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Abstract: As the main by-product obtained from biomass, glycerol could be converted into valuable
chemicals. Tunable propylsulfonic acid functionalized SBA-15 and KIT-6 with different structural
parameters have been prepared by different methods while using 3-mercaptopropyltrimethoxysilane
(MPTMS) as the source of sulfur. The composition and structure of the synthesized catalysts have been
well-characterized by N2 adsorption-desorption (BET), X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and transmission
electron microscopy (TEM). The catalytic performance of the prepared catalysts have been evaluated
and compared in glycerol acetalization with formaldehyde to the mixture of 1,3-dioxane-5-ol and
1,3-dioxolane-4-methanol. Optimum reaction parameters were investigated to enhance the yield of
products and control the distribution of glycerol formals. More than 90% yield of cyclic acetals were
obtained with the ratio of two isomers 5R to 6R of 42:58.
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1. Introduction

Glycerol (1,2,3-propanetriol or glycerine) is a high value-added by-product of the biodiesel
production from the reaction of vegetable oil/triglyceride with alcohols and the amount of glycerol
constitutes 10 wt % of total biodiesel production [1,2]. Over 68% of glycerol production was achieved
through biodiesel in 2015. In addition, biodiesel is the fastest growing biofuel, which may increase
to at least 2700 kilo tons by 2022. The biodiesel market size is expected to witness steady gains
over the next seven years, which enable it to account for a significant chunk of glycerol market
share [3]. Glycerol is also the production of ethanol fermentation processes [4]. Being a by-product of
biodiesel, glycerol supply has ascended rapidly and the already saturated market has been adversely
affected [5]. The global glycerol market is segmented as follows by application: polyether polyols,
pharmaceuticals, and tobacco humectants, etc., and numerous utilization of glycerol have been
studied. To stabilize the glycerol market, the main research was focused on hydrogenolysis [6],
etherification [7], hydrogenation [8], partial oxidation [9,10], and dehydration [11]. Acetalization of
glycerol with aldehydes/ketones is also one of valorization pathway to balance the glycerol market
and acetals/ketals could be widely used in fine organic synthesis [12].

The acetalization production particularly glycerol acetals/ketals have been investigated as fuel
additives in gasoline and extensively utilized as protecting group or starting materials in organic
synthesis [13], surfactants [14,15], and flavors and pharmaceutical products [16–18]. Acetalization of
glycerol with formaldehyde is an important acid catalyzed reaction for the produce of isomeric cyclic
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acetals 1,3-dioxolane-4-methanol (five member ring hereafter designated as 5R) and 1,3-dioxane-5-ol
(six member ring hereafter designated as 6R) (Scheme 1), which finds applications as a disinfectant
and solvent for cosmetics and medical usage [18–20].
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In terms of catalysts, the acetalization of glycerol is an acid catalyzed reaction and glycerol
formals (GF) could be manufactured while using homogeneous catalysts, such as H2SO4 [21], HF,
HCl, or PTSA [22], giving a 40:60 ratio of 5R to 6R [23]. Acetalization of glycerol with formaldehyde
that was performed with PTSA achieved maximum yield (78%) within 2 h and there is no further
improvement to prolong reaction times. The preparation of glycerol formal in the presence of different
Lewis and Brønsted acid catalysts gave a large spectrum of yield, with 84% being the highest yield
reported up to now, with a ratio 5R to 6R of 27:73. However, homogeneous catalysts are toxicant,
corrosive, and difficult to separate from the reaction system, which limited the wide application.

In contrast, heterogeneous catalysts have been investigated extensively in recent studies and they
present many advantages over homogeneous systems. Acetalization/Ketalization of glycerol using
heterogeneous catalysts, like ion exchange resins [24], metal oxides [25,26], and SBA-15 supported
Cs2.5H0.5PW12O40 [27,28], etc. have been studied. Da Silva et al. [17] investigated the efficiency
and the reaction kinetics with solid catalysts, such as Amberlyst-15, H-USY, montmorillonite K-10,
and zeolite Beta in comparison with a homogeneous catalyst PTSA in the acetalization of glycerol
with acetone and formaldehyde aqueous. Zeolite Bate (Si/Al = 16) leads to a conversion of 95% at
60 min. The conversion of acetone in glycerol acetalization can reach 90% within 40 min. However,
the conversion of glycerol acetalization with formaldehyde is only 80%. The yield of glycerol with
formaldehyde using Amberlyst-36 can reach 77% and the ratio of 5R to 6R is 24:76 [29].

