Supplementary Materials: Effect of Electronic Conductivities of Iridium Oxide/Doped SnO₂ Oxygen-Evolving Catalysts on the Polarization Properties in Proton Exchange Membrane Water Electrolysis

Hideaki Ohno¹, Shinji Nohara^{2,3}, Katsuyoshi Kakinuma³, Makoto Uchida³, and Hiroyuki Uchida^{2,3,*}

Figure S1. TEM images and particle size distribution histograms for (a) IrO_x/Nb-SnO₂, (b) IrO_x/Ta-SnO₂, and (c) IrO_x/Sb-SnO₂ catalysts. Those for (a) IrO_x/Nb-SnO₂ and (b) IrO_x/Ta-SnO₂ are cited from our previous work [1] to compare the dispersion states and particle size distributions of IrO_x with (c) IrO_x/Sb-SnO₂, which is shown in Figure 1 of the text.

Figure S2. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images and primary particle size distribution histograms (primary particles) for conventional catalysts: (a,c) commercial IrO₂ and (b,d) commercial Pt black.

Figure S3. X-ray photoelectron spectra (XPS) of IrO_x/M -SnO₂ (M = Nb, Ta, and Sb) catalysts. Those for IrO_x/Nb -SnO₂ and IrO_x/Ta -SnO₂ are cited from our previous work [1] to compare the electronic states of IrO_x . Peaks around 64 and 60 eV were assigned to Ir 4f_{5/2} and 4f_{7/2}, respectively. These peaks were deconvoluted into symmetric Gaussian peaks corresponding to Ir^0 (metallic Ir) and Ir^{4+} (IrO₂) components.

Figure S4. Steady-state *I-E* curves of single cells with various anodes and Pt/GCB cathode at 80 °C. The current is shown as the apparent mass activity (*MA*) based on the mass of Ir loaded in the anode catalyst layers. Ultrapure water was supplied to the anode with a flow rate of 40 mL min⁻¹. The cathode compartment was purged with H₂.

Figure S5. Scanning ion microscopic (SIM) image of the cross-section at the anode for the CCM with $IrO_x/Sb-SnO_2$ catalyst. The average thickness and the standard deviation of the catalyst layer was $9.6 \pm 3.1 \ \mu m$.

Appendix S1. Calculation method for the amounts of the M-SnO₂ supports.

The amount of M-SnO₂, for IrO_x/Nb-SnO₂ as an example, was calculated as follows. The amount of Ir loading shown in Table 1 of the text was 11.3 wt%, which was quantified by ICP after dissolving the catalysts completely by the alkaline carbonate-fusion method. This value corresponds to (Ir⁰ + Ir⁴⁺) contained in the catalyst, and the value of Ir⁴⁺ (IrO₂) percentage analyzed by XPS was 16% (atom% = wt%). Then, we have two equations for the mass of Ir⁰ and Ir⁴⁺;

$$m(\mathrm{Ir}^{0}) + m(\mathrm{Ir}^{4+}) = 11.3$$
 (S-1)

$$m(\mathrm{Ir}^{4+})/[m(\mathrm{Ir}^{0}) + m(\mathrm{Ir}^{4+})] = 0.16$$
(S-2)

The contents of Ir⁰ and Ir⁴⁺ thus obtained were 9.5 wt% and 1.8 wt%, respectively. The content of IrO₂ [m(IrO₂)] can be calculated to be 2.1 wt% from the following equation:

$$m(IrO_2) = m(Ir^{4+}) \times (192.22+32)/192.22$$
 (S-3)

Hence, the content of Nb-SnO₂ in the catalyst was 88.4 wt% [=100–(9.5+2.1)]. As we described in the text, we loaded a constant amount of Ir, 5 μ g(Ir) cm⁻², on the Au substrate. By such a loading, the amount of Nb-SnO₂ loaded on the Au substrate was calculated to be 39 μ g cm⁻². In the same manner, the amounts of Ta-SnO₂ and Sb-SnO₂ were estimated to be 89.3 and 88.6 wt%, respectively, as shown in Table 1, and their amounts loaded on the Au substrate were 43 and 40 μ g cm⁻².

