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Abstract: In this study, a convenient and highly efficient catalytic system for the Suzuki-Miyaura
coupling reaction was investigated under mild conditions. A combination of Pd(CH3CN)2Cl2
and pipecolinic acid showed excellent catalytic performance and afforded high turnover numbers;
turnover numbers were up to 4.9 × 105 for the coupling reaction of 4-bromobenzoic acid and
tetraphenylboron sodium. The catalytic system was also effective for the indexes of 4-bromobenzoic
acid, and high turnover numbers were obtained.
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1. Introduction

The C–C cross-coupling reaction, which is usually catalyzed by transition metals such as
palladium [1] and gold [2,3], provides a powerful method for obtaining a biaryl scaffold. Among
these catalysts, palladium is the most widely used, showing highly efficient catalytic performance.
Impressive progress has been obtained in the enhancement of the catalytic performance of palladium
in past decades [4]. However, obtaining a highly efficient catalyst under room temperature conditions
with no use of hazardous and expensive organic solvents still remains challenging. Nitrogen
ligands have been used to complex and stimulate the palladium species instead of phosphine
ligands, and excellent results have been reported [5–20]. Most nitrogen ligands are stable in air
and are easily available, which reveals their usefulness and appearance as a pertinent alternative.
Primary, secondary, and tertiary amines have served as ligands to stimulate the palladium-catalyzed
Suzuki-Miyaura coupling reaction of aryl halides and arylboronic acids [4–6]. Pd(OAC)2/DABCO
(triethylenediamine) has been reported as an efficient catalytic system for the Suzuki-Miyaura
cross-coupling of p-nitroiodobenzene and phenylboronic acid, with turnover numbers (TONs) of
up to 900,000 [7]. However, 0.01–2 mol% of Pd(OAC)2/DABCO should be used to obtain a high yield
in the coupling reaction of aryl bromides and phenylboronic acid. Recently, a ppm level of PdCl2
has been developed for the Suzuki-Miyaura coupling reaction and in this process high-pressure and
high-temperature water is necessary in order to gain a high yield [21]. Amino acid complexes show
good catalytic performance in C–C bond and C–N formation [18–20,22,23]. Previous work has shown
that Pd(NH2CH2COOH)2Cl2 can catalyze the cross-coupling reaction. In order to obtain a high yield of
the coupling products, 0.01–1 mol% Pd is necessary [23]. Hence, pipecolinic acid, a kind of amino acid,
was chosen as a ligand for the Pd-catalyzed Suzuki-Miyaura coupling reaction at room temperature in
water, and a ppm level of Pd was enough to gain a high yield.
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2. Results and Discussions

2.1. Optimization of Catalytic Conditions

The catalytic activities of Pd(CH3CN)2Cl2/L1–L3 in the Suzuki-Miyaura cross-coupling reaction
were tested (Figure 1). The coupling reaction of 4-bromobenzoic acid and tetraphenylboron sodium
was chosen as the model coupling reaction (Figure 1). The stimulation of the ligands (L1–L3) for the
Pd-catalyzed cross-coupling reaction was evaluated. When 0.002 mol% Pd(CH3CN)2Cl2 was used
solely as the catalyst, 4.9% of the corresponding coupling product was detected by high performance
liguid chromatography (HPLC) (Table 1, Entry 1). L1 was discovered as being able to trigger the
cross-coupling reaction (Table 1, Entry 4) but Pd(CH3CN)2Cl2/L2 and L3 showed poor catalytic activity
within the cross-coupling reaction. A brown precipitate was formed when Pd(CH3CN)2Cl2/L2 or
Pd(CH3CN)2Cl2/L3 was placed in water for about 20 minutes. The instability of the combination
of Pd (CH3CN)2Cl2/L2 or Pd (CH3CN)2Cl2/L3 in water may be the main reason for their poor
catalytic performance.
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Figure 1. Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of 4-bromobenzoic acid and
tetraphenylboron sodium.

Table 1. Optimization of reaction conditions.

Entry a Ligand Pd (mol%) Base Time (h) Yield e (%) TON f

1 - 0.002 Na2CO3 22 4.9 -
2 L2 0.002 Na2CO3 22 6.9 -
3 L3 0.002 Na2CO3 22 4.0 -
4 L1 0.002 Na2CO3 6 95 4.7 × 104

5 L1 0.002 NaHCO3 6 94 4.7 × 104

6 L1 0.002 NaF 6 24 1.2 × 104

7 L1 0.002 NaOH 6 84 4.2 × 104

8 L1 0.004 Na2CO3 6 99 2.5 × 104

9 L1 0.0002 Na2CO3 6 24 1.2 × 105

10 L1 0.0002 Na2CO3 22 97 4.9 × 105

11 b L1 0.0002 Na2CO3 22 8.2 -
12 c L1 0.0002 Na2CO3 22 7.5 -
13 d L1 0.0002 Na2CO3 22 <5 -

a Reaction conditions: mole ratio (ligand:Pd(CH3CN)2Cl2) = 2:1, 1.0 mmol 4-bromobenzoic acid, 0.255 mmol
tetraphenylboron sodium, 2.5 mmol base, 4 mL H2O, room temperature, ambient conditions. b Reaction conditions:
1.0 mmol 4-bromobenzoic acid, 1.2 mmol phenylboronic acid. c Reaction conditions: 1.0 mmol 4-bromobenzoic
acid, 1.2 mmol potassium phenyltrifluoroborate. d Reaction conditions: 1.0 mmol bromobenzene, 0.255 mmol
tetraphenylboron sodium. e Detected by HPLC, with benzoic acid used as an internal standard. f Turnover number
(TON): mole ratio of product with catalyst.