The ordered mesoporous materials attracted much attention for their high surface areas,
controllable pore size, and pore volume. Surface functionalization of molecular sieve is an efficient
method to enhance the acid capacity by modifying the surface of mesoporous materials and it has been
widely used in the synthesis of Bisphenol-A and biodiesel synthesis [30–32]. Various groups, such as
vinyl, thiol (–SH), and amine were successfully used to functionalize the mesoporous materials [33–35].
Acid-functionalized mesoporous silica typically containing propylsulfonic acid has been extensively
investigated as an efficient catalyst in acid-catalyzed reaction (esterification, selective acylation,
dehydration, hydrolysis, and condensation) [36–38]. SO3H-functionalized mesoporous silica are
commonly generated using 3-mercaptopropyltrimethoxysilane (MPTMS) via oxidation of thiol-propyl
groups during the co-condensation or post-grafting oxidation methods. Moreover, sulfonation benefits
from higher local hydrophobicity of the sulfonic acid sites [39]. It was acknowledged that mild
hydrothermal treatment could be used to activate the surface of molecular sieve and increase its acid
capacity for grafting in the sensitive surface. Inorganic salts, such as KCl, NaCl, and NaF, etc. are
usually used to moderate the wall thickness and the degree of polymerization during post-synthesis
hydrothermal treatments of SBA-15 [40], and also aid in the dissolution of silica. Thus, we hypothesized
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that the addition of NaCl under mild hydrothermal conditions could promote the activation of SBA-15
surfaces for grafting [41].

In this paper, an array of propylsulfonic acid functionalized mesoporous silicas SBA-15 and
KIT-6 were prepared and catalytic performance of synthesized catalysts in glycerol acetalization
with formaldehyde were investigated. We also used NaCl as additive in the process of catalyst
preparation [42]. The synthesized catalysts were characterized by N2 adsorption-desorption (BET),
X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
X-ray fluorescence (XRF, bulk), X-ray photoelectron spectroscopy (XPS, surface), and acid capacity
based on acid-base titration. Moreover, the effect of various reaction parameters, such as reaction time,
reaction temperature, molar ratio of formaldehyde to glycerol, and catalyst loading were studied to
enhance the yield of isomeric products. The distribution of the 5R and 6R was also investigated.

2. Results and Discussion

2.1. Materials Characterization

In this section, PrSO3H-SBA-15-x (x = 0, 200, 400, 800) is the propylsulfonic acid functionalized
SBA-15 mesoporous silica synthesized by post-grafting with different amount of additive.
PrSO3H-SBA-15-OP was materials synthesized by one-pot method and PrSO3H-SBA-15-Tol means
materials that was synthesized by the co-condensation method. PrSO3H-KIT-6-T were catalyst
synthesized by co-condensation method and aged at different temperature (80 ◦C, 100 ◦C, or 120 ◦C).

The successful synthesis of parent and grafting ordered mesoporous silica SBA-15 and KIT-6 were
first assessed by XRD and BET. The structure and composition of the samples were identified by XRD
and XPS. Powder XRD patterns of small-angle range of the series of PrSO3H-SBA-15 synthesized by
different methods are presented in Figure 1. All of the functionalized materials show similar XRD
patterns with common reflections at 0.8◦, which is consistent with the parent SBA-15 and confirms that
grafting of propylsulfonic acid group (–PrSO3H) and subsequent oxidation does not alter the crystal
structure. The structural integrity of precursor is retained after both functionalization by –PrSO3H in
H2O using NaCl as additive and oxidation by H2O2.
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Figure 1. Small-angle X-ray diffraction (XRD) patterns of mesoporous silica: (a) SBA-15; (b)
PrSO3H-SBA-15-400; (c) PrSO3H-SBA-15-Tol; and, (d) PrSO3H-SBA-15-OP.

