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Abstract: CuS and CuGaS2 heterojunction catalysts were used to improve hydrogen production
performance by photo splitting of methanol aqueous solution in the visible region in this study.
CuGaS2, which is a chalcogenide structure, can form structural defects to promote separation
of electrons and holes and improve visible light absorbing ability. The optimum catalytic
activity of CuGaS2 was investigated by varying the heterojunction ratio of CuGaS2 with CuS.
Physicochemical properties of CuS, CuGaS2 and CuS@CuGaS2 nanoparticles were confirmed by
X-ray diffraction, ultraviolet visible spectroscopy, high-resolution transmission electron microscopy,
scanning electron microscopy and energy dispersive X-ray spectroscopy. Compared with pure
CuS, the hydrogen production performance of CuGaS2 doped with Ga dopant was improved
by methanol photolysis, and the photoactivity of the heterogeneous CuS@CuGaS2 catalyst was
increased remarkably. Moreover, the 0.5CuS@1.5CuGaS2 catalyst produced 3250 µmol of hydrogen
through photolysis of aqueous methanol solution under 10 h UV light irradiation. According to
the intensity modulated photovoltage spectroscopy (IMVS) results, the high photoactivity of the
CuS@CuGaS2 catalyst is attributed to the inhibition of recombination between electron-hole pairs,
accelerating electron-transfer by acting as a trap site at the interface between CuGaS2 structural
defects and the heterojunction.

Keywords: hydrogen production; methanol photo-splitting; heterojunction; CuS@CuGaS2;
electron-hole recombination

1. Introduction

Copper sulfide (Cu2−xS, 0< x < 1), a non-toxic and conductive chalcogen compound, has been
continuously noted for its excellent photoelectric behavior, potential thermal/electrical properties,
and unique biomedical properties for decades, and much extensive research on Cu2−xS micro/nano
structures is still being actively conducted. In particular, micro/nanostructured Cu2−xS with
well-controlled shapes, sizes, structures and compositions have already been applied as photocatalytic
materials [1], energy conversion materials [2], biosensing materials [3], and bioimaging materials [4]
and have shown reasonable results. However, comprehensive reviews of the Cu2−xS structure in-depth
in applications are still lacking. Therefore, it is necessary to categorize new functions or orientations
of Cu2−xS-based nanocomposites and to develop and improve their essential elements for specific
applications. Many researchers have already published a number of strategies for synthesizing 0D
(dimension) , 1D, 2D, and 3D micro/nanostructures (including polyhedra) [5–7], and their efforts have
made important progress in identifying Cu2−xS micro/nanostructures. Furthermore, improved Cu2−xS
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composites with hollow structures or super-lattices could be extended to a variety of applications in
terms of performance [8]. Cu2−xS belongs to the covellite mineral group with a hexagonal crystal
structure, and belongs to the crystal group of P63/mmc. However, bond lengths and angles can be
varied in various ways depending on the oxidation state of the copper or other anion exchanges instead
of S2− present in the surroundings. For example, Cu2−xS is very different from Cu2−xO but shows a
similar structure to Cu2−xSe (klockmannite) [9]. CuS compound is paramagnetic due to the 3d9 electron
arrangement, and some studies have reported that all Cu atoms in CuS have an oxidation state of Cu+

