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Abstract: Exploring inexpensive and highly efficient electrocatalyst to decrease the overpotential
of oxygen reduction reaction (ORR) is one of the key issues for the commercialization of energy
conversion and storage devices. Heteroatom-doped carbon materials have attracted increasing
attention as promising electrocatalysts. Herein, we prepared a highly active electrocatalyst, nitrogen,
sulfur co-doped carbon nanofibers (N/S-CNF), via in situ chemical oxidative polymerization of
methylene blue on the bacterial cellulose nanofibers, followed by carbonization process. It was found
that the type of nitrogen/sulfur source, methylene blue and poly(methylene blue), has significantly
influence on the catalytic activity of the resultant carbon nanofibers. Benefiting from the porous
structure and high surface area (729 m2/g) which favors mass transfer and exposing of active N and
S atoms, the N/S-CNF displays high catalytic activity for the ORR in alkaline media with a half-wave
potential of about 0.80 V, and better stability and stronger methanol tolerance than that of 20 wt %
Pt/C, indicating great potential application in the field of alkaline fuel cell.

Keywords: nitrogen sulfur co-doped carbon nanofibers; bacterial cellulose/poly(methylene blue)
hybrids; oxygen reduction reaction; electrocatalyst

1. Introduction

The development of low-cost and efficient energy conversion and storage technologies is of vital
importance in alleviating the energy crisis and environmental protection. In recent years, some novel
fuel cells and metal-air batteries, a class of devices that convert the chemical energy directly into
electricity by electrochemical reactions, have attracted increasing attention [1–4]. In these devices,
the oxygen reduction reaction (ORR) on the cathode is very slow kinetically, and thus requires platinum
(Pt) as electrocatalyst. As the high price and unsatisfactory methanol tolerance of Pt have become
a bottleneck of its extensive application in the fuel cells and metal-air batteries, the development of
cheap and steady non-platinum catalysts is a practical and urgent issue [5–8]. In such conditions,
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nitrogen doped carbon nanomaterials (N-Cs) has recently been expanding rapidly because of excellent
catalytic activity and high stability for the ORR in alkali media, and many techniques have been
developed to prepare high active N-Cs as electrocatalyst for the ORR [9–14].

It is very well-known that the catalytic activity of N-Cs is closely related to their structure,
meanwhile, the structural characteristics, such as the type and number of active centers, the porous
structures [15] and the graphitizing extent [16,17], are controlled by the preparation method.
Generally, the most used method to prepare the N-Cs is carbonizing various nitrogen-containing
precursors, including (i) the heat-treatment of the existing carbon materials (such as graphene)
using N-containing compounds (ammonia etc.); (ii) the pyrolysis of the N,C-containing precursor.
In these processes, nitrogen source has great influence on the structure characteristics of the resultant
N-Cs, and thus has a positive or negative impact on the catalytic activity for the ORR [18,19].
Understanding the impact of nitrogen source in molecular scale will provide fundamental knowledge
for the rational design of N-Cs with high catalytic activity for the ORR.

In addition to the nitrogen source, the carbon source should be paid much attention to. Most of
the reported N-Cs are prepared through chemical reagents or pre-synthesized precursor [20,21].
Considering the mass production in practical application, the cheaper raw and more convenient
procedures are desired. Biomass is an attractive raw material due to its low cost, abundance and
environmental friendly. Recently, various biomass, such as soybean shells [22], poplar catkins [23],
biomass lysine [24] and soybean [25], are used to prepare the N-Cs as electrocatalyst for the ORR.
Compare to these materials, cellulose, as the most abundant polymer on earth, is an excellent
precursor for producing various carbon-based catalyst [23,26]. Especially, bacterial cellulose (BC),
a biomass material produced by microbial industrial fermentation process at a very low price, possess a
interconnected three dimension porous network structure consisting of cellulose nanofibers, and thus,
is an ideal material to prepare of three dimension carbon-based functional nanomaterials [27,28].

