

Amoxicillin Ampicillin
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2. Results and Discussion

Figure 1 shows the removal of antibiotics and total organic carbon (TOC), as a function of the
current charge passed during the electrolysis of amoxicillin (AMX) and ampicillin (AMP) solutions,
carried out in sulphate media at three current densities (15, 30 and 60 mA cm−2). As can be observed
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in Figure 1a, both AMX and AMP are completely oxidized during the electrolyses, and their decay
trends lie over almost the same curve. Thus, they disappeared completely after passing similar electric
charges. This similar trend can be explained in terms of their similar chemical structure. Regarding the
effect of current density, the electric charges required to attain a given percentage removal depends on
the following parameter: 8, 6, and 5.5. Ah dm−3 at 15, 30 and 60 mA cm−2, respectively. Moreover,
as it is known, the slope of this representation (d[concentration] / dQ) refers to the oxidation efficiency.
There is an evident improvement of the degradation when the current density increases from 15 to
30 mA cm−2. From 30 to 60 mA cm−2, this improvement is less evident and it is only observed during
the initial stages of the electrolysis. Thus, the higher the current density, the more efficient the partial
degradation of the raw material. It is important to bear in mind that the antibiotics were measured
by high performance liquid chromatography (HPLC), and any change in functional group causes
the transformation of the raw molecule into an intermediate; hence its disappearance in the HPLC
chromatogram. However, this trend observed in the raw antibiotic molecules is not reflected for TOC
removal (Figure 1b). In fact, the electric charge required to attain the complete mineralization of the
waste increases with current density: 12, 14, and 24 Ah dm−3 in the electrolyses carried out at 15,
30 and 60 mA cm−2, respectively. Taking into account the resultant cell voltage in each case (4.8, 5.7
and 6.8 V, respectively), these differences are even more relevant in terms of energy consumption.
Additionally, the electric current charges required for mineralization are higher than those passed to
attain the complete depletion of the initial compound. This observation confirms that the oxidation of
AMP and AMX occurs gradually and organic intermediates should be formed (see inset of Figure 1b).
Finally, these intermediates are further oxidized to carbon dioxide, being more efficiently degraded
at lower current densities, perhaps because of the major influence of the processes occurring in close
proximity to the anode surface under those conditions.Catalysts 2018, 8, x FOR PEER REVIEW  4 of 13 
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Figure 1. Oxidation trends of the antibiotics amoxicillin (AMX) (N, ∆, N) and ampicillin (AMP) (�,
�, �) (a) and of total organic carbon (TOC) (b) with the electric charge passed during the electrolysis
carried out in sulphate media (3 g L−1 of Na2SO4) at three current densities: 15 (black symbols), 30
(white symbols), and 60 (grey symbols) mA cm−2. Initial concentration was 100 mg L−1 of AMX and
100 mg L−1 of AMP.

At this point, it is important to take into consideration that in the electrolysis with conductive
diamond electrodes, both direct and mediated oxidation (thanks to oxidants electrogenerated in
the system) can contribute to the overall degradation process [32]. In the tests shown in Figure 1,
sulphate was used as a supporting electrolyte, and it is well known that electrolysis can lead to the
formation of peroxo-sulphates (Equation (1)) [17,33]. Additionally, this type of electrode also promotes
the production of free hydroxyl radicals (Equation (2)) that recombine among them or react with
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oxygen to form O3 (Equation (3)) and H2O2 (Equation (4)). These oxidants can also contribute to the
oxidation process.

2SO4
2− → S2O8

2− + 2 e− (1)

H2O→ (•OH) + H+ + e− (2)

O2 + 2 (•OH)→ O3 + H2O (3)

2 (•OH)→ H2O2 (4)

The formation of these species is promoted at high current density [26,34,35], but it is not
always reflected by a more efficient degradation. In fact, in light of the results obtained in this
study, the transformation of AMP and AMX is favored at high current densities, but not their full
mineralization. This observation implies that although more oxidants are generated, the mineralization
of intermediates becomes less effective under these conditions. This can be explained by the low
reactivity of the intermediates with the oxidants, which made the direct oxidation mechanisms the
most important in their degradation. This may explain the typical behaviour of diffusion-controlled
systems, in which a mass transfer from the bulk to the electrode surface controls the rate of oxidation
processes in spite of the presence of large amounts of oxidants in the reaction system. Thus, if the
electrogenerated oxidants are not able to oxidize the reaction intermediates, the efficiency of the overall
process decreases.