Figure 2 compares the corresponding N2 adsorption–desorption isotherms and pore size
distributions curves of the precursor and sulfonated mesoporous materials, which best represents
the characteristics of all the samples. It could be observed that most of the samples isotherms
are of Type IV with H1 hysteresis loops, which is the characteristic of mesoporous materials.
However, PrSO3H-SBA-15-OP and KIT-6-80 are of Type IV with mixed H1-H2-type hysteresis loops.
The presence of parallel adsorption and desorption branches suggests the existence of mesoporous
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structure. Different hysteresis loop occurred at two-dimensional (2D) hexagonal (SBA-15) and
three-dimensional (3D) cubic (KIT-6) structures. The calculation from the desorption branch using
the Barrett-Joyner-Halenda (BJH) method (Figure 2A) shows that the catalysts present a very narrow
pore size distribution. The physical-chemical parameters of various samples are summarized in
Table 1. Surface areas were calculated on the basis of Brunauer-Emmett-Teller (BET) equation and pore
sizes by the Barrett-Joyner-Halenda (BJH) method. There is an obvious decrease in BET surface area,
pore diameter, and pore volume when -PrSO3H is grafted on the mesoporous materials. The pore
diameter of sulfonated SBA-15 synthesized by post-grafting using NaCl as additive is higher than that
of conventional method by one-pot method. The surface area of catalysts synthesized by post-grafting
method with different amount of NaCl range from 281.19 m2/g to 410.46 m2/g and pore volumes range
from 0.54 cm3/g to 0.87 cm3/g. Pore system of molecular sieve SBA-15 consists of hexagonally ordered
mesoporous and irregular microporous [43]. The decrease of the surface area may be caused by the
blockage of the micropore during the grafting. PrSO3H-SBA-15 exhibits the smallest surface area and
highest bulk sulfur and acid content, which indicates the maximal grafting loading of propylsulfonic
acid groups. The broad distribution curves of SBA-15 when compared to that of SBA-15 in previous
report may be due to the quality of commercial SBA-15.

Table 1. Properties of propylsulfonic acid functionalized SBA-15 and KIT-6.

Samples Surface Area a/
m2g−1

Pore
Volume/cm3g−1

Average Pore
Diameter b/

nm

Bulk S Content
c/

wt %

Surface S
Content d/

wt %

Acid Capacity e/
mmol g−1

SBA-15 541 1.30 9.8 – – –
PrSO3H-SBA-15-Tol 464 1.08 9.9 0.14 3.36 0.43
PrSO3H-SBA-15-OP 674 0.52 3.1 0.06 1.38 0.22
PrSO3H-SBA-15-0 410 0.87 8.5 4.87 5.30 1.03
PrSO3H-SBA-15-200 325 0.54 6.7 6.22 3.60 1.11
PrSO3H-SBA-15-400 281 0.58 8.2 8.50 3.74 1.17
PrSO3H-SBA-15-800 296 0.66 8.9 8.07 3.42 1.09

KIT-6-80 539 0.57 4.3 – – –
PrSO3H-KIT-6-80 362 0.37 4.1 1.34 2.56 0.67
PrSO3H-KIT-6-100 443 0.42 3.8 5.90 5.21 0.60
PrSO3H-KIT-6-120 402 0.44 4.4 2.03 4.95 0.55

[a] BET, [b] BJH, [c] XRF, [d] XPS, [e] total acidity determined by base-acid titration.
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Complete grafting of thiol-propyl groups on mesoporous materials and the following oxidation to
sulfonic acid groups were examined by XRF and XPS. As could be deserved by the bulk sulfur content
of the catalysts that were determined by XRF in Table 1, the bulk sulfur content of PrSO3H-SBA-15
synthesized by one pot method and conventional method is 0.06 wt % and 0.14 wt %, respectively.
Higher grafting amount of propylsulfonic acid groups was achieved by post-grafting in H2O using
NaCl as additive. The relation between bulk sulfur content and acid site also suggests the complete
oxidation of thiol-propyl groups, which is consistent with the results of XPS. As shown in S2p
XP spectra of both sulfonic acid functionalized materials (Figure 3), a single energy doublet that
was caused by propylsulfonic acid groups centered at 168.9 eV, which revealed that a single S
chemical environment appeared, confirming the complete oxidization of thiol-propyl groups to
propylsulfonic acid groups [44–46]. It is also notable that surface sulfur amounts range from 3.60 wt %
to 5.23 wt % with the amount of NaCl changing from 0 to 800 mg. PrSO3H-SBA-15-400 has the highest
bulk S content and smaller pore volume. The concentration of active Si–OH on molecular sieve SBA-15
have an important influence on the grafting efficiency [47]. A higher propylsulfonic acid amount
is obtained on SBA-15 than the family of KIT-6 by comparing of the bulk and surface sulfur, which
suggests the higher density of reactive silicone groups on SBA-15.
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Figure 3. Fitted S2p spectra for PrSO3H-SBA-15 and PrSO3H-KIT-6 materials.