based on XPS results [10]. However, it can be attributed to (Cu+)2Cu2+S2 with both Cu(I) and Cu(II)
in the XRD crystal structure results [11]. There are many applications of Cu2−xS as a photocatalyst,
among which Saranya et al. suggested that the morphology of CuS was influenced by the reaction
time and surfactant, and its photocatalytic activity for decolorization of methylene blue (MB) dye
under visible-light irradiation was 87% [12]. However, CuS is mainly used in combination with other
types of photocatalysts rather than alone [13,14]. On the other hand, substitution of Cu2−xS with other
metal ions instead of Cu(II) can produce a complex crystal structure with varying performance. For
example, CuInS2 and CuGaS2, which are called CIS or CIGS, are used as light absorbers in thin film
solar cells; they absorb visible light in a wide area and are stable to light, unlike Cu2−xS. In particular,
Salak et al. reported that CuM3+S2, a chalcogen compound, formed Cu defects on tetrahedrons and
facilitated the separation of electrons and holes, which could maintain photoactivity for a long time [15].
Yue et al. concluded that CuInS2 was most sensitive at 500 nm with an optimal apparent quantum
yield of 23.85% [16]. Han et al. found that with an increase in the reaction temperature, the excitonic
absorption peaks and band gap emission peaks were systematically red-shifted, thus exhibiting a
quantum confinement effect, and the CuGaS2 quantum dots showed promising visible-light-driven
photocatalytic activity during degradation of rhodamine 6G [17]. We have already confirmed in
previous studies that the CuS@CuInS2:In2S3 catalyst has the ability to decompose water to produce
hydrogen with high efficiency. Especially, it was found that the CuInS2 layer inserted between
CuS and In2S3 acts as an electron-rich interface to accelerate the reduction of water in this layer [18].
Furthermore, we have also found in previous studies that Ga has excellent performance in decomposing
methanol to produce hydrogen, and that the hydrogen reverse-spillover phenomenon of Ga has a great
influence on the removal of hydrogen from methanol [19]. Despite many previous studies, the excellent
photosensitivity of chalcogen compounds, including Cu2−xS, in multifunctional complexes is broadly
applicable to a wide range of photochemical reactions, so research on chalcogen compounds remains
of interest. In particular, if chalcogen compounds are expected to perform well in the photoreaction
for hydrogen production from water decomposition and their photostability is guaranteed for a long
time, development of the chalcogen photocatalyst will be quite a desirable area of study for the next
generation of environmentally friendly energy sources.

Therefore, in this study, we applied two particles of CuS and CuGaS2 as base catalysts
and applied them to hydrogen production from water degradation by hetero-connecting them
between two particles. The effect of the pure structure or heterojunction structure of the two
particles on photoactivity was investigated. Five types of catalysts were prepared: CuS, CuGaS2,
1.0CuS@1.0CuGaS2, 0.5CuS@1.5CuGaS2, and 1.5CuS@0.5CuGaS2. The molar ratios of the two particles
at the heterojunction were CuS:CuGaS2 = 1:1, 0.5:1.5, and 1.5:0.5, respectively, to determine which
particles most influence catalytic activity.

2. Results and Discussion

Characteristics of CuS, CuGaS2 and CuS@CuGaS2 Nanoparticles

The XRD patterns (A) and high-resolution TEM (HRTEM) images (B) are shown in Figure 1 to
confirm the crystallinity of synthesized CuS, CuGaS2 and heterojunction CuS@CuGaS2 nanoparticles.
The main XRD peaks of CuS were observed at 2θ = 27.65◦ (101), 29.25◦ (102), 31.75◦ (103), 32.77◦