Methylene blue (MB), as a cationic phenothiazines dye, contains not only N but also S element.
Both can incorporate into the carbon matrix through facile carbonization, and the synergistic effect of N
and S further enhances the catalysis performance for the ORR [29]. In addition, MB has good adsorption
on the phenolic group of BC through various mechanisms such as electrostatic attractions [30], and it
is easy to obtain the hybrid of BC/MB. Though carbonizing it, the nitrogen, sulfur-co-doped carbon
nanofibers (N/S-CNF) has been facilely achieved [31]. However, compared with the comical Pt/C,
the catalytic activity of N/S-CNF for the ORR is unsatisfied, and there is still no rational explanation
for this result, due to the complicated carbonation process [32].

Compared with MB which is a small molecule compound, poly(methylene blue) (PMB) can
gradually reduce and release the N/S-containing gas products during the carbonization process.
These gas products readily react with the carbonization product and incorporate into it with higher
N/S doping amount. Hence, we speculate that poly(methylene blue) (PMB) may be more appropriate
as nitrogen source than MB. Luckily, the chemical oxidative polymerization of MB can occur at room
temperature using the common oxidant, such as Au3+ and ammonium persulfate ((NH4)2S2O8) [33,34].

Therefore, in this work, using BC as carbon source, MB and PMB as nitrogen source respectively,
the N/S-CNF was prepared. After characterizing the microstructure and evaluating the catalytic
activity of the N/S-CNF derived from the hybrids of BC/MB and BC/PMB respectively, it is found
that the activity for the ORR can be tuned by varying the type of nitrogen precursor. The N/S-CNF,
prepared via in situ chemical oxidative polymerization of MB on the BC followed by carbonization
process, displays high catalytic activity for the ORR in alkaline media with a half-wave potential of
about 0.80 V, and better stability and stronger methanol tolerance than that of 20 wt % Pt/C.
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2. Results

2.1. Characterization of the BC/MB and BC/PMB

As presented in Figure 1, the N/S-CNF were prepared by three steps. First, the MB was
absorbed on the surface of BC at 100 ◦C, driven by the electrostatic interaction or hydrogen bond.
Secondly, the chemical oxidative polymerization of MB was initiated by (NH4)2S2O8 and the formed
PMB enwrapped evenly the nanofibers of BC [34]. Finally, the obtained BC/PMB hybrid was
carbonized to form the N/S-CNF.
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Figure 1. Synthetic procedure of the N/S-CNF.

To identify the formation of PMB on the surface of BC, the samples of BC, BC/MB and BC/PMB
were characterized. Scan electron microscopy (SEM) image (Figure 2a) shows that the BC consists
of the intertwining nanofibers with a dimension of about 100 nm. After adsorbing MB, some MB
particle aggregations are deposited on the surface of BC (Figure 2b). However, after polymerization,
these aggregations disappear and some smooth joints gumming the nanofiber together are observed
from the BC/PMB (Figure 2c), suggesting the dissolution/reprecipitation process happened during
the chemical oxidation polymerization of MB. The EDS results show that N, S and Cl are detected in
the BC/MB and BC/PMB, and the contents of N and S in these two samples are similar (Figure 2b,c
and Figure S1). However, the content of Cl in the BC/PMB is much lower than that of the BC/MB.
This result indicates that, the MB cations are adsorbed on the surface of BC by static electric attractive,
after in situ oxidation polymerization, Cl− dissolved into solution and the electroneutral PMB was
formed. From the FTIR spectra of BC, PMB, and BC/PMB in Figure 2d, the typical peaks belonging
to the PMB and BC, which are in agreement with the reported [35–38], are observed. The peak at
1600 cm−1 assigned to the stretching vibration of the –C=N group of the PMB is detected from the
BC/PMB, demonstrating that the PMB has successfully loaded on the BC. In addition, the survey
spectra of X-ray photoelectron spectroscopy (XPS) (Figure 2e) further prove the presence of S and N in
both the BC/MB and BC/PMB. Similar to the results of EDS, the peak (198.9 eV) ascribed to Cl− is
detected from the BC/MB while not the BC/PMB. The XPS fine spectra of N1s in Figure 2f further
demonstrates the formation of PMB in the BC/PMB due to the appearance of PMB characteristic
peak at 400.1 eV [39]. Furthermore, the peaks of pyridinic N (399.7 eV) and protonated amine N
(401.6 eV) of the PMB shift to low energy direction, indicating the PMB tightly enwrap the nanofibers
of BC, which results in the electron of the skeleton carbon atoms in the BC shifting toward the N
atom of PMB due to the difference in electronegativity between them. All these results reveal that the
hybrid of BC/PMB has been successfully prepared. Further study (Figure S2) reveals that, without the
BC, the prepared PMB are blocks with irregular morphology, testifying the important role of BC in
inhibiting the agglomeration of PMB.
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Figure 2. SEM images of (a) BC; (b) BC/MB and (c) BC/PMB; (d) FTIR spectra of BC, PMB and
BC/PMB; (e) XPS survey spectra of BC, BC/MB and BC/PMB; and (f) fine XPS spectra of N1S for the
BC/MB and BC/PMB.