To determine the kinetics of the mineralization process, in Figure 2 the TOC removals are plotted
on a semi-log scale. As can be observed, it is possible to distinguish two zones in which the slope of the
trend changes, regardless of the current density. In each zone, the data show linear trends, indicating
that electrolysis fits the kinetic of the pseudo-first order.
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Figure 2. TOC removal in semi-log scale during electrolysis of AMX and AMP solutions carried out
in sulphate media (3 g L−1 of Na2SO4) at three current densities: 15 (�), 30 (�) and 60 (�) mA cm−2.
Initial concentration was 100 mg L−1 of AMX and 100 mg L−1 of AMP.

In the first zone, the kinetic is slower and the current density shows a higher influence (k1 =
0.0062, 0.0103 and 0.0115 min−1 at 15, 30 and 60 mA cm−2, respectively). In this zone, AMX and
AMP are the main organics present in the solution and, as shown in Figure 1, their attack is favored



Catalysts 2019, 9, 9 5 of 13

with the increase in electron current. These electrons are used to transform the initial pollutants to
intermediates by attacking functional groups or double bonds (partial oxidation). Thus, in terms of
mineralization, the electric charge supplied is not efficiently used because it is not used to form carbon
dioxide but only intermediates.

In the second zone, the mineralization rate increases and the electrons supplied seem to be
efficiently used. Before this, a transition region can be observed, in which the change of trends starts
to become evident. Here, around 80–90% of the antibiotics have been transformed and around 30%
of TOC has been mineralized; therefore, it may be assumed that small amounts of the raw pollutants
coexist with both aromatic and aliphatic intermediates. This behaviour has been observed in previous
works [32] and can be explained by the presence of short-chain carboxylic acids during the final stages
of the degradation process, whose oxidation may be favored by the cocktail of oxidants formed and
leads almost directly to carbon dioxide. Consequently, the slope increases significantly until 0.2197,
0.2084 and 0.2236 min−1. Additionally, it is observed that the kinetic constants are similar at the three
current densities, confirming the role of the mass transfer limitations, particularly in low-concentration
solutions (TOC concentrations below 25 mg L−1)

At this point, in the literature it has been reported that electrogenerated oxidants should be
activated to promote mediated oxidation efficiently [36–43]. It is well known that the photo-activation
of stable oxidants in the bulk can occur when the electrolytic system is irradiated with UV light.
Commonly, the radical oxidizing agents formed (Equations (5)–(7)) react faster than the corresponding
oxidant-anions, and this enhances the degradation process.

S2O8
2− + UV light→2 (SO4

−) (5)

H2O2 + UV light→2 OH (6)

H2O + O3 + UV light→2 OH + O2 (7)

In the search for better efficiencies, AMP and AMX solutions undergoing the electrochemical
process at 30 mA cm−2 were irradiated with 254 nm of UV light. Figure 3 shows the degradation
trends of AMX and AMP during the combined process of photoelectrolysis in sulphate media. For
comparison purposes, the role of the supporting electrolyte was also evaluated. It is well known that
hypochlorite can be formed during electrolysis with conductive diamond electrodes in chlorine media
(Equation (8)) and that, under UV light irradiation, hypochlorite is also decomposed into chlorine
radicals (Equation (9)). Therefore, attending to the main mediator formed in each case (sulphate
or chloride media), differences are expected. Additionally, to evaluate the existence of possible
synergisms in the combined process, the results are compared with those obtained in the single
processes of photolysis (without applying current) and electrolysis (without irradiating UV light).

Cl− + H2O→HClO + H+ + 2e− (8)

ClO− + UV light→Cl + O− (9)
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Figure 3. Degradation trends of AMX (triangles) and AMP (squares) during the electrolysis (∆, �),
photolysis (N, �) and photoelectrolysis (N, �) tests in sulphate media (a) and chlorine (b). Initial
concentration: 100 mg L−1 of AMX and 100 mg L−1 of AMP. Electrolyte concentrations: 3 g L−1 of
Na2SO4 or 3.7 g L−1 of NaCl. Current density: 30 mA cm−2: UV light: 254 nm.

