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1. General information 

1H and 13C{1H} NMR spectra were recorded on JEOL ECX-500 and ECS-400 spectrometers at 
room temperature. Gas chromatography (GC) analyses were performed on a GL-Sciences GC353B 
gas chromatograph with a capillary column (GL-Sciences and InertCap Pure WAX). Elemental 
analyses were carried out at the Microanalysis Center of Kyoto University. Silica-gel column 
chromatography was carried out by using Wako-gel C-200. The compounds, [Cp*IrCl2]2 (Cp* = 
-pentamethylcyclopentadienyl) [1] and [Cp*Ir(OH2)3](OTf)2 [2]were prepared according to the 
literature method. The diol 7c was prepared by the reduction of 2-benzoylbenzoic acid using LiAlH4 

[3]. The diols 7e, 7f and 7g were prepared by the reduction of the corresponding dicarboxylic acids 
using BH3-THF [3]. All other reagents are commercially available and were used as received. 

 

2. Typical procedures for synthesis of ligands L1-L4 

Synthesis of ligands L1-L4 

These ligands were synthesized according to the literature method [4]. 
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Preparation of 2-bromo-6-(methoxymethoxy)pyridine 

K2CO3 (1.43 g, 10.3 mmol) and dry THF (40 mL) were added in the two-necked round bottomed 
flask under argon atmosphere. Then, 2-bromo-6-hydroxypyridine (1.18 g, 6.8 mmol) and 
chloromethyl methyl ether (640 µL, 8.43 mmol) were added in the solution and stirred for 24 hours at 
room temperature. The reaction mixture was filtered through Celite and the filtrate was evaporated. 
The crude product was purified by column chromatography (535 mg, 2.4 mmol, 35% yield). 

1H NMR (400 MHz, CDCl3): δ 7.45 (t, J = 8 Hz, 1H, aromatic), 7.11 (t, J = 7 Hz, 1H, aromatic), 6.76 
(d, J = 8 Hz, 1H, aromatic), 5.49 (s, 2H, CH3OCH2O-), 3.52 (s, 3H, CH3OCH2O-). 13C{1H} NMR (100 
MHz, CDCl3): δ 162.3, 141.0, 138.7, 121.4, 109.7, 92.7, 57.5. Anal. Calcd for C7H8NO2Br: C, 38.56; H, 
3.70; N, 6.42. Found: C, 38.63; H, 3.74; N, 6.45. 

Preparation of compound L1 

In two-necked round-bottomed flask connected with the Dimroth condenser, 
2-bromo-6-(methoxymethoxy)pyridine (394 mg, 1.81 mmol), PdCl2 (17.2 mg, 0.096 mmol, 5 mol%), 
dppp [1,3-bis(diphenylphosphino)propane] (76.7 mg, 0.19 mmol, 10 mol%), Cs2CO3 (770.0 mg, 2.4 
mmol, 1.3 equiv.), toluene (9.0 mL), tert-butyl isocyanide (315 μL, 2.8 mmol, 1.5 equiv.), 
ethylenediamine (620 μL, 9.3 mmol, 5.1 equiv.) were placed in this order. The reaction mixture was 
refluxed in oil bath (125 °C) for 16 hours. After cooling to room temperature, the reaction mixture 
was filtered through Celite and washed with ethyl acetate. The crude product was obtained after 
evaporation of the filtrate. After purifying by column chromatography, the product was obtained 
(slightly yellow solid, 350 mg, 1.69 mmol, 88% yield). 

1H NMR (400 MHz, CDCl3): δ 7.79 (d, J = 7 Hz, 1H, aromatic), 7.12 (m, 1H, aromatic), 7.70 (t, J = 8 
Hz, 1H, aromatic), 6.89 (d, J = 8 Hz, 1H, -NH-), 5.54 (s, 2H, CH3OCH2O-), 4.05 (t, J = 10 Hz, 2H, -NH2-), 
3.59 (m, 2H, -NH2-), 3.53 (s, 3H, CH3OCH2O-). 13C{1H} NMR (100 MHz, CDCl3): δ 164.1, 161.7, 144.7, 
146.1, 139.8, 116.2, 113.0, 92.0, 57.3. 