(006), 38.77◦ (105), 47.89◦ (110), 52.61◦ (108), 59.24 (116), 73.87◦ (208) and 78.96◦ (213) and were
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assigned to the covellite CuS of the hexagonal crystal structure (P63 / mmc space group, JCPDS
card No. 01-078-0876) [20]. On the other hand, the peaks at 31.74◦ and 46.11◦ correspond to Cu2S
(JCPDS card no. 00-053-0522) of cubic crystal structure, meaning that the two structures are finely
mixed [21]. The XRD patterns of the CuGaS2 nanoparticle showed a CuGaS2 peak with a tetragonal
crystal structure (I-42d space group, JCPDS card no. 01-085-1574) [22], although CuS was mixed.
The main XRD peaks of CuGaS2 were assigned to 2θ = 29.11◦ (112), 33.49◦ (200), 48.63◦ (204) and
57.20◦ (312). Meanwhile, the XRD pattern of the heterojunction CuS@CuGaS2 nanoparticles was very
similar to the XRD pattern of the CuGaS2 corresponding to the shell, but there was a slight difference
in the intensity and position of the peaks as the ratio of CuS:CuGaS2 varied. In particular, in the
0.5CuS@1.5CuGaS2 sample, the peak corresponding to the (112) crystal plane migrated at a higher
angle than CuGaS2. This is probably due to the small ionic radius of Ga3+ ions compared to Cu2+ [23],
and it is expected that lattice parameters will be reduced according to Bragg’s law [24], nλ = 2d sin
(θ) (where n is the order of reflection; the wavelength of the X-rays, d = the distance between two
layers of the crystals, and θ = the angle of the incident light). It can be expected that lattice defects
are formed as compared with pure CuS or CuGaS2, since Ga2+ ions can be incorporated into the
CuS lattice or the lattice gap in the process of heterojunction. This can act as an active site of the
catalyst and enhance catalyst performance. Figure 1B) shows the high-resolution TEM (HRTEM)
(a), the selected area electron diffraction (SAED) (b), and the elemental mapping image (c) of the
heterojunction 0.5CuS@1.5CuGaS2 particles. This result not only shows the overall shape of the
particles, but also explains the intrinsic crystal structure of the particles based on the lattice parameter
values in relation to the XRD results. The 0.5CuS@1.5CuGaS2 particles are shown in polycrystalline
form as aggregates of single crystals with different orientations, which are evidenced by the lattice
images and the SAED patterns. In general, when a certain point in a SAED pattern is clearly marked, it
signifies a single crystal, and when a continuous ring is drawn, it signifies a polycrystalline. Therefore,
heterojunction 0.5CuS@1.5CuGaS2 particles appeared to be polycrystalline, and lattice patterns of
CuS and CuGaS2 were observed. We can expect CuS and CuGaS2 to be bonded as shown by the
difference in shading in the TEM image. A lattice corresponding to 0.288 nm (103 diffraction plane)
and 0.305 nm (102 diffraction plane) of CuS was observed in the bright portion, and a lattice pattern
of 0.266 nm (200 diffraction plane) and 0.188 nm (204 diffraction plane) of CuGaS2 was observed in
dark areas. In particular, the 200 diffraction plane of CuGaS2 has a very distinct lattice pattern, and a
clear diffraction spot was also observed in the SAED pattern. This is consistent with the XRD results
of the heterojunction 0.5CuS@1.5CuGaS2 particles and demonstrates that the particle is a continuous
polycrystalline structure with a ring pattern with partially defined diffraction spots. On the other
hand, the element mapping (c) results show that the Cu, Ga and S elements are uniformly distributed
in the 0.5CuS@1.5CuGaS2 particles, thus demonstrating the microstructure and composition of the
heterogeneous bonded particles.
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in the CuGaS2 sample compared to CuS. On the other hand, the heterojunction CuS@CuGaS2 sample 
inhibited the agglomeration of particles and the particle size became smaller. Figure 2B shows the 
EDS spectra of each sample and the atomic composition ratios are shown in the Table 1. 
Determination of the atomic ratio of the main metal species in the catalyst is very important because 
it relates to the density of the crystal lattice defects [25]. CuS and CuGaS2, heterojunction 
CuS@CuGaS2 particles show that Cu, Ga and S atomic components are precisely contained, and no 
other components are included. The atomic composition of pure CuS is close to the ideal 
stoichiometric mole fraction with a Cu:S ratio of 46.74:53.26. The composition of the CuGaS2 sample 
was 31.46:27.26:41.27 with a Cu:Ga:S ratio slightly different from the stoichiometric ratio, but this can 
be predicted as a limitation of the EDS surface methodology. In addition, the heterojunction 
CuS@CuGaS2 samples had a relatively low proportion of Ga. It is also expected that the difference in 
the sizes of Cu and Ga ions causes Ga to enter into the lattice of the crystal structure to reduce the 
amount of Ga exposed on the surface. Taking these factors into account, the overall molar ratio of Cu 
to Ga, S was almost quantitatively and reliably obtained. 

Figure 1. X-ray diffraction (XRD) patterns (A) and high-resolution transmission electron microscopy
(HRTEM) images (B) of prepared samples.

