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Abstract: Mayenite (Ca12Al14O33) was synthesized by a novel route based on the use of polymethyl
methacrylate (PMMA) as a soft templating agent. The material was tested for the total oxidation of
trichloroethylene in the gas phase and the catalytic performance was analysed when using different
initial amounts of PMMA in the catalyst synthesis. The results were compared with those obtained
with a mayenite synthetized by a classical hydrothermal method. The highest activity in terms
of TCE conversion was achieved in the presence of mayenite prepared using 10% w/w of PMMA;
its activity was also higher than that of the hydrothermal mayenite. The surface area and the number
of superoxide anions (O2

−) seem to be the main properties determining the catalytic activity of
the material.
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1. Introduction

Mayenite (Ca12Al14O33, C12A7) is a mesoporous calcium aluminate that recently has attracted
many researchers from different fields of chemistry, with applications ranging from passive sampling
to steam reforming [1–6]. The physical properties of mayenite are correlated to its crystalline
structure. In particular, Ca12Al14O33 presents a cubic structure that may be described as a network
of interconnected cages with a positive electric charge per unit cell, (I-43d with lattice parameters,
a = 11.989 Å, α = β = γ = 90, Z = 2), expressed as [Ca24Al28O64]4+. The electroneutrality condition
is fulfilled by the presence of two oxide ions, O2− (free oxygen), trapped in the cages [6]. The high
mobility of the free oxygen at high temperatures is a peculiar property of the mayenite exploited for
many applications, including hydrogen storage, catalysis, fuel cells, oxidation of organic molecules,
and electron conduction [7–13].

Among all the different routes proposed to synthesize mayenite, a solid-state reaction between
CaCO3 and Al2O3 (1200/1350 ◦C, 24/48 h) is the first and the most commonly used [14].
The as-obtained mayenite generally shows a very low surface area (~1 m2/g) and a low porosity
(pore volume ~0.01 cm3/g). Wet chemistry routes have been recently developed to synthesize
mayenite with improved physicochemical properties in terms of porosity, surface area, and number
of O2

− reactive species. In this scenario, the citrate sol-gel method was proposed by Ude et al. [15],
wherein highly porous mayenite was obtained using Ca(NO3)2·4H2O, Al(NO3)3·9H2O and citric
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acid as starting materials. Furthermore, Li and co-workers [16] described a new synthetic
method, namely hydrothermal, that allowed the production of mayenite with a high porosity
(pore volume ≈ 0.1 cm3/g) and surface area (>20 m2/g), exploiting lower calcination temperatures
(about 600 ◦C). Catalyst’s surface area is an important parameter for oxidative processes of organic
compounds in heterogeneous catalysis, as demonstrated, for example, by Solsona et al. in the
decomposition of propane on CuO-CeO2-based catalysts [17]. Solsona and coworkers employed
PMMA as a soft templating agent during catalyst preparation for increasing their surface area,
thus improving the oxidation yield of propane [17]. In a previous work, we reported the influence of
the synthesis method on mayenite activity for the trichloroethylene (TCE) oxidation [18]. In particular,
hydrothermal, ceramic, and sol-gel routes were employed for the synthesis of the mayenite and we
found that the hydrothermal method yielded the material with the best catalytic performances due to
an optimum combination of surface area and redox properties.

Nevertheless, the surface area of the material is still quite low and it is expected that an increase
of this parameter will result in a better activity of the material. In this work, mayenite was prepared
through a novel synthetic route based on the use of different amounts of PMMA (10–20% w/w),
with the aim of improving the physico-chemical properties of the catalyst. The performance of the
synthesized catalysts was then evaluated for the oxidation of TCE in the gas phase, the latter chosen
as a probe for chlorinated volatile organic pollutants [19]. Light-off curves showed that mayenite
synthesized using 10% w/w PMMA was the most effective in the TCE oxidation reaction. Catalysts
were characterized by means of XRD, BET, and Raman techniques to define the structure, the surface
area, and the presence of the free oxygen, respectively.

2. Results and Discussion

Figure 1 reports the XRD pattern of mayenite prepared using 10% w/w of PMMA during the
synthesis (mayenite 10), while patterns of the other materials are reported in the Supporting Materials
(Figure S3). Together with the major phase, mayenite (Ca12Al14O33, ∆), an additional phase of calcite
(CaCO3, ) was detected. The formation of this phase was most probably a consequence of the reaction
between the CO2 produced by the template combustion and unreacted CaO [6], as it occurs with the
Ca-based materials used for carbon dioxide absorption [20,21]. CaCO3 amount was quantified as
~10 wt % by thermogravimetric analyses (see Figure S2 in the Supporting Materials). A similar pattern
was obtained for Mayenite 20.
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The textural properties of the synthesized catalysts are reported in Table 1. Pure mayenite
(mayenite) prepared in the absence of PMMA showed a BET surface area of 35.5 m2/g in line with
data reported for hydrothermal synthesis of mayenite [16]. Mayenite synthesized with 10% w/w of
PMMA (Mayenite 10) showed the highest BET surface area, whilst increasing the template agent by
other 10% (mayenite 20) resulted in a BET decrease from 47.1 to 41.9 m2/g. The increase of the surface
area was accompanied by a decrease of the total porosity of the material, as also evidenced by FESEM
images reported in the Supporting Materials (Figure S5).

