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Abstract: An in-situ dehydrating system built in a continuous flow fixed-bed bubbling reactor for
direct synthesis of dimethyl carbonate (DMC) was designed. 3A molecular sieve (MS) was selected as
the ideal dehydrating agent and the water trapping efficiency was studied. The effect of dehydrating
agent/catalyst ratio, the dehydrating temperature and pressure, as well as the space velocity on the
direct DMC synthesis catalyzed by K2O-promoted Cu–Ni was further investigated. These results
demonstrated that 3A MS could effectively dehydrate the reaction system at the optimal conditions
of 120 ◦C and 1.0 MPa with gas space velocity (GHSV) of 600 h−1, thereby greatly shifting the
reaction equilibrium toward high DMC yield. Higher DMC yield of 13% was achieved compared
with undehydrated reaction. Moreover, the catalyst can be highly stabilized by 3A MS dehydration
with stable performs over 22 h.

Keywords: alkali promoter; dimethyl carbonate; catalysis; carbon dioxide; dehydration

1. Introduction

The environment-friendly dimethyl carbonate has aroused great interest in fuel additives, polar
solvents, and methylating and carbonylating agents [1–3]. It has been produced worldwide by several
commercial methods such as ester exchange process [4,5], methanolysis of phosgene [6], and gas-phase
oxidative carbonylation of methanol [7]. Recently, some green and economic dimethyl carbonate
(DMC) synthesis routes have been studied all over the world. In these routes, DMC was directly
synthesized from CH3OH and CO2 instead of using toxic, corrosive, flammable, and explosive gases
such as phosgene, hydrogen chloride, and carbon monoxide as feedstock [8,9].

Over the last decades, improving the yield of DMC from the direct synthetic route has been mainly
focused on catalyst development and optimization of reaction conditions. A large number of examples
have been devoted to the direct synthesis of DMC from CO2 and CH3OH using organometallic
compounds [10], CeO2 [11], CeO2-ZrO2, Ce0.5Zr0.5O2, Co1.5PW12O40 [12–14], or H3PO4–V2O5

catalyst [15], modified Cu–Ni bimetallic catalyst [8,16–19], ionic liquid [20], etc. The direct synthetic
route of DMC was represented as follows:
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2CH3OH + CO2 → CH3OCOOCH3 + H2O (1)

The drawback of this strategy is the low methanol conversion, which is ascribed to the
thermodynamic limitations and/or catalyst deactivation by the water byproduct that hydrolyze
the formed DMC, the high bond energy of CO2, the reversible nature of the reaction, and the inability
to utilize physical absorption agents of water such as zeolites, CaCl2, and molecular sieves due to high
operating temperatures and pressures, but no report had addressed these problems. Since the reaction
is nonspontaneous (Equation (1)) and the reaction equilibrium is quickly established, the dehydrating
agent can enhance the yield of DMC by shifting the equilibrium toward higher DMC yields.

For batch reaction, the dehydrating additives such as trimethyl orthoacetate [21],
2,2-dimethoxypropane [22], acetonitrile [23], butylene oxide [24], and a recyclable dehydrating tube
packed with molecular sieves 3A [25] can improve the yield of DMC by shifting the equilibrium.
However, the economy of this process, the activity of the catalyst, the separation of product and
by-product become the new subjects for further research. For continuous flow reaction, these obstacles
were evidently cleared away. Herein, a concept of in-situ water removal via the addition of an
inorganic dehydrating agent during the direct DMC synthesis from methanol and CO2 catalyzed by
K2O-promoted Cu–Ni is presented. The 3A MS is selected as the optimal dehydrating agent effects of
the mass ratio of dehydrating agent and catalyst, the dehydrating temperature and pressure, together
with the space velocity on the catalytic performance for direct synthesis of DMC were investigated
and discussed.