Figure 2 shows the scanning electron microscope (SEM) image and energy-dispersive X-ray
spectroscopy (EDS) analysis of synthesized CuS, CuGaS2, and heterojunction CuS@CuGaS2

nanoparticles, showing the composition of the components present on the surface of the particles.
Figure 2A shows a SEM image of each sample, showing significant aggregation between the particles
in the CuGaS2 sample compared to CuS. On the other hand, the heterojunction CuS@CuGaS2 sample
inhibited the agglomeration of particles and the particle size became smaller. Figure 2B shows the EDS
spectra of each sample and the atomic composition ratios are shown in the Table 1. Determination
of the atomic ratio of the main metal species in the catalyst is very important because it relates to the
density of the crystal lattice defects [25]. CuS and CuGaS2, heterojunction CuS@CuGaS2 particles
show that Cu, Ga and S atomic components are precisely contained, and no other components are
included. The atomic composition of pure CuS is close to the ideal stoichiometric mole fraction with a
Cu:S ratio of 46.74:53.26. The composition of the CuGaS2 sample was 31.46:27.26:41.27 with a Cu:Ga:S
ratio slightly different from the stoichiometric ratio, but this can be predicted as a limitation of the
EDS surface methodology. In addition, the heterojunction CuS@CuGaS2 samples had a relatively
low proportion of Ga. It is also expected that the difference in the sizes of Cu and Ga ions causes Ga
to enter into the lattice of the crystal structure to reduce the amount of Ga exposed on the surface.
Taking these factors into account, the overall molar ratio of Cu to Ga, S was almost quantitatively and
reliably obtained.
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Figure 2. The SEM images (A) and energy-dispersive X-ray spectroscopy curves (B) of the CuS, CuGaS2

and CuS@CuGaS2 catalysts.

Table 1. Atomic compositions of the CuS, CuGaS2 and CuS@CuGaS2 catalysts determined by EDS.

Catalysts/Elements Cu Ga S

CuS 46.74 - 53.26
CuGaS2 31.46 27.26 41.27

1.0CuS@1.0CuGaS2 32.99 23.06 43.95
0.5CuS@1.5CuGaS2 15.00 36.58 48.43
1.5CuS@0.5CuGaS2 41.05 18.31 40.64

Figure 3 shows the UV-visible reflectance spectra of the synthesized CuS, CuGaS2 and
heterojunction CuS@CuGaS2 nanoparticles. UV-visible absorption spectroscopy is widely used
to investigate microscopic changes caused by the chemical characteristics of the surface of the
particles [26], and the optical band gap can be calculated through absorption spectra. Figure 3A
clearly shows that the CuS, CuGaS2 and heterojunction CuS@CuGaS2 samples show absorption
spectra in the region of 300~800 nm, and CuS in particular exhibited a pronounced absorption shoulder
at about 620 nm. In the CuGaS2 and CuS@CuGaS2 samples, the apparent absorption shoulder peak
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disappeared, but the overall absorption range was similar to CuS. These results suggest that CuS,
CuGaS2 and CuS@CuGaS2 samples can be used as promising photocatalytic materials to absorb visible
light. Based on the absorption spectrum, the band gap was calculated by the Tauc equation [27],
αhν = A (hν = Eg)n. Where hυ is the photon energy, α is the absorption coefficient, A is the constant
relative material, and n is the value that depends on the transitional nature (2 is direct allowed
transition, 2/3 is direct suppressed transition, 2/3 is indirectly permissible transition). In addition,
the energy band gap can be predicted from the wavelength extrapolated from the exciton peak called
λ1/2, or the point where the end of the absorption curve meets the x axis. The band gaps of pure CuS
samples and CuGaS2 were 1.63 and 2.34 eV, respectively. This value is similar to the band gap reported
in other papers [28]. The bandgap of the heterojunction 0.5CuS@1.5CuGaS2 particles was 2.32 eV.
As CuGaS2, which has a longer band gap, is bonded to CuS, CuGaS2 first acts as a photosensitizer,
and excited electrons can be transferred to CuS. If the bandgap is long, the recombination between the
photogenerated electrons and the hole pair is delayed, and the photoactivity can be increased.
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Figure 3. UV–visible spectroscopy curves (A) and Tauc plots (B) of CuS, CuGaS2 and
CuS@CuGaS2 catalysts.