Table 1. BET surface area of the different synthesized catalysts.

Catalyst BET Surface Area (m2/g) Total Pore Volume (cm3/g) Pore Diameter (nm)

Mayenite 35.5 0.252 11.88
Mayenite 10 47.1 0.183 8.98
Mayenite 20 41.9 0.183 9.00

The presence of free oxygen was investigated by means of Raman spectroscopy on the sample
with the highest surface area and compared with pure mayenite. Both spectra (Figure 2) showed
the presence of characteristic superoxide anions (O2

−), the catalytic active species of mayenite for
oxidation reactions [7,22,23], at a frequency of 1085 cm−1 [24]. Considering that both materials have
the same chemical composition and hence they are optically similar, a rough comparison of the signals
corresponding to superoxide anions showed that the presence of PMMA during the catalyst synthesis
increased the number of free oxygens trapped into the mayenite structure, thus potentially enhancing
its catalytic activity.
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Figure 2. Raman spectra of mayenite (black) and mayenite 10 (red) catalysts.

The performances of the synthesized catalysts were evaluated by monitoring the trichloroethylene
conversion as a function of the temperature (light-off curve). Figure 3 reports the conversion curve for
mayenite 10 and 20 in comparison with mayenite used as the reference material [25].
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Although there was not a significant improvement of the activity of mayenite 10 compared with
the mayenite prepared without PPMA at temperatures higher than 550 ◦C, the activity of mayenite
10 at lower temperatures was much better than that of mayenite. In fact, at T = 200 ◦C, mayenite
10 oxidized (8% of conversion) TCE whereas mayenite and mayenite 20 were still inactive. T50 and
T90 were lower for mayenite 10 (350 ◦C and 440 ◦C, respectively), whilst for mayenite and mayenite
20, they were 350/490 ◦C and 370/450 ◦C, respectively. These results are very interesting because
industry needs active catalysts at low temperatures to minimize operational costs. The improved
activity of mayenite 10 could be related to the surface area and O2

− concentration. Thus, to prepare
an active mayenite-based catalyst for the TCE oxidation, an optimum combination of surface area
and oxidative properties was required. Blank experiments were performed without catalyst and
no significant conversion (<10%) was observed in the temperature interval of 150–550 ◦C. Products’
distribution analyses showed that the main TCE oxidation products were CO2, CO, and HCl, in line
with previous studies [18,26–28].

A stability test was also performed to compare the activity of mayenite 10 and mayenite (Figure 4).
Initially, mayenite 10 was more active and stable than mayenite, whereas a moderate deactivation

process occurred after 2 h of reaction for both catalysts. To clarify the deactivation mechanism, XRD
patterns of mayenite 10 were recorded before and after the catalytic oxidation (see Figure S4 Supporting
Materials). The results revealed the disappearance of the CaCO3 phase; then, we can speculate that
calcium carbonate impurities could be responsible for the initial enhancement of mayenite 10 stability
due to the reaction between CaCO3 and in-situ produced HCl (TCE oxidation product), with the
formation of a well dispersed CaCl2 phase [18,25,27]. It is difficult to provide here a thorough
characterization of this neutralization process, however, calcite formation was strictly related with the
presence of the templating agent during mayenite synthesis and this basic phase easily reacted with
the acid molecule of HCl; in contrast, in materials synthetized with different methods (hydrothermal,
ceramic, and sol-gel [18]), and after the disappearance of CaCO3 in mayenite 10, HCl generated during
the TCE oxidation could only react with the anionic oxygen species (Ox

x−), causing the formation of
chloromayenite (brearleyite), with the consequent deactivation of the catalyst [18,25,27].
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3. Materials and Methods

3.1. Catalyst Preparation

Hydrothermal mayenite was prepared by following the method described by Li et al. [16]: 41.5 g of
Ca(OH)2 (95% from Sigma-Aldrich, St. Louis, MO, USA; no. 239232) and 50.7 g of Al(OH)3 (95% from
Sigma-Aldrich, no. 239186) were mixed in 1 L of milli-q water and ground to a powder under magnetic
stirring for 4 h at room temperature. Afterwards, the mixture was placed in a stainless-steel autoclave
and introduced in an oven pre-heated at 150 ◦C for 5 h. The obtained solid was filtrated and dried at
120 ◦C overnight (12 h), crushed into fine powder, and placed into a furnace at 600 ◦C in air for 4 h.
The material was cooled at room temperature in a dry environment.