The synthesis of propylsulfonic acid functionalized mesoporous silica includes the grafting of
–SH and successful oxidation of –SH to –SO3H by hydrogen peroxide (H2O2) [48]. Oxidation of the
–SH to –SO3H is necessary to enhance the acid strength of molecular sieve and to obtain catalysts
with good catalytic activity. The ideal oxidation of –SH to –SO3H should be proceeded with the
following reaction (R–SH + 2H2O2→R–OSO2H + 3H2O). The acidic properties of the grafted sulfonic
acid catalysts were measured by acid-base titration. As shown in Table 1, the acid capacity for NaCl
added PrSO3H-SBA-15 was found to be two to three times higher than PrSO3H-SBA-15-Tol.

By SEM and TEM, the shape of the primary crystallites and the order of their packing in catalysts
were examined. From SEM images (Figure 4b), we can see that these materials are consisted of some
short rods with a relatively uniform length and the short-rod morphology of SBA-15 sample was
well preserved after grafting (Figure 4b,c). The TEM image of SBA-15 (Figure 5a) shows well-ordered
hexagonal arrays of mesopores and confirms its 2D hexagonal structure. The TEM observations also
indicated that ordered mesostructured of SBA-15 and KIT-6 were retained, even after post-grafting.
As an exception, the image of PrSO3H-SBA-15-OP is different from the others, which is consistent with
the N2 isotherms in Figure 2B.
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Figure 4. Scanning electron microscopy (SEM) images of (a) SBA-15; (b) PrSO3H-SBA-15-400;
(c) PrSO3H-SBA-15-Tol; and, (d) PrSO3H-SBA-15-OP.
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Figure 5. Transmission electron microscopy (TEM) images of parent and propysulfonic acid
functionlized SBA-15 and KIT-6: (a) SBA-15; (b) PrSO3H-SBA-15-400; (c) PrSO3H-SBA-15-Tol;
(d) PrSO3H-SBA-15-OP; (e) KIT-6-80; and, (f) PrSO3H-KIT-6-80.

2.2. Catalytic Activity for Glycerol Acetalization

Propylsulfonic acid functionalized mesoporous materials were prepared by different methods and
evaluated in the glycerol acetalization with TOX to obtain the mixture of the glycerol formal (Scheme 1,
5R and 6R). It is clear that all sulfonated mesoporous molecular sieves exhibit higher activity than the
non-sulfonated parent material. The gap between the performance of sulfonated and non-sulfonated
one is owed to the higher accessibility of reactants to the acidic sites of sulfonated catalysts.

Figure 6 shows the yield of glycerol formal and the ratio of 5R to 6R achieved by three different
source of formaldehyde (FA): 1,3,5-trioxane (TOX), formaldehyde solution (FA), and paraformaldehyde
(PF). When compared with the results that were obtained with the three source of formaldehyde, TOX
shows the best yield of glycerol formal and the ratio of 5R to 6R is 42:58. Herein, we used TOX as the
source of FA for the further study.
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Figure 6. Effect of different source of formaldehyde on the glycerol acetalization catalyzed by
PrSO3H-SBA-15-400. Reaction condition: glycerol (4.60 g, 50 mmol), TOX (2.25 g, 75 mmol), 0.2 g
catalysts, bath temperature 90 ◦C, reaction time 8 h.

Inorganic salt NaCl is used to control the pore parameters (pore size, wall thickness, and surface
area, etc.) and the degree of polymerization during post-grafting. The possible role of NaCl in
promoting grafting amount is presented in Scheme 2. Ionic interactions with Cl− to open the Si–O–Si
bridges and activate Si–OH of the molecular sieve in a mixture of H2O and NaCl.
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Scheme 2. Possible role of NaCl in activating siloxane bridges for grafting.

The effect of the amount of NaCl during sulfonation and the catalytic activity of the synthesized
catalysts on glycerol acetalization were studied. Figure 7 showed the catalytic properties of the series of
PrSO3H-SBA-15-x (x = 0, 200, 400, 800). Post-grafting synthesized SBA-15 catalysts apparently exhibited
higher catalytic performance than the one-pot method and conventional toluene grafted method in
the described reaction. When the amount of NaCl is 400 mg, the catalyst has the smallest surface area
and highest acid capacity. PrSO3H-SBA-15-400 presented the greatest catalytic performance. The yield
of 5R + 6R can reach 91.5% and the ratio of 5R:6R is 42:58. The catalytic activity of the prepared
catalysts using different methods increased in the order: PrSO3H-SBA-15-400 > PrSO3H-SBA-15-OP >
PrSO3H-SBA-15-Tol. According to acid-base titration, the acid capacity of the series of PrSO3H-SBA-15
range from 0.2 mmol g−1 to 1.2 mmol g−1, which is in agreement with the catalytic performance.
That is to say, the catalysts that were synthesized by post-synthesis method exhibited higher catalytic
performance than the conventional methods.
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Figure 7. Catalytic performance of PrSO3H-SBA-15 with different methods in glycerol acetalization.
Reaction condition: glycerol (4.60 g, 50 mmol), TOX (2.25 g, 75 mmol), 0.2 g catalysts, bath temperature
90 ◦C, reaction time 8 h.

