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Abstract: The biotransformation of antcin K, a major ergostane triterpenoid from the fruiting bodies
of Antrodia cinnamomea, by Bacillus subtilis (B. subtilis) ATCC 6633 was studied. Four metabolites from
the biotransformation were isolated with preparative high-performance liquid chromatography
and identified as 25S-antcin K 26-O-β-glucoside, 25R-antcin K 26-O-β-glucoside, 25S-antcin K
26-O-β-(6′-O-succinyl)-glucoside, and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside with mass
and nuclear magnetic resonance spectral analysis. By using either 25S-antcin K 26-O-β-glucoside
or 25R-antcin K 26-O-β-glucoside as the biotransformation precursor, it was proven that
25S-antcin K 26-O-β-(6′-O-succinyl)-glucoside and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside
were biotransformed from 25S-antcin K 26-O-β-glucoside and 25R-antcin K 26-O-β-glucoside,
respectively. To the best of our knowledge, this is the first study on the glycosylation of triterpenoids
from A. cinnamomea, and the first time the succinylation of triterpenoid glycosides by microorganisms
has been found. In addition, all four antcin K glucoside derivatives are new compounds.

Keywords: Antrodia cinnamomea; antcin K; Bacillus subtilis; biotransformation; glycosylation

1. Introduction

Antrodia cinnamomea is a well-known endemic Taiwanese medicinal mushroom, which has been
used for the prevention or treatment of numerous diseases, including liver diseases, food and drug
intoxication, diarrhea, abdominal pain, hypertension, itchy skin, and tumorigenic diseases [1]. Many of
the constituents have been isolated from A. cinnamomea, including benzenoids, lignans, benzoquinones,
polysaccharides, and terpenoids. Polysaccharides and terpenoids are considered the major bioactive
compounds. A. cinnamomea contains two kinds of triterpenoids: lanostanes and ergostanes. Ergostanes
mainly exist in the fruiting bodies of A. cinnamomea. Until now, dozens of ergostanes have been isolated
and identified from the fruiting bodies of A. cinnamomea, and antcin K is one of the most abundant
ergostane triterpenoids [2]. The compound was first isolated by Shen et al. [3] and has been proven
to possess bioactivity, including anti-inflammatory, antidiabetic and antihyperlipidemic activities,
the induction of apoptosis of hepatoma cells, and the reduction of carcinogenesis [4–8].

Searching for new compounds is very important for drug development. In addition to synthetic
and natural sources, biotransformation offers an alternative strategy for obtaining new compounds.
Xenobiotics can be biotransformed by cells, such as microorganisms, to form new compounds.
Moreover, various modifications of the functional groups of xenobiotics during biotransformations
often dramatically affect the bioactivity of the compounds. Due to the multiple bioactivities of
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triterpenoids, many scientists have studied the biotransformations of triterpenoids to obtain new
bioactive triterpenoids from the biotransformation [9–11]. As described above, dozens of bioactive
triterpenoids have been isolated from A. cinnamomea. However, there has been little research on
the biotransformation of the triterpenoids from A. cinnamomea. Therefore, we are interested in the
biotransformation of the triterpenoids from A. cinnamomea. Although polysaccharides and terpenoids
have been identified in A. cinnamomea, interestingly, terpenoid glycosides have never been isolated
from this species [1]. Accordingly, in the present study, we investigated the microbial-catalyzed
glycosylation of triterpenoids from A. cinnamomea. The abundant ergostane triterpenoid antcin K from
A. cinnamomea was used as a precursor, and one candidate microorganism Bacillus subtilis ATCC 6633
was selected to conduct the biotransformation of antcin K. The biotransformation metabolites were
then isolated and identified.

2. Results and Discussion

2.1. Identifying Bacteria with Biotransformation Activity

A great challenge for the realization of a desired biotransformation reaction is finding the
appropriate microorganism. Three bacteria have been identified to catalyze glycosylation of
triterpenoids [12–14]. Among them, B. subtilis ATCC 6633 [12] is available from the Bioresources
Collection and Research Center (BCRC, Food Industry Research and Development Institute, Hsinchu,
Taiwan). Thus, this strain was used to study the biotransformation of antcin K in the present study.
The bacterium was then cultivated in broth with antcin K, and the fermentation broth was analyzed
using ultra-performance liquid chromatography (UPLC) to determine the ability of the strain to
biotransform antcin K.