2. Results and Discussion

2.1. Selection of the Dehydrating Agent

There have been many previous attempts to remove the water from the reaction of direct synthesis
of DMC using MgSO4, Na2SO4, CaCl2, etc. as inorganic dehydrating agents, however, no successful
result was obtained because of high reaction temperatures and pressures. In this paper, low-cost and
readily available molecular sieve of 3A, 4A, and 5A are chosen as the dehydrating agents. Prior to
use, the three molecular sieves were treated at 500 ◦C for 6 h, and then allowed to fully hydrate under
saturation pressure of water vapor (25 ◦C), followed by dehydration from 50 to 600 ◦C. The weight
loss of the samples was recorded by Thermogravimetric analyses (TGA). As shown in Figure 1,
3A molecular sieve shows 11 wt. % of water escaped out at the reaction temperature of 120 ◦C,
indicating that the 3A molecular sieve is the best candidate in this issue.
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Figure 1. Thermogravimetric analyses (TGA) traces of molecular sieves (3A, 4A, and 5A) saturated by
water vapor (1 atm, 25 ◦C).
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2.2. Characterization of the Catalyst

In our previous work [26], it is investigated that the incorporation of alkali is conducive to the
preparation of the catalysts precursor by decreasing the decomposition and reduction temperatures,
which is favorable for the formation of a Nano-scale dispersion of bimetallic particles on the surface of
supports. The well-dispersed characteristic in turn endows the catalyst with more lattice drawbacks
and a polarized Cu-Ni lattice. It is proved that alkali doping can significantly improve the catalytic
efficiency of Cu-Ni composites. Based on this, Cu-Ni-K2O/diatomite catalysts are employed in
this work. Temperature-programmed reduction and desorption (TPR, NH3–TPD, CO2–TPD) of the
sample are all included in Figure 2. It can be seen that the catalyst precursor can be fully reduced
below 450 ◦C with two closely combined peaks attributed to the reduction of CuO–NiO–K2O solid
composite. The NH3–TPD and CO2–TPD of the catalyst both exhibit one desorption peak around
200 ◦C, indicating that the catalyst has only one type of medium acid center and basic center, which are
essential for direct catalytic synthesis of DMC. Figure 3 presented the powder X-ray diffraction of the
samples. The reduced catalyst clearly shows four typical diffraction peaks of Cu, Ni or Cu–Ni alloy
(2θ = 43.62 (111), 51.06 (200), 74.94 (220), and 91.04 (311)). Compared with 15%(2Cu–Ni)/diatomite
(i.e., 15 CN/diatomite), the characteristic diffraction peaks of 15CN2K/diatomite became obviously
broader than the undoped catalyst, which implies that the K-doped catalyst has better dispersion
and smaller particle size than 15%(2Cu–Ni)/diatomite catalyst. According to Scherrer equation
(D = Kλ/βcosθ, λ= 0.15406, and K = 0.89), the partical size of 15%(2Cu-Ni)/diatomite is about 22 nm
and which of 15CN2K/diatomite is about 30 nm. Figure 4 displayed the SEM (a) and TEM (b)
observation results of 15CN2K/diatomite. It shows that the Cu–Ni–K2O composite homogenously
covered the support and the single particle size of the catalyst is less than 50 nm.
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Figure 4. SEM (a) and TEM (b) of 15CN2K/diatomite catalyst.

2.3. Effect of Dehydration on Properties of the Catalyst

2.3.1. Effect of Mass Ratio of 3A MS and 15CN2K/Diatomite on the Activity of the Catalyst

As shown in Figure 5, the mass ratio of 3A MS and 15CN2K/diatomite ranges from 0 to 5.
The average value of 4-h methanol conversion climbs from 7.55 to 8.41% and the corresponding DMC
selectivity fluctuates from 90.3 to 89.9%. The optimal methanol conversion of 8.27% with highest DMC
selectivity of 91.2% has been achieved with 3/1 of 3A MS and the catalyst. The results indicated that
3A MS can effectively dehydrate the reaction system and shift the reaction equilibrium toward high
DMC yield. The mass ratio of 3/1 is most preferable for this reaction from the economic point of view.

Catalysts 2018, 8, x FOR PEER REVIEW  4 of 10 

 

 

Figure 4. SEM (a) and TEM (b) of 15CN2K/diatomite catalyst. 