Thermogravimetric analysis (TGA) was further carried out to verify the thermal decomposition
behavior of the BC, MB, PMB, BC/MB and BC/PMB, and the corresponding TG curves are shown
in Figure 3. The MB exhibits the first mass loss step below 250 ◦C with a mass loss of about 13%,
and the second one centers at 250–400 ◦C with a mass loss of about 26%. With further increasing
the temperature, the mass loss increases slowly, and the carbon product at 800 ◦C is about 52%.
Compared with the MB, PMB shows much better thermal stability, and the onset decomposition
temperature is up to ~250 ◦C, but the carbon yield has no change. The BC has a sharp mass loss in
the range of 250–375 ◦C, and a low carbon yield of 11%. For the BC/MB, the thermal decomposition
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behavior in the low temperature (<250 ◦C) is similar to that of MB, and the carbon yield is ~40%.
No surprise, the BC/PMB displays higher thermal stability below 250 ◦C, and the carbon yield is close
to that of BC/MB and of 37%. Based on these results, it can be suspected that the high decomposition
temperature of PMB should be helpful for its decomposition products to participate in the carbonization
reaction, and thus promote the formation of N/S co-doped carbon materials.
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Figure 3. TG curves of the PMB, MB, BC, BC/MB and BC/PMB.

2.2. Characterization of the Carbonization Products of BC, BC/MB and BC/PMB

After carbonizing the BC, BC/MB and BC/PMB, the resultant products are named by C-BC,
C-BC/MB and N/S-CNF, and their morphologies were investigated by SEM and TFM. Compared the
images of BC (Figure 2a) and C-BC (Figure 4a,c), no obvious change is observed, except that the
nanofibers are fluffier and thinner in the case of C-BC. However, compared with the BC/MB (Figure 2b),
the C-BC/MB (Figure 4b) exhibits quite different morphology, which is similar to that of C-BC,
seeming that MB particles have been completely decomposed. Nevertheless, the corresponding
transmission electron microscopy (TEM) image (Figure 4e) shows that, except for the nanofibers
derived from the BC, there are some isolated nanoparticles with a dimension of about 30 nm. Based on
the different Z-contrast between S and C elements, these nanoparticles should be the sulfur-rich
materials, which are proved by the element mapping results of energy dispersive spectrometer (EDS)
(Figure S3). Obviously, these nanoparticles are the carbonized products coming from the incomplete
decomposition of MB, due to the absence of S in the BC. Considering the similar morphology of
the carbon nanofibers in cases of C-BC and C-BC/MB, it is deduced that the adsorbed MB has little
influence on the decomposition of BC, probably due to the weak interface interaction between them,
just as shown the TG curve in Figure 3. It is interesting to note that, in contrast to the C-BC and
C-BC/MB, the N/S-CNF derived from the BC/PMB, consists of some short and wide nanobelts
(Figure 4c), and their diameter and length (Figure S4) are about 70 and 400 nm, respectively. This result
demonstrates the great influence of PMB on the carbonization of BC. TEM image in Figure 4e shows that
the contrast of the nanobelts is uniform, indicating the absence of sulfur-rich domains in the N/S-CNF.
In addition, elemental mappings from energy dispersive spectroscopy (EDS) (Figure 4h,i) confirm
the nitrogen and sulfur are successfully incorporated and uniformly distribute in the carbon matrix.