Ligands L2–L4 were prepared by the similar procedures for the compound L1. 
Compound L2 (slightly yellow solid, 68%) 
1H NMR (400 MHz, CDCl3): δ 7.67 (t, J = 8 Hz, 1H, aromatic), 7.54 (d, J = 7 Hz, 1H, aromatic), 

6.86 (d, J = 8 Hz, 1H, aromatic), 5.54 (s, 2H, CH3OCH2O-), 3.86 (t, J = 10 Hz, 2H, -N(CH2)-), 3.52 (s, 
3H, CH3OCH2O-), 3.48 (t, J = 8 Hz, 2H, -NH2-), 3.08 (s, 3H, -N(CH3)-). 

Compound L3 [5] (slightly yellow oil, 75%) 
1H NMR (400 MHz, CDCl3): δ 8.57 (d, J = 5 Hz, 1H, aromatic), 8.14 (d, J = 8 Hz, 1H, aromatic), 

7.77 (m, 1H, aromatic), 7.36 (m, 1H, aromatic), 4.10 (t, J = 10 Hz, 2H, -N(CH2)-), 3.59 (m, 2H, 
-N(CH2)-). 

Compound L4 [6] (white solid, 89%) 
1H NMR (400 MHz, CDCl3): δ 7.72 (d, J = 7 Hz, 1H, aromatic), 7.63 (t, J = 8 Hz, 1H, aromatic), 

6.81 (d, J = 8 Hz, 1H, aromatic), 4.05 (t, J = 9 Hz, 2H, -N(CH2)-), 3.94 (s, 3H, OCH3), 3.57 (t, J = 9 Hz, 
2H, -N(CH2)-). 

 

3. Preparation of complexes 1 - 4: 

 

In a two-necked round-bottomed flask under argon atmosphere, [Cp*Ir(OH2)3](OTf)2 (1.14 g, 
1.68 mmol), 2-(4,5-dihydro-1H-imidazol-2yl)-6-(methoxymethoxy)pyridine (348 mg, 1.68 mmol), 
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and degassed distilled water (10 mL) were placed. The mixture was stirred at 60 °C for 12 hours. 
After cooling to room temperature, the mixture was washed with CH2Cl2 (15 mL x 3) and Et2O (10 
mL x 1). Evaporation of the water layer under vacuum gave a crude product of complex 1 as a 
yellow powder. The product was purified by recrystallization from water (orange crystals, 965 mg, 
1.20 mmol, 71%). 

Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.13 (t, J = 7.2 Hz, 1H, aromatic), 7.63 (d, J = 7.2 Hz, 
1H, aromatic), 7.33 (d, J = 8.0 Hz, 1H, aromatic), 4.34 (t, J = 10 Hz, 2H, -N(CH2)-), 4.10 (t, J = 11 Hz, 2H, 
-N(CH2)-), 1.77 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 173.2, 165.6, 144.9, 144.8, 
123.3(q, CF3), 118.2, 117.4, 89.6, 53.8, 47.0, 9.7. 1H NMR (500 MHz, D2O) [6]: δ 7.97 (dd, J = 8.0 Hz, 7.0 
Hz, 1H, aromatic), 7.42 (d, J = 7.0 Hz, 1H, aromatic), 7.23 (d, J = 8.0 Hz, 1H, aromatic), 4.27 (t, J = 10.5 
Hz, 2H, -N(CH2)-), 4.02 (t, J = 10.5 Hz, 2H, -N(CH2)-), 1.70 (s, 15H, Cp*). 13C{1H} NMR (125 MHz, 
D2O): δ 172.5, 165.0, 144.1, 143.5, 120.3 (q, JCF = 316 Hz), 117.2, 117.1, 88.6, 53.1, 46.4, 9.27. Anal. Calcd 
for C20H26N3O8IrF6S2: C, 29.78; H, 3.25; N, 5.21. Found: C, 29.42; H, 3.25; N, 5.14.  