Figure 1a,b show the UPLC analysis of 0 h and 24 h fermentation broths of the strain B. subtilis
ATCC 6633 fed with 25S-antcin K and 25R-antcin K, respectively. In Figure 1a, the precursor 25S-antcin
K appears in the initial fermentation broth (dashed curves). After 24 h of fermentation, the peak of the
precursor decreases, while two new peaks, compound (1) and compound (2) (solid curves), appear.
In Figure 1b, 25R-antcin K appears in the initial fermentation broths (dashed curves). After 24 h of
fermentation, the peak of the precursor decreases, while another two new peaks, compound (3) and
compound (4) (solid curves), appear. Moreover, the four new peaks do not appear in the fermentation
broths of the strain at 24 h in the absence of antcin K (Figure S1). The results imply that antcin K
was digested by the strain to form biotransformation metabolites, and compound (1) and compound
(2) were derived from 25S-antcin K, while compound (3) and compound (4) were derived from
25R-antcin K.
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Figure 1. Biotransformation of antcin K by B. subtilis ATCC 6633. The strain was cultivated in modified
glucose nutrient (MGN) media containing (a) 25S-antcin K or (b) 25R-antcin K. The initial (dashed
curves) and 24 h (solid curves) cultivations of the fermentation broths were analyzed with an UPLC
system equipped with an Acquity® UPLC BEH C18 column (Acquity UPLC BEH C18, 1.7 µm, 2.1 i.d.
× 100 mm, Waters, Milford, MA, USA). The UPLC operation conditions are described in Materials
and Methods.

2.2. Isolation and Identification of Biotransformation Metabolites

To resolve the chemical structures of the four metabolites, the biotransformation was scaled up,
and the four metabolites were purified with preparative high-performance liquid chromatography
(HPLC). From a 6.3-L fermentation broth containing 107 mg antcin K, 9.6 mg of compound (1), 11.3 mg
of compound (2), 6.1 mg of compound (3), and 13.7 mg of compound (4) were isolated. The chemical
structures of the four compounds were identified using spectrophotometric methods. Compound
(1) and compound (3) showed identical mass and nuclear magnetic resonance (NMR) spectrum data.
They showed an [M + H]+ ion peak at m/z: 651.66 in the electrospray ionization mass (ESI-MS)
spectrum corresponding to the molecular formula C35H54O11. Compound (2) and compound (4)
showed identical mass and NMR spectrum data. They showed an [M − H]− ion peak at m/z: 749.56
in the ESI-MS spectrum corresponding to the molecular formula C39H58O14.

A further detailed analysis of the 1H- and 13C-NMR spectra and signal assignments, aided
by distortionless enhancement by polarization transfer (DEPT), heteronuclear single quantum
coherence (HSQC), heteronuclear multiple bond connectivity (HMBC), correlation spectroscopy
(COSY), and nuclear Overhauser effect spectroscopy (NOESY) experiments, was performed to elucidate
the structure of compounds (1) to (4) (shown in Figures S2–S13 and Table S1). The 13C-NMR spectrum
of compound (1) showed, in addition to 29 signals consistent with the triterpenoid structure of antcin
K [3], six peaks in the range at δ 62–97 ppm (96.3, 74.2, 78.7, 71.1, 79.5, and 62.3 ppm) corresponding to
the presence of a glucose moiety [15]. The glucose proton signals were assigned using the H,H-COSY
experiment. The common D-configuration for glucose was assumed according to what was most
commonly encountered among the glycosides transformed by this microorganism. The anomeric
proton signal at δ 6.40 (J = 8.2 Hz) in the 1H-NMR spectrum indicated the β-configuration for the
glucopyranosyl moiety. In the HMBC experiment, the anomeric proton peak at δ 6.40 correlated with
the carboxyl group of antcin K at δ 173.7, which is the 13C-NMR signal of C-26. Thus, the glycosidic
linkage site of β-D-glucose was determined to be C-26. Therefore, compound (1)/(3) was determined
to be 25S/R-antcin K 26-O-β-glucoside.
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The 1H- and 13C-NMR spectral data of compound (2)/(4) showed compound (1)/(3) with an extra
succinyl group (13C-NMR: 174.5, 172.8, 29.5, and 29.5 ppm). The downfield shift of glucose 6-protons
(4.88 and 4.80 ppm) and 6-carbon (64.2 ppm), as well as the cross-peaks at 4.80/172.8 and 4.80/172.8
ppm in the HMBC spectrum, demonstrated the linkage of the succinyl group to the glucose 6 position
in compound (2). Based on the evidence above, compound (2)/(4) was characterized accordingly as
25S/R-antcin K 26-O-β-(6′-O-succinyl)-glucoside. This is the first report of their occurrence.