2.3. Effect of Dehydration on Properties of the Catalyst 

2.3.1. Effect of Mass Ratio of 3A MS and 15CN2K/Diatomite on the Activity of the Catalyst 

As shown in Figure 5, the mass ratio of 3A MS and 15CN2K/diatomite ranges from 0 to 5. The 

average value of 4-h methanol conversion climbs from 7.55 to 8.41% and the corresponding DMC 

selectivity fluctuates from 90.3 to 89.9%. The optimal methanol conversion of 8.27% with highest 

DMC selectivity of 91.2% has been achieved with 3/1 of 3A MS and the catalyst. The results indicated 

that 3A MS can effectively dehydrate the reaction system and shift the reaction equilibrium toward 

high DMC yield. The mass ratio of 3/1 is most preferable for this reaction from the economic point of 

view. 

 

Figure 5. The effect of mass ratio of 3A MS and 15CN2K/diatomite on performance of 

15CN2K/diatomite. 

2.3.2. Effect of Dehydrating Temperature and Pressure on Properties of the Catalyst 

The effect of dehydrating temperature on DMC synthesis was exhibited in Figure 6, the 

methanol conversion of this reaction is enhanced with the increase of temperature under the set 

pressure and space velocity. Moreover, the in-situ dehydrated catalyst performs superiorly to the 

catalyst without dehydration in methanol conversion. Nevertheless, DMC selectivity dropped 

dramatically over 140 °C due to the intensified side reaction of dimethyl ether (DME) and formic acid 

formation. Furthermore, the DMC selectivity of dehydrated catalyst collapsed more quickly at high 

temperature because 3A MS gradually fails to dehydrate the catalyst at high temperature, and 3A MS 

may serve as the catalyst for DME production. So 120 °C is chose in the reaction. 

Figure 5. The effect of mass ratio of 3A MS and 15CN2K/diatomite on performance of 15CN2K/diatomite.

2.3.2. Effect of Dehydrating Temperature and Pressure on Properties of the Catalyst

The effect of dehydrating temperature on DMC synthesis was exhibited in Figure 6, the methanol
conversion of this reaction is enhanced with the increase of temperature under the set pressure and
space velocity. Moreover, the in-situ dehydrated catalyst performs superiorly to the catalyst without
dehydration in methanol conversion. Nevertheless, DMC selectivity dropped dramatically over 140 ◦C
due to the intensified side reaction of dimethyl ether (DME) and formic acid formation. Furthermore,
the DMC selectivity of dehydrated catalyst collapsed more quickly at high temperature because 3A
MS gradually fails to dehydrate the catalyst at high temperature, and 3A MS may serve as the catalyst
for DME production. So 120 ◦C is chose in the reaction.
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Figure 6. The effect of temperature on performance of catalyst with or without dehydration.

The effect of dehydrating pressure on DMC synthesis is presented in Figure 7. The methanol
conversion is obviously improved with the increase of reaction pressure at fixed temperature and
space velocity, and it levels off over 1.0 MPa. Compared with the undehydrated catalyst, the in-situ
dehydrated catalyst shows higher activity, suggesting that the increased pressure is more favorable for
dehydrating this reaction. The DMC selectivity keeps closely around 90% for undehydrated catalyst.
For the dehydrated catalyst, it shows a little increase under 0.8 MPa and leveling off under 1.0 MPa,
which implies that in-situ dehydration can produce more active sites for DMC catalytic synthesis.
In general, the optimum conditions for effective dehydrating this reaction system are 120–140 ◦C and
1.0 MPa from the economic angle. Herein, 1.0 MPa is used in the following reaction.
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2.3.3. Effect of Space Velocity on Dehydrating the Catalyst