In previous work, the investigations were aiming at increasing the amount of 1,3-dioxan-5-ols (6R)
because 6R could be used as raw materials of 1,3-propanediol derivatives. The product distribution
of glycerol acetalization with TOX (Scheme 1, 5R and 6R) is highly dependent on the experimental
conditions. Therefore, PrSO3H-SBA-15-400 was used to optimize the reaction condition to reach a high
yield of the isomers and ratio of 6R.

Effect of catalyst content: To optimize the amount of catalyst for glycerol acetalization with TOX,
the reaction was conducted over PrSO3H-SBA-15-400 for 8 h at 90 ◦C using a different amount of
catalyst (Figure 8). The yield of glycerol formal was increased from 85.7% to 91.5% by increasing the
catalyst amount from 2 wt % to 4 wt %. However, there is no further enhance was achieved and the
ratio of 6R decreased gradually when increasing the catalyst amount to 6 wt %.
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Figure 8. Effect of catalysts content on the yield of glycerol formals (GF) over PrSO3H-SBA-15-400 with
reactant molar ratio (formaldehyde: glycerol) 1.5:1 at 90 ◦C for 8 h.

Effect of reaction temperature: Figure 9 showed the effect of temperature variation on the
acetalization of glycerol with formaldehyde. Several tests were conducted at different temperature
from 40 ◦C to 120 ◦C to acquire the optimal parameter. The yield of GF changed from 18.5% at 60 ◦C to
91.5% at 90 ◦C. The amount of 6R increased at first with the temperature ranging from 40 ◦C to 90 ◦C.
However, 6R isomer decreased quickly after 90 ◦C, which may be caused by the isomerization of the
5R to 6R.
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Figure 9. Effect of temperature on the yield of GF over PrSO3H-SBA-15-400 using 0.2 g catalysts,
reactant molar ratio (formaldehyde: glycerol) 1.5:1 for 8 h.

Effect of mole ratio of formaldehyde to glycerol: The catalytic experiments were carried at 90 ◦C,
8 h with a catalyst amount of 4 wt %, formaldehyde/glycerol = 1:1, 1.5:1, 2:1, 3:1. Figure 10 indicates
the yield of GF and the distribution of the glycerol formal that is influenced by the change of molar
ratio of formaldehyde to glycerol. The yield of GF increases from 83.7% to 91.5% when the mole ratio
of formaldehyde to glycerol increasing from 1.2:1 to 1.5:1. Further increasing molar ratio from 1.5:1 to
3:1, the yield of GF decreased to 61.0% and the ratio of 6R decreased slightly.

Catalysts 2018, 8, x FOR PEER REVIEW  10 of 17 

 
Figure 9. Effect of temperature on the yield of GF over PrSO3H-SBA-15-400 using 0.2 g catalysts, 
reactant molar ratio (formaldehyde: glycerol) 1.5:1 for 8 h. 

Effect of mole ratio of formaldehyde to glycerol: The catalytic experiments were carried 
at 90 °C, 8 h with a catalyst amount of 4 wt %, formaldehyde/glycerol = 1:1, 1.5:1, 2:1, 3:1. Figure 
10 indicates the yield of GF and the distribution of the glycerol formal that is influenced by the 
change of molar ratio of formaldehyde to glycerol. The yield of GF increases from 83.7% to 91.5% 
when the mole ratio of formaldehyde to glycerol increasing from 1.2:1 to 1.5:1. Further 
increasing molar ratio from 1.5:1 to 3:1, the yield of GF decreased to 61.0% and the ratio of 6R 
decreased slightly.  

 
Figure 10. Effect of mole ratio (formaldehyde to glycerol) on the yield of glycerol formal over 
0.2 g PrSO3H-SBA-15-400 at 90 °C for 8 h. 

Effect of reaction time: The experiments were carried out from 1 h to 16 h over PrSO3H-
SBA-15-400 while using 0.2 g catalysts at 90 °C (Figure 11). The yield increased rapidly by 
increasing the reaction time to 8 h and reached 91.3%. There is no further increase in the GF 
yield while extending the reaction time and 6R is decreased gradually.  