In general, the behavior of photogenerated carriers is closely related to photocatalytic activity.
The generation, separation, transport and recombination of photogenerated electron-hole pairs have
a great influence on photocatalytic activity [29]. Therefore, the photocurrent measurement and the
photoluminescence measurement results are shown in Figure 4 in order to understand the separation
efficiency and recombination characteristics of the photogenerated electrons and hole pairs. Figure 4A
shows the results of measuring the photocurrent value when the light was irradiated by controlling
the switch of the light source at intervals of 30 s. Electrons were excited by the irradiated light to
generate excited electron and hole pairs. Their separation efficiency and mobility are closely related
to the photocurrent value [30]. The photocurrent density values were increased in the order of CuS
< 1.5CuS@0.5CuGaS2 < CuGaS2 < 1.0CuS@1.0CuGaS2 < 0.5CuS@1.5CuGaS2. The pure CuS catalyst
showed only a slight tendency for photocurrent density to drop momentarily when the light was
turned off. In general photocurrent results, the photogenerated holes migrate to the catalyst surface and
are captured or trapped by the reduced species in the electrolyte, and the electrons undergo backside
contact through the catalyst, leading to an increase in the initial anodic photocurrent. Then, after
the competitive separation of the electron and hole pairs and the equilibrium of the recombination,
the photocurrent is kept constant, while the CuS temporarily decreases the photocurrent. This is
presumably due to the fact that the traced holes on the catalyst surface are not captured or trapped by
the reduced species in the electrolyte, but instead are competitively recombined with the electrons in
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the conduction band of the catalyst [31]. On the other hand, the photocurrent density of CuGaS2 and
heterojunction CuS@CuGaS2 catalysts was not only increased, but also showed excellent stability and
reliability. It is believed that the addition of the Ga dopant induces more exciton formation and that
structural or surface defects caused by heterojunction act as capture sites, or accelerate electron-transfer,
resulting in more efficient photogenerated charge separation.
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The transfer process of the photogenerated charge carrier is closely related to photoluminescence,
and the photoluminescence measurement results are shown in Figure 4B. The position and intensity
of the emission peak of photoluminescence (PL) differs depending on the kind of the catalyst and
the vacancy [32]. Generally, as the intensity is increased, the recombination of the photogenerated
electron and the hole pair is promoted and the photocatalytic activity is decreased [33]. When an
excitation wavelength of 300 nm was irradiated, an emission peak was observed at about 420 nm
in all of the CuS, CuGaS2 and heterojunction CuS@CuGaS2 nanoparticles. Especially, when Ga was
added, the photoluminescence peak intensity of CuGaS2 and the heterogeneous CuS@CuGaS2 catalyst
was slightly shifted to the long wavelength side. As the number of defect lattices generated in the
Ga doping and heterojunction process increases, the electron trap site increases, which results in
suppression of the recombination of photogenerated electrons and hole pairs. On the other hand,
CuGaS2 and heterojunction CuS@CuGaS2 catalysts to which Ga was added, in comparison with pure
CuS, had new emission peaks near 400 nm and 480 nm. According to Mehmood et al. [34], the blue
emission peak at around 400 nm is due to a high energy defect due to the dopant. In addition, the
electrons trapped by the dopant cannot generate excitons because they are bound by surface oxygen
defects and other defects, thereby reducing the overall PL intensity. The blue-green emission peak
at about 480 nm corresponds to the radiative transition of an electron to the deep donor level of the
metal interstitials to an acceptor level of neutral Vmetal [35]. In contrast to photocurrent measurement,
the photoluminescence intensity decreased in the order of CuS > 1.5CuS@0.5CuGaS2 > CuGaS2 >
1.0CuS@1.0CuGaS2 > 0.5CuS@1.5CuGaS2. As a result, the heterojunction 0.5CuS@1.5CuGaS2 catalyst
showed the lowest photoluminescence intensity, and the Ga doping and heterojunction structure can
play an important role in increasing the light efficiency by slowing the recombination between exciton
and hole pairs the most.