The structure and the key HMBC correlations of compounds (1)/(3) and (2)/(4) are shown in
Figure 2, and the spectroscopic data are listed in Table S1.
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Unlike many of the triterpenoid glycosides isolated from plants, such as ginsenosides from
ginseng, previously no triterpenoid glycoside had been isolated from A. cinnamomea. A possible reason
for this is that plants are autotrophs and synthesize glucose from photosynthesis, while fungi are
heterotrophs and obtain glucose from their environments. Glucose is usually not limited in plants,
however it is in fungi. Therefore, the endogenous biosynthesis pathways of triterpenoids in plants favor
the involvement of glycosylation, but not in fungi. Accordingly, developing a biotransformation system
of microbial-catalyzed glycosylation, which could expand the molecule diversity and functionality of
the unique bioactive triterpenoids from A. cinnamomea, would be interesting. Until now, all three of the
bacteria strains identified to catalyze the glycosylation of triterpenoids favor catalyzing glucosylation
at the C-28 carboxyl group of pentacyclic triterpenoids [12–14]. The structure of the precursor, antcin K,
used in the present study, contains three hydroxyl groups, C-3, C-4, and C-7, and a C-26 carboxyl group.
In the results of the present study, only the C-26 carboxyl group of antcin K was glucosylated during
the biotransformation. The results revealed that B. subtilis ATCC 6633 favors catalyzing glucosylation
at a carboxyl group site, which is consistent with those of previous studies [12–14].

2.3. Identification of the Biotransformation Process

From the structures of the four metabolites, where compound (2) and compound (4) are succinyl
derivatives of compound (1) and compound (3), respectively, it seems that compound (2) and
compound (4) were biotransformation metabolites from compound (1) and compound (3), respectively.
To resolve the biotransformation process, either compound (1) or compound (3) was used as the
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precursor to conduct the biotransformation experiments. Figure 3 shows the UPLC analysis of initial
(dash curves) and 24 h (solid curves) fermentation broths of B. subtilis ATCC 6633 in the presence
of compound (1) (Figure 3a) or compound (3) (Figure 3b). Purified compound (2) (Figure 3c) and
compound (4) (Figure 3d) were used as standards. In the results, compound (2) and compound
(4) appeared in the 24 h fermentation broth with the feeding of compound (1) and compound (3),
respectively. Thus, it was concluded that compound (2) and compound (4) were biotransformation
metabolites from compound (1) and compound (3), respectively. Figure 4 shows the biotransformation
process of antcin K by the B. subtilis ATCC 6633 strain.
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Figure 3. Biotransformation of compound (1) and compound (3) by B. subtilis ATCC 6633. The strain
was cultivated in MGN media containing compound (1) (a) and compound (3) (b). The initial (dash
curves) and 24 h (solid curves) cultivations of the fermentation broths were analyzed with a UPLC
system equipped with a Kinetex® UPLC C18 column (1.7 µm, 2.1 i.d. × 100 mm, Phenomenex
Inc., Torrance, CA, USA). Purified compound (2) (c) and compound (4) (d) were used as standards.
The UPLC operation conditions are described in Materials and Methods.