Appendix S2. Calculation method for specific surface area of IrO₂ (S_{IrO2}) for commercial IrO₂ powder and IrO_x nanoparticles supported on doped SnO₂ catalysts.

We explain here how to calculate S_{IrO2} for the IrO_x particles during operation as OER catalysts. Assuming that face-centered cubic (fcc) Ir particles have an ideal cubo-octahedral shape, we calculated the number of total atoms (N_{total}) in the particle with the number of atomic layers (L) together with the number of surface atoms ($N_{surface}$), in a similar manner for the case of fcc Pt or Pt alloy particles [2,3]

$$N_{\text{total}} = (10/3)L^3 - 5L^2 + (11/3)L - 1 \tag{S-4}$$

We calculated N_{total} for a spherical particle with diameter d,

$$d = a (3N_{\text{total}}/2\pi)^{1/3}$$
(S-5)

where *a* is the lattice constant for Ir (fcc structure).

Next, the number of surface atoms was calculated by the following equation:

$$N_{\text{surface}} = 10L^2 - 20L + 12 \tag{S-6}$$

For the case of IrO_x/Nb-SnO₂, as an example, with $d_{Ir} = 2$ nm, the fraction of surface atoms ($N_{surface}/N_{total}$) was calculated to be 52%. A percentage of 16% of Ir⁴⁺ in the particle, estimated by XPS, can be rationally explained if 31% of the surface atoms (= 16/52) were oxidized to IrO₂ in the as-prepared catalyst. If all of the surface atoms were oxidized to IrO₂ with an Ir metal core during

the OER, the initial particle size of 2 nm would be nearly unchanged. Thus, the value of S_{IrO2} (on an Ir metal core) was 133 m² g(Ir)⁻¹. On the other hand, if all Ir atoms in the particle were oxidized to IrO₂ during the OER, the particle size could increase from 2.0 nm to 2.6 nm while maintaining a constant total amount of Ir atoms, resulting in a value of $102 \text{ m}^2 \text{ g}(\text{Ir})^{-1}$.

In a similar manner, we calculated S_{1rO2} for $IrO_x/Ta-SnO_2$ and $IrO_x/Sb-SnO_2$. The values of S_{1rO2} for all catalysts are summarized in Table S1.

Table S1. Diameters of IrO_x nanoparticles estimated by TEM (d_{Ir}), diameter of IrO₂ (d_{IrO2}), specific surface areas of IrO₂ for the IrO₂ shell/Ir metal core model ($S_{IrO2/Ir}$) and for the completely oxidized model (S_{IrO2}).

Sample	dır (nm)	<i>d</i> 1rO2 (nm)	SIrO2/Ir [m ² g(Ir) ⁻¹]	S1rO2 [m ² g(Ir) ⁻¹]
IrOx/Nb-SnO2	2.0	2.6	133	102
IrOx/Ta-SnO2	2.2	2.8	121	95
IrOx/Sb-SnO2	2.0	2.6	133	102
commercial IrO ₂	_	25	-	24

References

- Ohno, H.; Nohara, S.; Kakinuma, K.; Uchida, M.; Miyake, A.; Deki, S.; Uchida, H. Remarkable Mass Activities for the Oxygen Evolution Reaction at Iridium Oxide Nanocatalysts Dispersed on Tin Oxides for Polymer Electrolyte Membrane Water Electrolysis. J. Electrochem. Soc. 2017, 164, F944–F947, <u>10.1149/2.1101709jes</u>.
- 2. Benfield, R.E. Mean Coordination Numbers and the Non-Metal Transition in Clusters. *J. Chem. Soc. Faraday Trans.* **1992**, *88*, 1107–1110, <u>10.1039/FT9928801107</u>.
- Okaya, K.; Yano, H.; Kakinuma, K.; Watanabe, M.; Uchida, H. Temperature Dependence of Oxygen Reduction Reaction Activity at Stabilized Pt Skin-PtCo Alloy/Graphitized Carbon Black Catalysts Prepared by a Modified Nanocapsule Method. ACS Appl. Mater. Interfaces 2012, 4, 6982–6991, <u>10.1021/am302224n</u>.