0

20

40

60

80

100

120
   5R
   6R

0

20

40

60

80

100

110100908060

T/℃

Y
ie

ld
/%

R
at

io
 o

f 
5R

 to
 6

R

 Yield

40

0

20

40

60

80

100

120

 

 

  5R
  6R

0

20

40

60

80

100

molar ratio

Y
ie

ld
/%

R
at

io
 o

f 
5R

 to
 6

R

3:12:11.5:1

 Yield

1.2:1

Figure 10. Effect of mole ratio (formaldehyde to glycerol) on the yield of glycerol formal over 0.2 g
PrSO3H-SBA-15-400 at 90 ◦C for 8 h.

Effect of reaction time: The experiments were carried out from 1 h to 16 h over
PrSO3H-SBA-15-400 while using 0.2 g catalysts at 90 ◦C (Figure 11). The yield increased rapidly
by increasing the reaction time to 8 h and reached 91.3%. There is no further increase in the GF yield
while extending the reaction time and 6R is decreased gradually.
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Figure 11. Effect of reaction time on the yield of GF over 0.2 g PrSO3H-SBA-15-400 catalyst at 90 ◦C
with reactant molar ratio (formaldehyde: glycerol) 1.5:1.

Hence, the glycerol acetalization was conducted in solvent free condition while using TOX as the
source of formaldehyde. The optimum condition is: 4 wt % catalysts amount, formaldehyde: glycerol
1.5:1 at 90 ◦C for 8 h, and optimal catalyst activity is 91.5% yield of GF and the ratio of 5R to 6R is 42:58.

We then investigated KIT-6 catalyst family in glycerol acetalization under the optimal reaction
parameters and compared the PrSO3H-SBA-15 family with PrSO3H-KIT-6. PrSO3H-KIT-6 was
synthesized under different aging temperature for 24 h and the aging temperature showed a dramatic
effect on the physical properties and the grafting amount of –SO3H. Different aging temperature
expands the surface area from 362 m2g−1 to 443 m2g−1 and it leads to the decrease of wall thickness,
which is in accordance with the literature.

As summarized in Table 2, PrSO3H-KIT-6-80 showed optimal performance for the acetalization of
glycerol with formaldehyde (Table 2, Entry 2). The yield of 5R + 6R can reach 89.6%, and the ratio of
5R:6R is 34:66. The SBA-15 supported propylsulfonic acid functionalized catalysts showed a slightly
higher yield of GF than KIT-6 supported catalysts (Table 2, Entries 2, 5). However, the ratio of isomer 6R
catalyzed by the series of KIT-6 is obviously higher than the series of SBA-15. SBA-15 possesses parallel
mesopore channels organized in hexagonal arrangement which may provide better transportation
channels to get more access to acid sites. As shown in Table 1, the pore volume and pore size of the
series of KIT-6 is smaller than propylsulfonic acid functionalized SBA-15. Maybe much microporosity
in KIT-6 hinder the diffusion of bulky molecules, resulting in a low activity of the catalysts.

Table 2. Glycerol acetalization with 1, 3, 5-trioxane (TOX) using KIT-6 family catalysts.

Entry Cat Yield of GF/% Ratio of 5R to 6R

1 KIT-6-80 6.0 22:78
2 PrSO3H-KIT-6-80 89.6 34:66
3 PrSO3H-KIT-6-100 85.6 38:62
4 PrSO3H-KIT-6-120 66.6 37:63
5 PrSO3H-SBA-15-400 91.5 42:58

Reaction condition: glycerol (4.60 g, 50 mmol), TOX (2.25 g, 75 mmol), 0.2 g catalysts, bath temperature 90 ◦C,
reaction time 8 h.

2.3. Reaction Mechanism

The formation of GF isomers depend on which two –OH groups joined because of one glycerol
molecule has two different hydroxyl groups (–OH). According to da Sliva Ferreira and Sharma
S.P. [49,50], the reaction mechanism for the acetalization of glycerol with formaldehyde mainly contains
two reversible steps. As shown in Scheme 3, firstly, formaldehyde reacts with the two different
–OH groups of glycerol to form two kinds of hemiacetals: 1,2-propanediol, 3-(hydroxymethoxy),
and 1,3-propanediol, 2-(hydroxymethoxy). Then, two hydroxyl groups of the hemiacetal condense



Catalysts 2018, 8, 297 12 of 17

and form the two glycerol formal isomers 5R and 6R. From the hemiacetal, 1,2-propanediol,
3-(hydroxymethoxy), two kinds of acetal 5R and 6R can be formed, while for 1,3-propanediol,
2-(hydroxymethoxy), only the 5R acetal is formed. Therefore, the fraction of 5R isomer is always higher
than 6R. The first step of converting glycerol to hemiacetal is a fast reaction, while the second step that
transforms hemiacetal to the product glycerol formal isomers is slow. However, the hemiacetal cannot
be detected by GC, owing to the high injector temperature requested for analysis [51].
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Scheme 3. Possible reaction mechanism for glycerol acetalization with TOX.