Toda et al. [16] and Park [17] reported that the Bacillus genus had succinylation activity toward
flavonoid glucosides. Toda et al. first demonstrated that soy isoflavone glucosides, inducing
daidzin and genistin, were biotransformed into 6”-succinyl glucoside forms by B. subtilis (natto)
during soybean fermentation [16]. Park et al. proved that B. subtilis (natto) and B. subtilis catalyze
6”-succinylation of soy isoflavone glucosides, daidzin and genistin, while the two strains could not
catalyze 6”-succinylation of soy isoflavone aglycon, daidzein and genistein [17]. It is reasonable
that 6-succinyl glucosides are not produced from the direct glycosylation of aglycon formed by
B. subtilis. In nature, enzyme-catalyzed glycosylation is conducted by glycosyltransferases (GTs,
EC 2.4.x.y), which transfer sugar moieties from the activated donor molecules to specific acceptor
molecules [18–20]. More than 10,000 GTs have been identified. However, no GT has been proven to
directly transfer 6-succinyl glucosides to acceptor molecules. Therefore, 6-succinyl glucosides should
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be produced from the succinylation of the corresponding glucosides. The present results demonstrating
that 25S-antcin K 26-O-β-(6′-O-succinyl)-glucoside and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside
were biotransformed from 25S-antcin K 26-O-β-glucoside and 25R-antcin K 26-O-β-glucoside,
respectively, were also consistent with the findings above. In addition, from the present results
and previous ones, B. subtilis seems to contain the enzymes necessary for catalyzing 6-succinylation
of the corresponding glucosides. However, it is unclear whether the enzymes for catalyzing soy
isoflavone glucosides and triterpenoid glucosides are the same. Moreover, B. subtilis ATCC 6633 has
been proven to biotransform glucosylation of the pentacyclic triterpenoids oleanolic acid, echinocystic
acid, and betulinic acid [12]. However, no 6′-succinyl glucoside derivatives were found in that study.
Whether the enzyme catalyzing 6′-succinylation of antcin K glucosides can catalyze those triterpenoid
glucosides is an interesting issue. Further study is needed to investigate the mechanism involved.
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3. Materials and Methods

3.1. Microorganism and Chemicals

B. subtilis ATCC 6633 (BCRC 10447) [12] was purchased from BCRC (Food Industry Research
and Development Institute, Hsinchu, Taiwan). All chemical reagents and solvents used were of high
quality and were purchased from commercially available sources.

3.2. Preparation of Antcin K

Antcin K was prepared according to the procedures in our previous study [21]. Briefly,
an ergostane-enriched fraction extracted from 100 g of dried dish-cultivated A. cinnamomea (Honest
& Humble Biotechnology Co., Ltd., New Taipei City, Taiwan) by 50% methanol was subjected to
preparative HPLC to obtain 1.2 g of antcin K. Then 13.5 and 23.7 mg of 25S- and 25R-epimers of antcin
K were further purified from 70 mg of antcin K with preparative HPLC using the reverse-phase C-18
column (Inertsil ODS-3, 10 µm, 20.0 i.d. × 250 mm) from GL Sciences Inc. (Tokyo, Japan).
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3.3. Identification Bacteria with Biotransformation Activity

B. subtilis ATCC 6633 was cultivated in a 250-mL baffled Erlenmeyer flask containing 20 mL of
a modified glucose-nutrient (MGN) medium (5 g/L of peptone, yeast extract, K2HPO4, and NaCl;
20 g/L of glucose) [13] and 17 mg/L of antcin K, 25S-antcin K, or 25-R antcin K. After cultivation at
180 rpm, 28 ◦C for 12 h or 24 h, 1 mL of the culture was then mixed with an equal volume of methanol.
The cell debris was removed by centrifugation at 10,000× g for 10 min. The supernatant from the
extracted broth was assayed with UPLC to measure the biotransformation activity.