Complexes 2-4 were prepared by the similar procedures for complex 1. 
Complex 2 (61%): Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.15 (t, J = 8.0 Hz, 1H, 

aromatic), 7.92 (d J = 8.0 Hz, 1H, aromatic), 7.35 (d, J = 8.0 Hz, 1H, aromatic), 4.20 (m, 4H, 
-N(CH2CH2)N-), 3.50 (s, 3H, NCH3), 1.75 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 
171.3, 165.7, 144.9, 144.8, 123.3, 120.0, 117.4, 89.8, 56.7, 51.9, 35.7, 9.8. Anal. Calcd for 
C21H29N3O8IrF6S2•2H2O: C, 29.40; H, 3.88; N, 4.90. Found: C, 29.50; H, 3.62; N, 4.92. 

Complex 3 (75%): Analysis: 1H NMR (400 MHz, methanol-d4): δ 9.24 (d, J = 5.2Hz, 1H, 
aromatic), 8.45 (t, J = 7.6 Hz, 1H, aromatic), 8.23 (d, J = 7.6 Hz, 1H, aromatic), 8.02 (t, J = 6.4 Hz, 1H, 
aromatic), 4.38 (t, J = 10 Hz, 2H, -N(CH2)-), 4.18 (t, J = 11 Hz, 2H, -N(CH2)-), 1.80 (s, 15H, Cp*). 
13C{1H} NMR (100 MHz, methanol-d4): δ 172.5, 154.3, 148.0, 143.2, 132.1, 126.8, 123.3, 89.8, 53.6, 47.4, 
9.12. Anal. Calcd for C20H26N3O7IrF6S2: C, 30.38; H, 3.31; N, 5.31. Found: C, 30.29; H, 3.32; N, 5.27. 

Complex 4 (88%): Analysis: 1H NMR (400 MHz, methanol-d4): δ 8.36 (t, J = 7.6 Hz, 1H, aromatic), 
7.80 (d, J = 1.2 Hz, 1H, aromatic), 7.69 (d, J = 9.2 Hz, 1H, aromatic), 4.36 (m, 2H, -N(CH2-)), 4.13 (m, 
2H, -N(CH2)-), 4.34 (s, 3H, OCH3), 1.76 (s, 15H, Cp*). 13C{1H} NMR (100 MHz, methanol-d4): δ 173.1, 
165.9, 146.2, 145.7, 123.4, 119.4, 114.4, 89.9, 59.1, 54.0, 47.1, 9.8. Anal. Calcd for 
C21H28N3O8IrF6S2•2H2O: C, 29.44; H, 3.76; N, 4.90. Found: C, 29.72; H, 3.73; N, 4.84. 

4. General procedures for the dehydrogenative oxidation of 1-phenylethanol. (Table 1 and Table 2): 

In a flask under argon atmosphere, catalyst 1 (0.0025 mmol, 0.25 mol%), 1-phenylethanol (1.0 
mmol), degassed distilled water (3.0 mL) and 0.1M Na2CO3 aq. (25 μL) were placed. The mixture 
was stirred under reflux for 20 hours in an oil bath (135 °C). After cooling to room temperature, the 
mixture was diluted with THF (10 mL). The conversion of 1-phenylethanol and the yield of 
acetophenone were determined by GC analysis using biphenyl as an internal standard. 

5. General procedure for the dehydrogenative oxidation of secondary alcohols (Table 3): 

In a flask under argon atmosphere, catalyst 1 (0.0025 mmol, 0.25 mol%), secondary alcohol (1.0 
mmol), degassed distilled water (3.0 mL) and 0.1 M Na2CO3 aq. (25 μL) were placed. The mixture 
was stirred under reflux for 20 hours in an oil bath (135 °C). After cooling to room temperature, the 
produced ketones were isolated by column chromatography on silica gel (eluent: hexane / ethyl 
acetate). 

4’-Methylacetophenone (6b) [7]: 1H NMR (400 MHz, CDCl3): δ 7.87 (m, 2H, aromatic), 7.26 (m, 2H, 
aromatic), 2.58 (s, 3H, -COCH3), 2.41 (s, 3H, -CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 197.8, 143.8, 
134.7, 129.2, 128.4, 26.5, 21.6. 