As can be observed, the partial oxidation of AMX and AMP depends on the technology used.
As expected [26,34,35], photolysis is not able to completely remove the antibiotics, and around 70%
of AMX and AMP remains unaltered in the solutions after 8 h of treatment. Moreover, in sulphate
media, the removal trends of both compounds are almost overlapping, but they differ significantly
in chlorine media, in which the degradation of AMP is slower. As the difference between both
antibiotic is just one hydroxyl group in the aromatic ring, it means that the oxidation obtained by
photolysis is focused on this group primarily and that mediators formed in chloride medium are
not as effective in the oxidation of other groups. On the contrary, less than 1 h of treatment is
required to attain the complete depletion of AMP and AMX in the electrolysis tests. In fact, the partial
oxidation of AMX and AMP is even faster in chlorine media, and after 0.25 h of electrolysis at 30 mA
cm−2, both antibiotics have completely disappeared from the reaction system. According to the
literature [26,34,35], in chlorine media, the rapid chlorination of aromatic compounds occurs by the
attack of electrogenerated Cl2/HClO/ClO-, although in many cases it is not accompanied by a rapid
TOC removal.

Another important observation is that, in both evaluated scenarios, the contribution of the
irradiation does not seem to be as relevant as expected: a slight improvement is observed in the first
stages of the process (see insets of Figure 3), but this changes when around 70% of the raw organic
has been transformed. It may be related to the competitive oxidation of reaction intermediates by
activated oxidants.

To evaluate the effect of the irradiation on the mineralization, Figure 4 shows TOC removal in a
semi-log scale of the electrolysis, photoelectrolysis and photolysis tests in both sulphate and chlorine
media. As can be seen, the slight depletion of AMP and AMX shown in Figure 3 during the photolysis
tests is not reflected by the TOC values, indicating that UV light irradiation at 254 nm is not able to
convert these organics directly to carbon dioxide, and only a soft transformation of the molecule occurs.
On the other hand, the effect of combining UV light irradiation with electrolysis does not seem to be
particularly remarkable as regards mineralization and the data of electrolysis and photoelectrolysis lie
over the same line, regardless of the supporting electrolyte used.
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Figure 4. TOC removal in semi-log scale during the electrolysis (white symbols), photoelectrolysis
(grey symbols) and photolysis (black symbols) of AMX and AMP solutions carried out in sulphate
media (a) and chlorine media (b). Initial concentrations were 100 mg L−1 of AMX and 100 mg L−1 of
AMP. Current density: 30 mA cm−2. UV light: 254 nm.

More remarkable differences are observed when the results obtained in sulphate and chlorine
media are compared, indicating that the oxidation pathways involved in each case should be different.
The electrolysis and photoelectrolysis in chlorine media show a very different profile, with three
clear regions of oxidation. Initially, a fast mineralization occurs, then the kinetic becomes slower,
and at the end of the treatment it increases abruptly. Initially, antibiotics are the majority of pollutants.
As was observed in Figure 3, they rapidly react with active chlorine species, leading to the formation
of chlorinated intermediates [44]. Additionally, the decrease of TOC concentration seems to indicate
that the depletion of any organic may occur—most likely, carboxylic or methyl groups present in the
antibiotic molecule and split up in the first stages. These short-chain organics can be further oxidized to
carbon dioxide, justifying the mineralization in this first zone. Additionally, the depletion of the initial
compound leads also to the appearance of a large amount of chlorinated aromatic intermediates [12],
whose reactivity differs from the initial AMX and AMP (chlorinated compounds generally show higher
stability to oxidation) and whose further oxidation can lead to both chlorinated and non-chlorinated
aliphatic intermediates, and not directly to carbon dioxide. This different reactivity can explain the
change observed in the kinetics in the second zone. After that, the rapid and efficient mineralization of
short-chain organics may explain the fast kinetic observed in the third zone.