3.4. UPLC Analysis

The UPLC system (Acquity UPLC H-Class, Waters, Milford, MA, USA) was equipped with an
analytic C18 reversed-phase column from Waters (Acquity UPLC BEH C18, 1.7 µm, 2.1 i.d. × 100 mm)
or from Phenomenex Inc. (Kinetex® C18, 1.7 µm, 2.1 i.d. × 100 mm, Phenomenex Inc., Torrance,
CA, USA). The operation conditions for UPLC analysis were modified from those in our previous
study [21], where a gradient elution using water (A) containing 1% (v/v) acetic acid and methanol (B)
with a linear gradient for 11 min with 50% to 80% B and for another 2 min with 80% to 100% B was
conducted at a flow rate of 0.2 mL/min, an injection volume of 0.2 µL, and absorbance detection at
254 nm.

3.5. Scale-Up Fermentation, Isolation, and Identification of the Biotransformation Products

The ATCC 6633 strain was cultured in a 1000 mL baffled Erlenmeyer flask containing 150 mL of
MGN medium and 17 mg/L of antcin K at 180 rpm, 28 ◦C for 24 h. A total of 42 flasks of ATCC 6633
cultivation (6.3 L) were conducted. After cultivation, the 6.3 L of fermentation broth were combined
and extracted with 1 L of butanol twice. The butanol fractions were combined and condensed under
a vacuum. The residue was then suspended in 200 mL of 50% methanol. After filtration through
a 0.2 µm nylon membrane, the suspension was injected into a preparative YoungLin HPLC system
(YL9100, YL Instrument, Gyeonggi-do, South Korea). The system was equipped with a preparative C18
reverse-phase column (Inertsil ODS-3, 10 µm, 20.0 i.d. × 250 mm). The operational conditions for the
preparative HPLC analysis were the same as those in the UPLC analysis. The elution corresponding to
the four peaks of the metabolites in the UPLC analysis were collected, concentrated under vacuum,
and then lyophilized. Finally, 9.6 mg of compound (1), 11.3 mg of compound (2), 6.9 mg of compound
(3), and 13.7 mg of compound (4) were obtained, and the structures of the compounds were confirmed
with NMR and mass spectral analysis. The mass analysis was performed on a Finnigan LCQ Duo mass
spectrometer (ThermoQuest Corp., San Jose, CA, USA) with electrospray ionization (ESI). 1H- and
13C-NMR, DEPT, HSQC, HMBC, COSY, and NOESY spectra were recorded on a Bruker AV-700 NMR
spectrometer (Bruker Corp., Billerica, MA, USA) at ambient temperature. Standard pulse sequences
and parameters were used for the NMR experiments, and all chemical shifts were reported in parts
per million (ppm, δ).

4. Conclusions

The present study demonstrated the sequential biotransformation of 25S-antcin K and 25R-antcin
K to 25S-antcin K 26-O-β-glucoside and 25R-antcin K 26-O-β-glucoside at first, and then to 25S-antcin
K 26-O-β-(6′-O-succinyl)-glucoside and 25R-antcin K 26-O-β-(6′-O-succinyl)-glucoside by B. subtilis
ATCC 6633. To the best of our knowledge, this is the first study on glycosylation of triterpenoids from
A. cinnamomea, and the first time that the succinylation of triterpenoid glycosides by microorganisms
was found. In addition, all four antcin K glucoside derivatives are new compounds.
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1H-NMR (700 MHz, Pyridine-d5) spectrum of compound (1). Figure S3: The 13C-NMR (176 MHz, Pyridine-d5)
spectrum of compound (1). Figure S4: The DEPT-90 and DEPT-135 (176 MHz, Pyridine-d5) spectra of compound
(1). Figure S5: The HSQC (700 MHz, Pyridine-d5) spectrum of compound (1). Figure S6: The HMBC (700 MHz,
Pyridine-d5) spectrum of compound (1). Figure S7: The H-H COSY (700 MHz, Pyridine-d5) spectrum of compound
(1). Figure S8: The 1H-NMR (700 MHz, Pyridine-d5) spectrum of compound (2). Figure S9: The 13C-NMR (176
MHz, Pyridine-d5) spectrum of compound (2). Figure S10: The DEPT-90 and DEPT-135 (176 MHz, Pyridine-d5)
spectra of compound (2). Figure S11: The HSQC (700 MHz, Pyridine-d5) spectrum of compound (2). Figure S12:
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