4’-Methoxyacetophenone (6c) [8]: 1H NMR (400 MHz, CDCl3): δ 7.95 (m, 2H, aromatic), 6.93 (m, 
2H, aromatic), 3.87 (s, 3H, OCH3), 2.56 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz, CDCl3): δ 196.8, 
163.5, 130.6, 130.3, 114.0, 55.5, 26.3. 

4'-(N, N-dimethylamino)acetophenone (6d) [7]: 1H NMR (400 MHz, CDCl3): δ 7.86 (d, J = 6.8 Hz, 
2H, aromatic), 6.64 (m, 2H, aromatic), 3.03 (s, 6H), 2.49 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 
196.4, 153.4, 130.5, 125.1, 110.6, 40.0, 26.0. 
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4’-Trifluoromethylacetophenone (6e) [9]: 1H NMR (400 MHz, CDCl3): δ 8.04 (d, J = 8.4 Hz, 2H, 
aromatic), 7.71 (d, J = 7.6 Hz, 2H, aromatic), 2.63 (s, 3H, -COCH3).  13C{1H} NMR (100 MHz, CDCl3): δ 
197.1, 139.8, 134.4 (q, JCF = 32.4 Hz), 128.7, 125.8 (d, JCF = 2.8 Hz), 123.7 (q, JCF = 271.8 Hz), 26.9. 

4’-Fluoroacetophenone (6f) [9]: 1H NMR (400 MHz, CDCl3): δ 7.94 (m, 2H, aromatic), 7.08 (t, J = 8.8 
Hz, 2H, aromatic), 2.54 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz, CDCl3): δ 196.5, 165.8 (d, JCF = 253.6 
Hz), 133.6, 131.0 (d, JCF = 8.5 Hz), 115.6 (d, JCF = 21.9 Hz), 26.5. 

4’-Chloroacetophenone (6g) [10]: 1H NMR (400 MHz, CDCl3): δ 7.89 (ddd, J = 8.4, 2.4, 1.6 Hz, 2H, 
aromatic), 7.42 (dt, J = 8.8, 2.0 Hz, 2H, aromatic), 2.59 (s, 3H, -COCH3). 13C{1H} NMR (100 MHz, 
CDCl3): δ 196.7, 139.6, 135.5, 129.6, 128.9, 26.6. 

3’-Methylacetophenone (6h) [11]: 1H NMR (400 MHz, CDCl3): δ 7.75 (m, 2H, aromatic), 7.33 (m, 
2H, aromatic), 2.57 (s, 3H, -COCH3), 2.40 (s, 3H, -CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 198.4, 
138.3, 137.1, 133.9, 128.8, 128.4, 125.6, 26.7, 21.3. 

3’-Methoxyacetophenone (6i) [8]: 1H NMR (400 MHz, CDCl3): δ 7.50 (m, 1H, aromatic), 7.45 (m, 
1H, aromatic), 7.33 (m, 1H, aromatic), 7.07 (m, 1H, aromatic), 3.81 (s, 3H, -OCH3) 2.56 (s, 3H, 
-COCH3). 13C{1H} NMR (100 MHz, CDCl3): δ 197.9, 159.8, 138.5, 129.6, 121.1, 119.6, 112.4, 55.4, 26.7. 

3’-Chloroacetophenone (6j) [11]: 1H NMR (400 MHz, CDCl3): δ 7.88 (m, 1H, aromatic), 7.79 (m, 1H, 
aromatic), 7.49 (m, 1H, aromatic), 7.37 (t, J = 8.0 Hz, 1H, aromatic), 2.56 (s, 3H, -COCH3). 13C{1H} 
NMR (100 MHz, CDCl3): δ 196.8, 138.6, 134.9, 133.1, 130.0, 128.4, 126.5, 26.7. 

1-Indanone (6k) [12]: 1H NMR (400 MHz, CDCl3): δ 7.70 (d, J = 7.6 Hz, 1H, aromatic), 7.54 (m, 1H, 
aromatic), 7.44 (m, 1H, aromatic), 7.32 (m, 1H, aromatic), 3.09 (t, J = 6.0 Hz, 2H), 2.70-2.63 (m, 2H). 
13C{1H} NMR (100 MHz, CDCl3): δ 207.0, 155.2, 137.2, 134.6, 127.2, 126.7, 123.6, 36.2, 25.8. 