2.4. Catalyst Reusability

Finally, we evaluated the recyclability of the PrSO3H-SBA-15-400 in the yield of glycerol
acetalization and the distribution of isomers under the optimized conditions (Figure 12). In each
cycle, the catalyst was easily separated and recovered from the reaction mixture, washed with
dichloromethane, and subsequently dried in vacuum before another reaction was performed. The yield
of glycerol formal can reach 79.4% in the fifth runs.
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Figure 12. Recyclability of PrSO3H-SBA-15-400 in glycerol acetalization. Reaction condition: glycerol
(4.60 g, 50 mmol), TOX (2.25 g, 75 mmol), 0.2 g catalysts, bath temperature 90 ◦C, reaction time 8 h.
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3. Experimental

3.1. Chemicals and Materials

Molecular sieve SBA-15 was purchased from Nanjing XFNANO Materials Tech Co., Ltd.
(Nanjing, China). Triblock copolymer EO20PO70EO20 (Pluronic P123, MW = 5800) and
3-mercaptopropyltrimethoxysilane (MPTMS, 95%) were purchased from Aldrich Chemical Inc.
(Shanghai, China). Toluene, hydrogen peroxide, anhydrous ethanol, and methanol were purchased
from Rianlon Chemical Co., Ltd. (Tianjin, China). All of the chemicals are of analytical reagents (A.R.)
and used directly without further purification.

3.2. Catalysts Preparation

Sulfonated mesoporous materials were prepared with different methods by varying the synthetic
strategies. Molecular sieve KIT-6 were synthesized by the methods of Ryoo et al. [52]. 4 g of Pluronic
P123 and 7.5 g of 35% HCl were dispered in 144 g distilled water. The solution was stirred for
2 h at 35 ◦C and 4 g butanol was added. After stirring for 1 h, 8.5 g of TEOS was added at 35 ◦C
(P123:HCl:TEOS:H2O:BuOH = 0.017:1.83:1:195:1.31 in mole ratio). The mixture was then agitated for
24 h at 35 ◦C, and aged for a further 24 h at 80 ◦C, 100 ◦C, or 120 ◦C in a closed polypropylene bottle
under static conditions. The solid product obtained was then filtered and dried at 70 ◦C in vacuum
followed by calcination at 550 ◦C for 5 h.

PrSO3H-SBA-15-OP was synthesized by one pot method as the known procedure that was
described by Stucky and his co-workers [53–55]. In a typical preparation procedure, 4 g of Pluronic
123 was dissolved in 125 mL of 1.9 M HCl solution at 40 ◦C and 8.2 mL of TEOS was added
subsequently. After 45 min pre-hydrolysis of TEOS, 0.76 mL of MPTMS and 3.8 mL of H2O2 was
added. The resultant solution was stirred for 24 h at room temperature, after which the mixture was
aged at 100 ◦C for 24 h under static conditions. The solid was filtered, washed three times with water,
and finally dried overnight. The catalyst was labeled as PrSO3H-SBA-15-OP. PrSO3H-SBA-15-Tol was
prepared by a co-condensation method [56]. 1 g SBA-15 was dispersed in 30 mL toluene and 1 mL
3-mercaptopropyltrimethoxysilane (MPTMS) was added. The mixture was then refluxed at 130 ◦C
with stirring for 24 h, and the resulting thiol-functionalized product was filtered, washed three times
with methanol, and dried on vacuum at RT. –SH was converted into –SO3H by mild oxidation with
30 mL of 30% hydrogen peroxide by continuous stirring at room temperature for 24 h. The sulfonated
solid product was subsequently filtered, washed three times with methanol, and dried in vacuum.
The product was labeled as PrSO3H-SBA-15-Tol.

The series of PrSO3H-SBA-15-x was prepared by the following method: 1 g SBA-15 and x mg
NaCl were added to 30 mL H2O and stirred for 15 min. Subsequently, 1 mL MPTMS was added to the
solution and refluxed under stirring at 100 ◦C for 24 h, after which the resulting thiol-propyl modified
solids catalysts were filtered, washed three times with H2O, and dried in vacuum. Oxidation of –SH to
the –SO3H was conducted in 30 mL of 30% hydrogen peroxide at RT for 24 h. The propylsulfonated
solid products were filtered, washed three times with methanol, and dried in vacuum. The resulting
sulfonic acid derivatized catalysts were denoted as PrSO3H-SBA-15-x (where x represents the amount
of NaCl mg used in the grafting process).