The different profiles observed in sulphate and chlorine media can be related to the oxidants
formed in each case, and to the extent of the oxidation reaction from close proximity to the electrode
surface to the bulk. In both cases, ozone (Equation (3)) and hydrogen peroxide (Equation (4)) can
be formed. Thus, the differences may be related mainly to the different reactivity of persulfate
(Equation (1)) and hypochlorite (Equation (7)).

Following this, the effect of ultrasound (US) irradiation on electrolysis was evaluated. As is
known [45–49], US irradiation produces a cavitation phenomenon. This releases a large amount of
energy that promotes the generation of radicals [32] and the formation of activated oxidant species
(Equations (10–13)). Additionally, by coupling sonolysis and electrolysis, the transfer of pollutant from
the bulk to the closer to the electrode surface can also be favored.

H2O + US wave→ H + OH (10)

S2O8
−2 + US wave→ 2 (SO4

−) (11)

S2O8
−2 + OH→ 2 HSO4

− + (SO4
−) +

1
2

O2 (12)

S2O8
−2 + H→ HSO4

− + (SO4
−) (13)
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Figure 5 shows TOC removal in the semi-log scale of the combined process of sonoelectrolysis,
together with the results of the single processes of electrolysis and sonolysis. Two acoustic
frequencies were studied: 20 kHz (low-frequency ultrasound) and 10 MHz (high-frequency ultrasound).
As expected, sonolysis at both frequencies shows no mineralization. However, when it is coupled to
electrolysis, a slight improvement is observed during the first stages of the process, mainly in the case
of low-frequency US. Thus, the trend changes and kinetics of electrolysis are higher than those of the
combined processes. At low frequencies, ultrasound promotes the violent collapse of bubbles and,
consequently, a large amount of radicals is produced, favoring the activation of oxidants. This is not
observed at high frequencies [50], where the activation of persulfate is not promoted and an inhibition
of its oxidative power is observed.
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Figure 5. TOC removal in the semi-log scale during the electrolysis (�), sonoelectrolysis at 20 kHz (�),
sonoelectrolysis at 10 MHz (∆) and sonolysis at 20 kHz (�) sonolysis at 10 MHz (N) of AMX and AMP
solutions carried out in sulphate media (square symbols, 3 g L−1 of Na2SO4). Initial concentration:
100 mg L−1 of AMX and 100 mg L−1 of AMP. Current density: 30 mA cm−2.

In light of the obtained results, it can be said that although irradiation by UV light or US generates
SO4

- and Cl species, and also promotes the formation of OH, this is not reflected in an improvement
of the degradation process. Therefore, the small effect observed in this study may be indicative
of the existence of other non-irradiated activation processes. In this way, the interaction between
the oxidants (including ozone, hydrogen peroxide and oxidant formed from the oxidation of the
supporting electrolyte) that coexist in a region close to the electrode surface may be the main factor
responsible for the typically high efficiencies of conductive diamond electrolysis.

In order to clarify this point, Figure 6 compares the synergistic effect (estimated according to
Equation (14)) of the electro-irradiated treatment of AMX and AMP solutions and of other compounds
previously studied in the literature [32,51] under similar operation conditions.

SI =
kelectro−irradiated process

kelectrolysis + kirradiated process
(14)
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Figure 6. Synergistic/antagonistic effect of coupling irradiation techniques (UV light or ultrasound
(US)) to the electrolysis of different organics: a mixture of amoxicillin and ampicillin (AMX/AMP),
methylparaben (MeP), sulfomethoxazole (SMX), metroprolol (Met) and caffeine (Caf). Supporting
electrolyte: (�) sulphate and (�) chlorine.

As can be observed, the effect depends on the nature of the organic and supporting media.
As reported before, the irradiation of US and/or UV during the electrolysis process leads to an
excessive formation of radicals, which can recombine, forming less powerful and more stable oxidants,
or can decompose to oxygen (Equations (15–18)). This means that these reactions may compete with
organic oxidation and that active radicals are not available to oxidize organics. Thus, irradiation may
cause an antagonistic effect on the degradation process.