α-Tetralone (6l) [12]: 1H NMR (400 MHz, CDCl3): δ 8.01 (m, 1H, aromatic), 7.45 (m, 1H, aromatic), 
7.32-7.18 (m, 2H, aromatic), 2.92 (m, 2H), 2.61 (m, 2H), 2.07 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3): 
δ 198.1, 144.4, 133.2, 132.9, 128.7, 126.9, 126.4, 39.0, 29.5, 23.1 

Propiophenone (6m) [11]: 1H NMR (400 MHz, CDCl3): δ 7.95 (m, 2H, aromatic), 7.52 (m, 1H, 
aromatic), 7.43 (m, 2H, aromatic), 2.99 (q, J = 7.2 Hz, 2H, CH2CH3), 1.21 (t, J = 7.2 Hz, 3H, CH2CH3). 
13C{1H} NMR (100 MHz, CDCl3): δ 200.8, 136.9, 132.9, 128.6, 128.0, 31.8, 8.3. 

6. Procedure for the quantitative analysis of the evolved hydrogen gas in the dehydrogenative oxidation of 
1-indanol (5k) or 1,2-benzenedimethanol(7a) catalyzed by complex 1 (eq. 1). 

The reaction setup is shown in Figure S1. In a flask connected with a gas burette through a 
condenser under argon atmosphere, catalyst 1 (20.3 mg, 0.025 mmol), distilled water (30 mL), 0.1M 
Na2CO3 aq. (250 μL) and 1-indanol (1.35 g, 10 mmol) were placed. The mixture was stirred under 
reflux for 20 h in an oil bath (135 °C). The yield of 1-indanone was determined by 1H NMR(CDCl3) 
using triphenylmethane as an internal standard. The volume of evolved gas was measured by a gas 
burette. The molar amount of hydrogen was calculated using the ideal gas law. The purity of 
evolved hydrogen gas was confirmed by GC analysis as shown in Figure S2. 
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Figure S1. Reaction setup for the quantitative analysis of the evolved hydrogen gas. 

 

 

Figure S2. GC analyses of the hydrogen gas. a) The chromatogram of the evolved gas by the reaction 
of 1-indanol. b) The chromatogram of the standard gas of pure hydrogen. 

7. Experiments for the isolation of catalytic active species 

Preparation of monocationic complex 9 

In a flask under argon atmosphere, complex 1 (101.6 mg, 0.126 mmol) was placed. 0.1 M 
Na2CO3 aq. (1.25 mL) was added and stirred for 10 minutes at room temperature. Then, the solvent 
water was evaporated by the vacuum pump and the deposed dark green powder remained. The 
powder was dissolved in dry CH2Cl2 and filtered by Celite under argon atmosphere. The filtrate 
organic layer was washed by distilled water (10 mL x 4) under argon atmosphere, then the solvent 
was removed by evaporation and the dark green powder was obtained (27.2 mg, 0.041 mmol, 33%). 

Complex 9 
1H NMR (500 MHz, D2O): δ 7.52 (t, J = 7.5 Hz, 1H, aromatic), 6.88 (br, 1H, aromatic), 6.67 (d, J = 

8.0 Hz, aromatic), 4.10 (br, 2H, -CH2-), 3.86 (br, 2H, -CH2-), 1.68 (s, 15H, Cp*). 13C{1H} NMR (125 
MHz, D2O): δ 170.7, 143.7, 139.4, 122.2, 120.3 (q, JCF = 316 Hz), 110.8, 87.6 (br), 53.2, 9.53. 

a) 
b) 
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In the 13C{1H} NMR spectra, the quartet signal which was assigned to the carbon in 
trifluoromethanesulfonate was observed. Thus, the complex 9 must contain 
trifluoromethanesulfonate as a counter anion, suggesting that 9 would be a mono-cationic species. 

NMR Analysis of the reaction of complex 1 with Na2CO3 in D2O. 