At fixed 120 ◦C and under 1.0 MPa, the methanol conversion of undehydrated catalyst is evidently
lower than dehydrated catalyst. The methanol conversion of dehydrated catalyst decreases from 6.25
to 4.51% with increasing gas space velocity (GHSV) from 300 to 1500 h−1 (Figure 8). However,
the methanol conversion of dehydrated catalyst goes up a little at first with increasing GHSV from
300 to 600 h−1, and then it decreases gradually from 8.35 to 6.19% with increasing GHSV from 600 to
1500 h−1. As for the two catalytic reaction processes, space velocity seems no effect on DMC selectivity
which keeps around 90%. So 600 h−1 is chose in the reaction.
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To summarize, the optimal condition is that the mass ratio of 3/1 (3A MS and 15CN2K/diatomite),
temperature of 120 ◦C, dehydrating pressure of 1.0 MPa with GHSV of 600 h−1. In this condition,
the DMC selectivity is 89.2%, and methanol conversion of 6.49%. Regarding the pathway of the
catalysis, which is similar to our previous work [17,19]. In general, there are three types of active
centers: Cu-Ni metal sites, Lewis acid sites and Lewis base sites. Firstly, Horizontal adsorption
state of CO2 can be formed under the synergistic action of Lewis acid sites and metal sites and this
adsorption state is reactive. The addition of K2O additive is more conducive to the adsorption of CO2

on the catalyst surface [26]. Secondly, dissociated adsorption states of CH3OH could be formed in the
association of Lewis acid sites and Lewis base sites. After that, adsorption state of CO2 reacts with
dissociated adsorption states of CH3OH to form DMC. The main product of CO2 and CH3OH on the
surface of catalyst is DMC.

2.3.4. Effect of In-Situ Dehydration on Stability of the Catalyst

The effect of in-situ dehydration on stability of the catalyst is evaluated within 22 h at 120 ◦C and
under 1.0 MPa with GHSV of 600 h−1 (Figure 9). The methanol conversion of the reaction without
dehydration increases to 7.55% at the beginning, and then gradually decreases to 6.18% within 8 h,
after that it sharply collapses and deactivates at the end of the evaluation. The methanol conversion of
reaction with dehydrating process keeps around 8% within 10 h, followed by decreasing to 1.84% at
the end. The DMC selectivity of the reaction without dehydration decreases slowly from 88% to 83%,
thereafter rapidly falls down to about 71%. However, the DMC selectivity with dehydration maintains
over 88% within 13 h; and finally decreases to 78% at the end of the evaluation. By comparison, it is
apparent that the catalyst dehydrated by 3A MS exhibited much higher activity and longer stability
than the catalyst without dehydration, which indicated 3A MS can effectively dehydrate this catalytic
reaction system at lower temperature and pressure. The main reason for the deactivation of the catalyst
is that the chemical environment of the active species on the surface of the catalyst changes after a
period of catalytic reaction, which means that the active site of the catalyst is gradually deactivated
during the reaction, resulting in a decrease in the yield of DMC. The reasons for the deactivation of
catalysts are believed to result from the reaction between the catalyst with formed water, followed by
the oxidation of catalyst.
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3. Experimental

3.1. Catalyst Preparation

Natural diatomite was pretreated by calcining at 500 ◦C for 3 h, soaking in 5% hydrochloric acid for
24 h, washing by deionized water and drying overnight at 110 ◦C. Cu–Ni–K/diatomite nano-catalysts
were prepared by wetness impregnation method. Firstly, Cu(NO3)2·3H2O, Ni(NO3)2·6H2O and KNO3

were dissolved in ammonia solution with stirring, then the diatomite was dispersed in metallic
ammonia solution. The resulting mixture was stirred at room temperature for 24 h, ultra-sonicated for
another 3 h, followed by rotary evaporation to remove the solvent. Thereafter, it was dried at 110 ◦C
overnight. The fully dried solid was calcined at 550 ◦C for 5 h and further reduced by mixed gas of
H2 (10%)/N2 at 550 ◦C for 6 h. 3A MS was pretreated by calcining at 500 ◦C for 6 h, and then cooled
down to room temperature, placed in a vacuum-desiccator for further use.