Based on the results of photoluminescence measurements, further intensity modulated
photovoltage spectroscopy (IMVS) measurements were performed to compare the excited electron
recombination lifetime for CuS, CuGaS2 and heterojunction CuS@CuGaS2 catalysts, and the results
are shown in Figure 5A. IMVS is a useful method to study lifetime of electrons, which relates to
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the electron recombination process [36]. The IMVS plot (A) of all samples showed a semicircular
shape, and the larger the size of the semicircle in the IMVS results, the longer the recombination
lifetime [37]. The electron recombination lifetime (B) was calculated from the IMVS plot using the
equation [38] sr = 1/2 πfmin , where fmin is the frequency of the minimum imaginary component of
the plot. As with the results of the photoluminescence measurement, the electron recombination
lifetime increased in the order of: CuS < CuGaS2 < CuS@CuGaS2. The increased IMVS electron lifetime
indicates that the residence time at the electron trap site increases. Figure 5B shows that CuGaS2

increases the recombination lifetime due to the effect of Ga dopant compared to CuS, but shows the
longest recombination life when the two catalysts are hetero-bonded. These results indicate that defects
or catalyst surfaces formed during the heterojunction process generate more trap sites, and that the
electron recombination lifetime is accelerated while accelerating electron-transfer, which may exert an
excellent photocatalytic activity.
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XPS was measured to investigate the chemical states of Cu, Ga and S ions in the surface state of
the heterojunction 0.5CuS@1.5CuGaS2 sample. The results are shown in Figure 6. In Cu atomic spectra,
peaks corresponding to Cu 2p3/2 and 2p1/2 were observed at 934.27 and 953.71 eV. A typical satellite
peak of the Cu2+ oxidation state was observed at 942.78 and 963.06 eV, except for these two distinct
peaks, indicating a defect in Cu2+. This implies a vacancy in the surface state that occurs in vacancies
or 0.5CuS@1.5CuGaS2 heterojunction processes in skeletal distortions due to ion size differences due
to Ga addition [39]. In the Ga atomic spectrum, peaks corresponding to 2p3/2 and 2p1/2 were observed
at 1118.87 and 1145.80 eV, which corresponds to the Ga-S bond. On the other hand, three fitting curves
were separated in the S atomic spectrum. The peak at low binding energy (162.00 eV) corresponds to
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the Cu-S bond, and the peak at the high binding energy (165.28 eV) corresponds to the Ga-S bond [40].
Furthermore, the intermediate peak observed near 163.74 eV corresponds to sulfur vacancy, which is
attributed to sulfur defects formed at the CuGaS2 or heterojunction interface [41]. These XPS results
demonstrate the presence of structural defects on the heterojunction 0.5CuS@1.5CuGaS2 catalyst
surface and predict that the site can act as a reactive site.
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Figure 7 summarizes the evolution of hydrogen from the photo splitting of aqueous methanol
solution to CuS, CuGaS2 and CuS@CuGaS2 catalysts. Figure 7A shows the amount of hydrogen
generated under 365 nm UV light source conditions of the catalyst. The pure CuS catalyst showed little
hydrogen evolution even after 10 h of reaction. On the other hand, the amount of hydrogen generation
in the CuGaS2 catalyst was remarkably increased, and the amount of hydrogen produced after the
reaction for 10 h reached 3000 µmol. In particular, the CuS@CuGaS2 and 0.5CuS@1.5CuGaS2 catalysts
increased the amount of hydrogen generation further, reaching 3100 and 3250 µmol, respectively.
Meanwhile, the heterojunction 1.5CuS@0.5CuGaS2 catalyst with a high CuS ratio produced less
hydrogen than CuGaS2. This is considered to be due to the fact that the portion exposed on the surface
of the catalyst has a large amount of CuS and is less influenced by CuGaS2. According to the previous
studies [42], the photo splitting process of methanol aqueous solution follows the following reaction:

CH3OH + H2O→ CO2 + 6H+ + 6e− (1)

6H+ + 6e− → 3H2 (2)

CH3OH + H2O→ CO2 + 3H2 (3)

According to the above photolytic decomposition method of methanol, hydrogen and carbon
dioxide are produced, but in this study, carbon dioxide was not observed because it exists as a CO2 ion
in an aqueous solution. In addition, photolysis of methanol aqueous solution was further performed
using a 150 W Xe lamp to confirm the catalytic activity in the visible region. The amount of hydrogen
produced was reduced by about 1/20 compared to the UV light source, and the 0.5CuS@1.5CuGaS2

catalyst, which was heterogeneously bonded to the CuGaS2 catalyst, produced about 200 µmol of
hydrogen. From these results, we have confirmed that CuGaS2 and the heterogeneous CuS@CuGaS2

catalyst exhibit optical activity even in the visible region, albeit in a small amount compared to UV
light sources.