In an NMR tube, complex 1 (4.0 mg, 0.0050 mmol), 0.1 M Na2CO3 aq. (25.0-100.0 μL, 0.5-2.0 
equiv.), D2O (0.4 mL) were placed. tert-BuOH (2.0 μL) was added as an internal standard. The color 
of the solution immediately changed to green. Then, the sample analyzed by 1H NMR spectroscopy. 
All spectral data are shown in Figure S3. When 0.5 equivalent of Na2CO3 was added, all aromatic 
peaks were shifted to upfield. This observation suggests that the one proton, probably on the 
hydroxy group on the pyridine ring, would be abstracted by the base and the α-hydroxypyridine 
structure must be changed to the α-pyridonate structure. Further addition of Na2CO3 did not cause 
the change of chemical shift of signals, therefore, other protons in the mono-cationic complex 9 
would be difficult to be abstracted. On the basis of these observations, we conclude that the complex 
1 easily release one proton in the presence of base to afford the mono-cationic complex 9, which 
must be a catalytically active species for the dehydrogenative oxidation of alcoholic substrates in 
aqueous media. 

 

Figure S3. 1H NMR(D2O) experiment for detection of the active species. 

8. General procedure for the dehydrogenative lactonization of benzylic diols (Table 4): 

In two-necked test tube under argon atmosphere, catalyst 1 (0.0025 mmol, 0.25 mol%), diol (1.0 
mmol), distilled water (1.5 mL) and 0.1 M Na2CO3 aq. (25 μL, 0.0025 mmol, 0.25 mol%) were placed. 
The mixture was stirred under reflux for 20 hours in an oil bath (135 °C). After cooling to room 
temperature, the solvent was evaporated. The yield of the product was determined by 1H NMR 
using 1,3,5-trimethoxybenzene as an internal standard. The product was isolated by silica gel 
column chromatography (eluent: hexane / ethyl acetate). 
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Phthalide (8a) [13]: 1H NMR (500 MHz, CDCl3): δ 7.91 (d, J = 7.5 Hz, 1H, aromatic), 7.71 (td, J = 
7.5, 1.0 Hz, 1H, aromatic), 7.56-7.52 (m, 2H, aromatic), 5.34 (s, 2H, -CH2-). 13C{1H} NMR (125 MHz, 
CDCl3): δ 171.2, 146.6, 134.1, 129.0, 125.6, 125.6, 122.2, 69.7. 

3-Phenyl-1(3H)-isobenzofuranone (8b) [14]: 1H NMR (500 MHz, CDCl3): δ 7.97 (d, J = 7.5 Hz, 1H, 
aromatic), 7.66 (t, J = 7.5 Hz, 1H, aromatic), 7.56 (t, J = 7.5 Hz, 1H, aromatic), 7.41-7.36 (m, 3H, 
aromatic), 7.34 (d, J = 7.5 Hz, 1H, aromatic), 7.30-7.27 (m, 2H, aromatic). 13C{1H} NMR (125 MHz, 
CDCl3): δ 170.7, 149.8, 136.5, 134.5, 129.5, 129.4, 129.1, 127.1, 125.8, 125.7, 123.0, 82.9. 

Naphtho[2,3-c]furan-1(3H)-one (8c) [13]: 1H NMR (400 MHz, CDCl3): δ 8.52 (s, 1H, aromatic), 8.06 
(d, J = 8.4 Hz, 1H, aromatic), 7.96 (d, J = 8.4 Hz, 1H, aromatic), 7.92 (s, 1H, aromatic), 7.67 (td, J = 6.8, 
1.2 Hz, 1H, aromatic), 7.61 (t, J = 8.0 Hz, 1H, aromatic), 5.5 (s, 2H, -CH2-). 13C{1H} NMR (125 MHz, 
CDCl3): δ 171.1, 140.1, 136.3, 133.2, 130.0, 129.1, 128.2, 127.1, 127.1, 123.5, 120.1, 69.8. 