3.2. Catalyst Characterization

The surface area of the samples was detected in liquid N2 by Brunauer-Emmett-Teller (BET)
approaches using a Micromeritics ASAP 2010 (Micromeritics, Norcross, GA, USA) instrument.
Thermogravimetric analyses (TGA) of samples were performed on a PerkinElmer Pyris Diamond SII
thermal analyzer (high-purity N2, 20 ◦C/min, PerkinElmer, Waltham, MA, USA). The morphologies of
the samples were examined using a scanning electron microscopy (SEM) (JSM-5600LV system of JEOL
(JEOL, Tokyo, Japan) equipped with an energy dispersive X-ray spectrometer (EDX) (JEOL, Tokyo,
Japan) to check the components of the catalysts. The phase structure of the samples were determined
by X-ray diffraction (XRD) (Rigaku Corporation, Tokyo, Japan) on a D/Max-IIIA power diffractometer
using Cu (Kα) (0.15406 nm) radiation source. X-ray photoelectron spectrum (XPS) of the catalysts
was obtained by ESCALAB 250 (ThermoFisher Scientific, Waltham, MA, USA) analyzer using the
monochromatized Al (Kα) radiation source. Temperature programmed reduction (TPR)/Temperature
programmed desorption (CO2/NH3-TPD) experiments of the samples were detected by Quantachrom
ChemBET 3000 apparatus (Quantachrom Instruments, Boynton Beach, FL, USA) equipped with a
thermal conductivity detector (TCD) [23].

3.3. Catalyst Evaluation

The evaluation of the catalysts was performed in a continuous tubular fixed-bed micro-gaseous
reactor with 5 g of the fresh 15%(2Cu–Ni)-2%K2O /diatomite (marked as 15CN2K/diatomite) catalyst
and set mass ratio of the selected 3A MS as dehydrating agent. (3A/catalyst = 0/5, 5/5, 10/5, 15/5,
20/5, 25/5). The filling of the catalyst and 3A MS was stacked layer by layer alternatively and the top
layer was the dehydrating agent, that is, each layer of the catalyst was sandwiched by two layers of
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dehydrating agent to ensure highly dehydrated. The methanol was bubbled into the reactor by N2 and
the molar ratio of CH3OH and CO2 was controlled by N2 flux and the bubbling temperature (Scheme 1).
The reaction was carried out at different temperatures, pressures and space velocity. The product
was analyzed by GCMS-QP2010 Plus (SHIMADZU CORPORATION, Tokyo, Japan) and on-line GC
(GC7890F) (TECHCOMP CORPORATE, Shang Hai, China) equipped with a flame ionization detector
and thermal conductivity conductor. The final results were calculated by the following equations:

CH3OH conversion (%) =
[CH3OH reacted]
[CH3OH total]

× 100% (2)

DMC selectivity(%) =
[DMC]

[DMC + Byproduct]
× 100% (3)

DMC yield(%) = CH3OH conversion×DMC selectivity× 100% (4)
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Scheme 1. Schematic diagram of the bubbling apparatus for direct synthesis of dimethyl carbonate (DMC).

4. Conclusions

An in-situ dehydrating process for the direct synthesis of DMC from methanol and CO2 in a
continuous flow fixed-bed bubbling micro-gaseous reactor was introduced, in which a sandwich
structure of catalyst and 3A MS layer by layer was filled up. The effect of the mass ratio of 3A MS to
catalyst, the dehydrating temperature and pressure, as well as the space velocity on the performance
of the catalyst was investigated. The experimental results demonstrate that 3A MS can effectively
dehydrate the catalytic reaction system at the optimal conditions of 120 ◦C, 1.2 MPa, with a GHSV
of 600 h−1. The in-situ dehydrating methodology enhances the methanol conversion and selectivity
when compared with the dehydrating reaction system. Compared with the chemical dehydrating
agents such as 2,2-dimethoxypropane [22], butylene oxide [24], etc., 3A MS is easily recyclable and they
do not produce byproducts. Compared with the catalytic reaction system using a tin catalyst, a batch
reactor separated from the recyclable dehydrating tube packed with 3A MS [25], this dehydrating
reaction system using highly active K2O-promoted Cu–Ni catalyst sandwiched by 3A MS was more
preferable from the practical viewpoint. This report opens up a new way to circumventing the
thermodynamic limitations of direct DMC synthesis, and would greatly prompt the researchers to
design new dehydrating system for improving the efficiency of DMC synthesis directly from methanol
and CO2.
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