2 OH→ H2O2 (15)

OH + (SO4
−) → HSO5

− (16)

HSO5
− → HSO4

− + 0.5 O2 (17)

HSO4
− + OH→ SO4

2− + H2O (18)

This negative effect is not observed in all cases and cannot be explained by attending to mass
transfer limitations; however, it may indicate the important role of chemical reactivity on the organic
molecules. Thus, the synergism or antagonism of coupling irradiation techniques to electrochemical
oxidation is difficult to predict at present. Nevertheless, these results shed light on the importance of the
cocktail of oxidants that coexist in close proximity to the electrode surface during conductive diamond
electrolysis, which may explain the typically high efficiencies of conductive diamond electrolysis.

3. Materials and Methods

3.1. Chemicals

All chemicals were of analytical grade and used as received. Anhydrous sodium sulphate and
sodium chloride were purchased from Fluka (Bucharest, Romania), and amoxicillin (90% purity),
ampicillin (96% purity) and acetonitrile (HPLCE grade) were purchased from Sigma-Aldrich (St.
Louis, MO, USA), and sulphuric acid and hydrochloric acid were purchased from Merck (Darmstadt,
Germany). Solutions were prepared using double deionized water (Millipore Milli-Q system,
Merck Millipore, Madrid, Spain).
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3.2. Electrochemical Cell

The electrolytic essays were carried out in a single-compartment electrochemical flow cell.
Synthetic wastewater contain the electrolyte (3 g L−1 of Na2SO4 or 3.7 g L−1 of NaCl) and antibiotics
(100 mg dm−3 of each). Details of the cell and of the auxiliary equipment can be found elsewhere [52].
Irradiated experiments were carried out using the same fluid-dynamic conditions as the electrolysis
setup. For irradiated-electrolysis tests, the UV lamp (Vilber Lourmat filtered lamp, VL-215.MC, with a
power of 4 W, Vilber, Marne, France) or the ultrasound (acoustic frequency: 20 kHz (UP200S, Hielscher
Ultrasonics GmbH, Hielscher, Berlin, Germany) and 10 MHz (EPOCH 650, Olympus, Barcelona, Spain)
were immersed in the reservoir tank.

3.3. Analysis Procedures

The concentration of antibiotics and the mineralization of the solutions were monitored by
liquid chromatography at 220 nm wavelength (HPLC, Agilent1260 series, Agilent, Madrid, Spain)
and total organic carbon (TOC, Multi N/C 3100 Analytik Jena analyser, Analytik Jena AG, Jena,
Germany) analysis, respectively. For the chromatographic analysis the column used was an Elipse
Plus 35 µm C18, a mixture of acetonitrile (A) and water with phosphoric acid (pH 2) was used
as a mobile phase, the volume injection was set to 20 µL, and the temperature was fixed at 35 ◦C.
Before analysis, all samples were filtered using 0.45 µm nylon filters. The concentration of inorganic
species was determined by titration or by ion chromatography (IC, Shimadzu LC-20A (Shimadzu,
Duisburg, Germany). The IC chromatograph was equipped with a ShodexIC I-524A column; mobile
phase, 2.5 mM phthalic acid at pH 4.0; flow rate, 1 × 10−3 dm3 min−1. Hypochlorite (HClO−)
was determined by titration with 0.001 mol L−1 As2O3 in 2.0 mol L−1 NaOH. Peroxosulfate was
quantified iodometrically

4. Conclusions

The following conclusions have been drawn:

• The conductive diamond electrolysis is able to attain the complete mineralization of amoxicillin
and ampicillin solutions. The removal efficiency depends on the current density and supporting
media, with the antibiotic degradation rate and mineralization favored in the presence of chloride.

• The mineralization rate of AMX and AMP solutions during electrolysis, photoelectrolysis and
sonoelectrolysis fits well to pseudo-first order kinetics, although two or three reaction zones are
distinguished in sulphate and chloride media, respectively. This may indicate the existence of
complex mechanisms in which indirect oxidation is very important.

• The effect of irradiating UV light and/or US waves during the electrolysis of AMX and AMP is
not very relevant. This may be explained in terms of the high contribution of mediated oxidation
in the single electrolysis process or of the massive formation of radicals during electro-irradiated
processes, which recombine to form stable oxidants.
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