From these results, we proposed an improved photocatalytic decomposition of aqueous solution
of CuS@CuGaS2 catalyst as shown in Scheme 1. The valence band, conduction band, and band gap
values of CuS [18] and CuGaS2 [43] have already been reported in other studies and based on this,
energy potential diagrams are shown together. In the heterojunction CuS@CuGaS2, the band gap of
CuGaS2 contains CuS, and CuGaS2 first acts as a light-absorbing agent. Electrons are excited from
the valence band to the conduction band by light irradiation, and electrons generated from CuGaS2

can move to the conduction band of the adjacent CuS. This transfer is thermodynamically favorable
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by band gap alignment, and the photogenerated electrons react with H+ to produce H2. At this
time, S2−/Sx

2− , which is a sacrifice material of the metal sulfide, captures holes by the following
equation [44], and suppresses recombination between electron-hole pairs.

(1) 2 S2− + 2 h+ → S2
2−

(2) S2− + 2h+ → S
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In addition, structural defects of the CuGaS2 catalyst caused by the interface between the
heterojunction CuS@CuGaS2 catalyst and the GaGaS2 catalyst may act as a trap site to accelerate
hole transfer and prolong the electron lifetime. In CuGaS2 structure, free electrons are gathered
around Ga3+ for charge balance based on CuS structure, and sulfur vacancies due to structural
defects are formed. These sites provide a place where the reactants can be adsorbed better, resulting
in more products, and ultimately an improvement in photocatalytic activity. Moreover, structural
defects at the CuS@CuGaS2 catalyst interface form quasi-continuous energy levels and reduce ohmic
contact to induce ohmic contact [28]. This contact recombines the holes formed in VB of CuS and
the excited electrons in CB of CuGaS2, which ultimately promotes the efficiency of photocatalytic
activity by promoting the separation efficiency of the photogenerated charge pair in the heterojunction
CuS@CuGaS2 complex catalyst.

3. Experimental

3.1. Preparation of CuS, CuGaS2 and CuS@CuGaS2 Nanoparticles

CuS and CuGaS2 nanoparticles were prepared using a typical sol-gel synthesis method [45].
Copper (II) nitrate trihydrate (Cu(NO3)2·3H2O, 99.0%, Junsei Chemical, Tokyo, Japan), Gallium (III)
nitrate hydrate (Ga(NO3)3·xH2O, 99.9%, Alfa Aesar, Tewksbury, MA, USA) and Thiourea (CH4N2S,
98.0%, Junsei Chemical, Tokyo, Japan) were used as starting materials for Cu, Ga and S, respectively.
First, in order to synthesize CuS, Cu(NO3)2·3H2O and CH4N2S were dissolved in ethylene glycol
at a molar ratio of 1:2, mixed well and aged at 180 ◦C for 8 h. The resulting powder was treated
at 400 ◦C for 4 h under an argon atmosphere to obtain black CuS nanoparticles. In the synthesis of
CuGaS2 particles, only the molar ratio of Cu(NO3)2·3H2O, Ga(NO3)3·xH2O and CH4N2S was changed
to 1:1.25:4 during the synthesis of CuS, respectively.

On the other hand, heterogeneous CuS@CuGaS2 nanoparticles were obtained by the impregnation
method [46] using prepared CuS and CuGaS2. The synthesis procedure was as follows. The amounts
of CuS and CuGaS2 added were different. CuS was added to ethanol, and the mixture was stirred
for 2 h, then CuGaS2 was added and stirred sufficiently. The homogeneously stirred solution was
separated into powdery samples by centrifugation and dried at 80 ◦C for 24 h. Thereafter, the resultant
was again annealed at 200 ◦C for 2 h in order to remove impurities and increase the bonding strength,
finally obtaining a heterogeneous CuS@CuGaS2 catalyst.