The next step was to optimize the reaction conditions. As known, the base plays an important
role in the Suzuki-Miyaura coupling reaction, so the effects of various inorganic bases on the
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coupling reaction were investigated first. Ninety-five percent (TON = 4.7 × 104) of the corresponding
cross-coupling product was obtained when the coupling reaction proceeded for 6 h using 0.002 mol%
Pd(CH3CN)2Cl2, 0.004 mol% L1, and 2.5 equiv of Na2CO3 in water at room temperature, whereas in
the presence of 2.5 equiv of NaF or NaOH, the yield decreased to 24% and 84%, respectively (Table 1,
Entry 4,5,7). Under similar conditions, when 2.5 equiv of NaHCO3 was used, a yield identical to that
using Na2CO3 was obtained (Table 1, Entry 6). When the amount of catalyst increased to 0.004 mol%,
an almost equivalent amount of cross-coupling product was obtained after 6 h (Table 1, Entry 8). A 24%
(TON = 1.2 × 105) yield was observed after 6 h when the amount of catalyst decreased to 0.0002 mol%
(Table 1, Entry 9), whereas, as the reaction time was extended to 22 h, a 97% (TON = 4.9 × 105) yield of
the cross-coupling product was obtained (Table 1, Entry 10). Pd(CH3CN)2Cl2/L1 showed high catalytic
activity at low catalytic loading. At low catalytic loading, the cross-coupling reaction of phenylboronic
acid or potassium phenyltrifluoroborate and 4-bromobenzoic acid could occur efficiently (Table 1, Entry
11,12). Under the same conditions, no cross-coupling product was isolated when bromobenzene reacted
with tetraphenylboron sodium catalyzed by 0.0002 mol% Pd(CH3CN)2Cl2/L1 (Table 1, Entry 13).

2.2. Evaluation of the Scope of Pd(CH3CN)2Cl2 /L1

The catalytic system Pd(CH3CN)2Cl2/L1 was also applied to various substrates (Figure 2),
the results of which are shown in Table 2. At lower catalytic loading, such as at 0.002 mol%,
Pd(CH3CN)2Cl2/L1 was exceptionally active for the Suzuki-Miyaura cross-coupling of various
brominated aromatic carboxylic acids and tetraarylboron sodium. Using this system, high yields
could be obtained for the coupling reactions of bromide aromatic carboxylic acids with electron-
withdrawing and electron-donating substituents and tetraphenylboron sodium (Table 2, Entry 1–9).
Ortho-substituted brominated aromatic carboxylic acids and tetraarylboron sodium reacted smoothly,
though the yield of the corresponding coupling compounds slightly decreased (Table 2, Entry 4,6,9).
This indicates that the steric hindrance of coupling partners had less influence on this Suzuki-Miyaura
coupling reaction. Tetraarylboron sodium bearing methyl or methoxy groups converted to the
corresponding products at high yield (Table 2, Entry 10–18).
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Table 2. The scope of the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction.

Entry a Halide Fragment Tetraarylboron Sodium Fragment Yield d (%) TON e

1
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3. Materials and Methods

3.1. Materials

Unless otherwise noted, all starting materials were obtained from commercial suppliers and
used without further purification. Brominated aromatic carboxylic acids were recrystallized from a
mixture of water and ethanol before being used. NMR (nuclear megnetic reonance) spectroscopy was
performed on a Brucker spectrometer operating at 400MHz (1H NMR) and 100MHz (13C NMR) with
DMSO-d6 as the solvent and TMS as the internal standard. The reaction mixtures were analyzed by
HPLC (FL2200, FuLi Instrument) using a C-18 column.

3.2. Methods

General Suzuki-Miyaura Cross-Coupling Procedure: a typical experimental procedure for the
Suzuki-Miyaura cross-coupling reaction of brominated aromatic carboxylic acid and tetraphenylboron
sodium catalyzed by 0.0002 mol% Pd(CNCH3)2Cl2 and 0.0004 mol% pipecolinic acid.

Firstly, Pd(CNCH3)2Cl2 (6.5 mg, 0.025 mmol) and pipecolinic acid (6.4 mg, 0.050 mmol) were
dissolved in 50 mL of ethanol and the resulting mixture stirred for 4 h till a yellow solution was
obtained. The solvent was removed under vacuum. Subsequently, 50.00 mL deionized water was
added and a yellow solution was obtained. The solution was diluted to 1.00 × 10−4 mmol/mL with
deionized water. Then, 0.20 mL Pd-catalyst solution (1.00 × 10−4 mmol/mL) was added to a mixture
of brominated aromatic carboxylic acid (1.0 mmol), tetraphenylboron sodium (0.0255 mmol), Na2CO3

(2.5 mmol), and 3.8 mL deionized water in a tube. The mixture was stirred under ambient conditions
for 22 h. After this, 5% of HCl was added till the pH < 3. The precipitate was filtered using a vacuum
pump and then dissolved in methanol and analyzed by HPLC. The isolated coupling products were
recrystallized from ethanol (50%) and analyzed via NMR spectrum. The 1H NMR and 13C NMR data
of coupling products were shown in the Supplementary Materials.

4. Conclusions

In conclusion, in this study a Pd(CH3CN)2Cl2/pipecolinic acid catalyst for the Suzuki-Miyaura
cross-coupling reaction has been reported. The catalyst exhibited highly efficient catalytic performance
for the coupling of 4-bromobenzoic acid and tetraphenylboron sodium under mild conditions with
a ppm level of Pd (0.0002 mol% Pd). Pd(CH3CN)2Cl2/pipecolinic acid proved to be efficient for the
synthesis of various substituted biaryl acids under mild conditions with 0.002 mol% Pd.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/1/86/s1,
analytical data and NMR spetrum for all compound.
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