1H,3H-Naphtho[1,8-cd]pyran-1-one (8d) [13]: 1H NMR (400 MHz, CDCl3): δ 8.35 (dd, J = 7.6, 0.8 
Hz, 1H, aromatic), 8.08 (d, J = 8.0 Hz, 1H, aromatic), 7.81 (d, J = 8.4 Hz, 1H, aromatic), 7.62 (dd, J = 8.0, 
7.2 Hz, 1H, aromatic), 7.53 (t, J = 7.2 Hz, 1H, aromatic), 7.34 (dd, J = 7.2, 0.8 Hz, 1H, aromatic), 5.79 (s, 
2H, -CH2-). 13C{1H} NMR (125 MHz, CDCl3): δ 170.3, 139.0, 137.3, 132.7, 131.9, 130.7, 130.2, 128.8, 
128.7, 128.6, 128.5, 69.2. 

3,4-Dihydro-1H-2-Benzopyran-1-one (8ea) [15], 1,4-Dihydro- 3H-2-Benzopyran-3-one (8eb) [16]: 1H 
NMR (500 MHz, CDCl3): δ 8.08 (dd, J = 6.4, 0.8 Hz 1H), 7.55 (td, J = 6.0, 1.2 Hz, 1H), 7.41(t, J = 6.0 Hz, 
1H), 7.27 (m, 1H), 4.55 (t, J = 4.8 Hz, 2H), 3.08 (t, J = 4.8 Hz, 2H). 13C{1H} NMR (125 MHz, CDCl3): δ 
165.0, 139.5, 133.6, 130.1, 127.5, 127.2, 125.1, 67.2, 27.6. 1H NMR (400 MHz, CDCl3): δ 7.37-7.23 (m, 
4H), 5.32 (s, 2H), 3.72 (s, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 170.7, 131.5, 130.9, 128.6, 126.9, 124.5, 
69.9, 36.1. 

6-Methyl-1(3H)-Isobenzofuranone (8fa) [13], 5-Methyl- 1(3H)-Isobenzofuranone (8fb) [13]: 1H NMR 
(500 MHz, CDCl3): δ 7.70 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 5.27 (s, 2H), 2.50 (s, 
3H). 13C{1H} NMR (125 MHz, CDCl3): δ 171.2, 143.8, 139.1, 135.1, 125.6, 125.3, 121.8, 69.6, 21.1. 1H 
NMR (500 MHz, CDCl3): δ 7.79 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.29 (s, 1H), 5.29 (s, 2H), 
2.47 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3): δ 171.1, 147.1, 145.2, 130.0, 125.3, 122.9, 122.4, 69.4, 21.9. 

6-Fluoro-1(3H)-Isobenzofuranone (8ga) [17]: 1H NMR (500 MHz, CDCl3): δ 7.58 (dd, J = 2.5, 7.0 Hz, 
1H, aromatic), 7.49 (m, 1H, aromatic), 7.42 (td, J = 2.5, 8.5 Hz, 1H, aromatic), 5.32 (s, 2H, -CH2-). 
13C{1H} NMR (125 MHz, CDCl3): δ 170.1 (d, JCF = 3.5 Hz), 163.2 (d, JCF = 248.0 Hz), 142.0, 127.9 (d, JCF = 
9.6 Hz), 123.9 (d, JCF = 8.4 Hz), 122.2 (d, JCF = 23.9 Hz), 112.3 (d, JCF = 23.9 Hz), 69.6 (s). 

5-Fluoro-1(3H)-Isobenzofuranone (8gb) [17]: 1H NMR (500 MHz, CDCl3): δ 7.93 (dd, J = 8.5, 5.0 Hz, 
1H, aromatic), 7.25 (td, J = 8.8, 2.0 Hz, 1H, aromatic), 7.20 (dd, J = 7.5, 1.5 Hz, 1H, aromatic), 5.32 (s, 
2H, -CH2-). 13C{1H} NMR (125 MHz, CDCl3): δ 170.0, 166.7 (d, JCF = 255.1 Hz), 149.4 (d, JCF = 10.8 Hz), 
128.2 (d, JCF = 9.5 Hz), 122.0, 117.5 (d, JCF = 23.8 Hz), 109.6 (d, JCF = 23.9 Hz), 69.1 (d, JCF = 3.6 Hz). 
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10. 1H and 13C NMR Spectora of products 
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