3.2. Characterization of CuS, CuGaS2 and CuS@CuGaS2 Nanoparticles

X-ray diffraction (XRD, MPD, PANalytical, Almelo, The Netherlands) was used to analyze
the crystal structure of the prepared CuS, CuGaS2 and heterojuntion CuS@CuGaS2 nanoparticles.
XRD was measured at a 2θ angle of 20–100◦ using nickel-filtered CuKα (λ = 1.5056 Å) radiation (40 kV,
30 mA). The shape and size of the particles were confirmed using high-resolution transmission electron
microscopy (TEM, H-7600, Hitachi, Tokyo, Japan) and scanning electron microscopy (SEM, S-4100,
Hitachi, Tokyo, Japan). In addition, energy-dispersive X-ray spectroscope (EDS, EX-250, Horiba, Kyoto,
Japan) analysis was used to identify the atomic composition of CuS, CuGaS2, and heterogeneous
CuS@CuGaS2 nanoparticles.

The diffuse reflection spectra of the particles were obtained using a UV-Vis spectrophotometer
(Neosys-2000, SCINCO, Daejeon, Korea). The recombination tendency between the photogenerated
electron-hole pair (e−/h+) of the catalyst was determined using a photoluminescence spectroscopy
(PL, FS-2, SCINCO, Daejeon, Korea) equipped with a 150 W continuous Xenon lamp light source.

In addition, photocurrent and intensity modulated photovoltage spectroscopy (IMVS)
measurements were taken with a two-electrode system to confirm the behavior of the photogenerated
charge carrier. The catalyst was coated on fluorine doped tin oxide (FTO) glass to form a cell, and a
platinum wire was used as a counter electrode. The catalyst coated on the FTO glass with a certain unit
area was used as the working electrode and photocurrent was measured by irradiating light at intervals
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of 30 s. The IMVS measurement was also performed using a visible light source in a two-electrode
system, and the recombination lifetime of electrons was confirmed through the measurement.

3.3. Hydrogen Production by Photo Splitting of Methanol Aqueous Solution Using CuS, CuGaS2 and
Heterojunction CuS@CuGaS2 Catalyst

The photocatalytic decomposition of methanol aqueous solution was carried out using a liquid
photoreactor prepared in our laboratory, which was reported in previous work [47]. First, the
photocatalytic decomposition of methanol aqueous solution using a UV light source was performed
using a pyrex reactor. 1.0 L of a mixed solution of 500 mL of methanol and 500 mL of distilled water
was put into the reactor, and 0.5 g of the synthesized CuS, CuGaS2 and CuS@CuGaS2 powder was
added. Light was irradiated using a UV-lamp (3 × 6 cm−2 = 18 W cm−2, length 30 cm, diameter
2.0 cm, Shinan, Pochon, Korea) at a wavelength of 365 nm and the reaction was performed for a
total of 10 h. The photocatalytic decomposition of methanol aqueous solution using a visible light
source was performed in a quartz reactor using a 150 W Xe lamp. The resulting gas was analyzed
by gas chromatography (GC, DS7200, Donam Company, Gwangju, Korea) equipped with a thermal
conductivity detector (TCD). The following GC conditions were used: TCD detector, Carboxen-1000
column (Bruker, Billerica, MA, USA), and the injection, oven and detector temperatures of 423, 393
and 473 K, respectively.

4. Conclusions

We have synthesized CuS, CuGaS2, and heterojunction CuS@CuGaS2 catalysts for hydrogen
production through methanol aqueous photo splitting. The interface between the heterojunction
CuS@CuGaS2 catalyst and the structural defect of CuGaS2 formed by the addition of Ga3+ to CuS acted
as a trap site. This trap site accelerates the electron-transfer, indicating a high photocurrent density
value in the photocurrent results and excellent charge separation efficiency. In addition, compared
to pure CuS and CuGaS2, as shown by photoluminescence and IMVS measurements, recombination
between the excited electron-hole pairs in the heterojunction catalyst was suppressed, resulting in
higher electron lifetime. As a result, the heterojunction CuS@CuGaS2 catalyst produced a significant
amount of hydrogen gas, up to 3250 and 200 µmol, through photo splitting of aqueous methanol
solution under UV and visible light irradiation, showing a significant increase in photocatalytic activity.
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