PMMA-based mayenite was synthesized by following a similar procedure, but 10 and 20 wt % of
polymer (ESPRIX technologies, Sarasota, FL, USA; MX-series 150) were mixed with a stoichiometric
amount of Ca(OH)2 (41.5 g) and Al(OH)3 (50.7 g), stirred in 1L of distilled water, and ground to
a powder. Then, they were placed in a teflon-lined stainless-steel autoclave at 150 ◦C for 5 h. The solid
was recovered by filtration and dried at 120 ◦C overnight (12 h). The following calcination ramp was
applied: (1) 2.6 ◦C/min from room temperature up to 500 ◦C in N2 atmosphere; (2) 500 ◦C for 4 h in
N2 to remove PMMA (see also Figure S1 in the Supporting Materials); (3) 1.7 ◦C/min from 500 ◦C to
600 ◦C in air; (4) 600 ◦C in air for 4 h to form the mayenite phase. The material was cooled at room
temperature in a dry environment. The water content of the material was estimated to be around 5%
by TGA measurements (see Supporting Materials for details).

Materials were named as mayenite X, where X corresponds to the amount of PMMA added
during the synthesis, i.e., 10 (10% w/w of PMMA) and 20 (20% w/w of PMMA).

3.2. Characterization of Mayenite Catalyst

X-ray diffraction patterns were obtained by using an X’Pert-Pro diffractometer (Panalytical,
Amsterdam, The Netherlands) equipped with an X’Celerator detector and using Ni-filtered Cu K
radiation. The step size was 0.04◦ with a step time of 35 s. The BET surface areas were determined
on an ASAP 2010 instrument (Micromeritics Corp., Norcross, GA, USA) using nitrogen as the
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probe molecule at liquid nitrogen temperature (−196 ◦C). The samples (300 mg) were pretreated
with vacuum at 400 ◦C and the BET method was used to calculate the surface area. The Raman
spectroscopy experiments were carried out using a Horiba Jobin Yvon-Labram HR UV-visible-NIR
Raman Spectrometer (Kyoto, Japan), using a 514 nm wavelength laser for excitation. Spectra were
recorded averaging 10 scans obtained in different points of the sample at a resolution of 2 cm−1.
The microstructure of the catalysts, deposited as a thin monolayer, was investigated using a field
emission scanning electron microscopy (FESEM) (Zeiss Ultra 55, Carl Zeiss, Oberkochen, Germany).
TGA measurements were carried out using a thermogravimetric analyser (TA instruments, TGA Q500,
New Castle, PA, USA) on 5 mg samples, over a temperature range from 25 ◦C to 900 ◦C, at a heating
rate of 10 ◦C/min, under an inert atmosphere of nitrogen.

3.3. TCE Oxidation Reactions

Experiments were carried out in a home-made quartz fixed bed reactor, increasing the reaction
temperature from 150 to 550 ◦C in steps of 50 ◦C. Silicon carbide (> 0.6 mm, Sigma-Aldrich) was placed
above the catalyst (0.7 g) located on a quartz plug in the middle of the reactor. The inlet gas, composed
by 1000 ppm of trichloroethylene (TCE, ACS reagent, >99.5%; Sigma-Aldrich, St. Louis, MO, USA) and
synthetic air (N2/O2 80:20), was introduced into the reactor at 400 mL/min (Gas Hourly Space Velocity,
GHSV = 12.000 h−1) [28]. Water was injected in the inlet gases with a syringe pump, to obtain 1.7%
v/v of water vapour in the gas flow. All details about the analytical procedures to evaluate the product
distribution have been described in our previous work [18,25]. Blank experiments were performed at
the same operative conditions without using catalyst, to assess the contribution of thermal oxidation.
All measurements were repeated three times to assure the reproducibility of the results. In all the
experiments, the error analysis of triplicate results was under 5%.

4. Conclusions

In this work, mayenite catalyst was prepared by a novel synthetic route based on the use of
PMMA as a soft templating agent and tested for the total oxidation of TCE. We have shown that by
using this new method, an increase of the catalyst surface area of 35% can be obtained, increasing also
the number of active sites (anionic oxygen). The increase of the surface area is essential to improve the
catalytic activity of bulk materials as mayenite and we have shown that this material (mayenite 10)
presented the best performance in terms of T10 and T90 (350 ◦C and 440 ◦C, respectively). The good
performance of mayenite 10 was related to an optimum balance between the surface area and the
amount of superoxide anions. TCE was totally converted in less harmful products, such as CO2 and
HCl, confirming our previous studies about products’ distribution. Mayenite 10 showed also a slightly
better stability with respect to mayenite, during the first hour of reaction. This material is then a cheap
and effective VOC (Volatile Organic Compound) oxidation catalyst that can partially trap the HCl
produced during the reaction.

From this work, we can conclude that it is possible to improve the catalytic properties of mayenite by
modifying the synthesis method, thus obtaining a material with a higher surface area. This improvement
can be exploited not only for the TCE oxidation, but also for other catalytic processes where mayenite
is not generally employed because of its low surface area.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/1/27/s1,
Figure S1: Thermogram of pure PMMA; Figure S2: Thermogram of mayenite 10; Figure S3: XRD patterns of tested
catalysts; Figure S4: XRD patterns of mayenite 10 before and after stability test; Figure S5: FESEM images of the
mayenite and mayenite 10.
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