The series of PrSO3H-KIT-6-T was synthesized by the following method: 1 g of KIT-6 synthesized
under different aging temperature and 1 mL of MPTMS were added to 30 mL toluene. The mixture
was then refluxed with stirring at 130 ◦C for 24 h and the resulting thiol-functionalized solid product
was filtered, washed three times with methanol, and dried at 70 ◦C in vacuum. The conversion of
thiol-propyl groups to –SO3H was consistent with the procedure described above. The synthesized
catalyst was marked as PrSO3H-KIT-6-T.
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3.3. Catalyst Characterization

Structural properties and composition of prepared mesoporous materials were measured by
a combination of N2 adsorption-desorption (BET), and X-ray diffraction (XRD), scanning electron
microscopy (SEM), transmission electron microscopy (TEM), with sulfur content determined by
X-Ray (XRF, bulk) and X-ray photoelectron spectroscopy (XPS, surface), and acid capacity based on
acid-base titration.

N2 adsorption-desorption isotherms were recorded while using a TristarII 3020 instrument
(Norcross, GA, USA) and pore size distribution curves were calculated from the analysis of desorption
branch of the isotherm by the BJH (Barrett-Joyner-Halenda) method. Surface areas were calculated
using the Brumauer-Emmett-Teller (BET) method over the relative pressure range at P/P0 = 0.06–0.28.
Before adsorption, the samples were degassed at 423 K for 4 h.

Powder X-ray diffraction (XRD) patterns were collected on a PANalytical Empyrean (Almelo,
Netherlands). Small-angle X-ray diffraction patterns were acquired from 2θ = 0.3◦ to 6◦ with a 0.01◦

step size.
Transmission electron microscopy (TEM) images were recorded on a FEI microscope (Hillsboro,

OR, USA) operated at 200 kV equipped with a Gatan K2 Summit camera. Sample were prepared by
dispersing in ethanol and dropcasting onto a micro grid. Scanning electron microscopy (SEM) photos
were taken with a Model SU8020 (Hitachi, Japan) field emission scanning electron microscopes.

X Ray Fluorescence (XRF) was performed on a PANalytical Magix PW2403 (Almelo, Netherlands).
XPS was performed using an ESCALAB 250Xi instrument (Loughborough, UK) fitted with a charge
neutralizer and neutraliser and magnetic focusing lens employing Al Kα monochromated radiation
(1486.7 eV). Spectral fitting was performed using CasaXPS version 2.3.16.

The acid capacities of the synthesized catalysts were determined by acid-base titration while
using NaCl solution as an ion-exchange agent. 50 mg sample in powder form was ion-exchanged
with 50 mL 2 mol/L NaCl solution at RT for more than 24 h. The filtrates were then titrated with a
0.01 mol/L NaOH solution.

3.4. Catalytic Activity Tests

Catalytic activity were evaluated in the glycerol acetalization with 1,3,5-trioxane (TOX). In a
typical experiment, glycerol, TOX, and a certain amount of catalyst were added quantificationally
into the reactor. The mixture was heated to a desired temperature and stirred at a speed of
600 rpm/min. Upon reaction completion, the qualitative analysis of products were performed
by chromatography/mass spectrometry (GC/MS) (Agilent 7980A/5975C, Santa Clara, CA, USA).
The products of the reactions were quantified on an Aglient 7890GC (Santa Clara, CA, USA) using a
flame ionization detector (FID) with a HP-5 30 m × 0.32 mm × 0.2 µm capillary column.

4. Conclusions

An array of propylsulfonic acid functionalized SBA-15 were prepared while using different
methods with different structure parameter and varying amount of propylsulfonic acid group.
The propylsufonic acid functionalized KIT-6 catalysts have been prepared by co-condensation under
different aging temperature and compared with the series of SBA-15. PrSO3H-SBA-15-400 is the most
active catalyst in glycerol acetalization with formaldehyde. The yield of GF and distribution of the
GF isomers could be adjusted by varying reaction condition. The glycerol acetalization with TOX
was optimized and conducted out under 90 ◦C, 8 h, with 4 wt % catalyst loading, and the ratio of
formaldehyde to glycerol is 1.5:1. PrSO3H-SBA-15-400 showed optimal catalyst activity with 91.5%
yield and the ratio of 5R to 6R is 42:58.
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