Moreover, EDS results (insets in Figure 4b,c) show that the contents of N and S are slightly higher in
the case of N/S-CNF than that of C-BC/MB, further proving that PMB as N/S source is helpful for the
incorporation of N/S into the carbon framework. No Cl was found by EDS, probably because of the
formation of Cl-containing gas.
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To gain more insight, the porous structure of N/S-CNF was characterized. As shown in
Figure 5a, with respect to the C-BC and C-BC/MB, the N/S-CNF shows a type I isotherm due
to the accomplishment of the predominant adsorption of N2 below the relative pressure (P/P0) of 0.02,
implying the presence of micro-pores. In addition, a hysteresis loop at P/P0 from 0.40 to 1.0 is also
observed, which is a characteristic of mesoporous materials. The pore size distribution (PSD) and
surface area were calculated with the slit/cylinder model of quenched solid density functional theory
using the adsorption branch. The PSD curve further confirms that both the micro-pore centering at
1.0 nm and the meso-pores with various sizes in 2–35 nm coexist in the N/S-CNF. The calculated
surface area is 729 g·cm−2. The C-BC has similar PSD but smaller surface area, while the C-BC/MB
belongs to the mesoporous material and has the smallest surface area. These results suggest that
the MB or its decomposition product destroyed the micro-pores of C-BC, but the PMB promoted to
form more micro-pores in the C-BC, probably by chemical etching the carbon matrix. The hierarchical
porous structure and high surface area of N/S-CNF are beneficial to the exposure of more active sites
and the diffusion of reactants.

To elucidate the crystallinity of N/S-CNF, X-ray powder diffraction (XRD) and Raman
spectroscopic investigation were conducted. The XRD patterns of the N/S-CNF and the control samples
show a broad peak at approximately 2θ = 24◦ and a very weak peak at 2θ = 42◦ (Figure 5b), which are
the characteristics of graphitic carbon materials with low graphitization degree [40]. Raman spectra
(Figure 5c) further reveal that both amorphous and crystalline carbon coexist in these samples.
The intensity ratios of the D to G bands (ID/IG) are nearly same for these samples, reflecting their
similar graphitization degree [41].
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Figure 5. (a) N2 adsorption-desorption isotherms and the inset is the pore size distribution curve;
(b) XRD patterns; (c) Raman spectra and (d) XPS full spectra of C-BC, C-BC/MB and N/S-CNF; (e) N1s
and (f) S2p fine XPS spectra of C-BC/MB and N/S-CNF.

To further confirm the chemical state of N and S, X-ray photo electron spectroscopy (XPS)
measurement was carried out. As shown the XPS survey spectra in Figure 5d, N and S are detected from
the N/S-CNF and C-BC/MB, confirming that the N and S atoms have been successfully introduced
into the carbon matrix, which is in agreement with the EDS results. However, the contents of N and S
in the N/S-CNF are 3.2% and 0.8%, respectively, which are higher than that (2.6% and 0.4%) of the
C-BC/MB. Generally, It is believed that the N and S content play a key role for the improved ORR
catalytic activity [13,42], and thus the N/S-CNF should have better catalysis performance than that
of C-BC/MB. In addition, it is reported that the N and S species proportion also is crucial for the
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ORR catalytic activity of electrocatalyst [43]. Form the high-resolution N1s spectra (Figure 5e) of the
N/S-CNF and C-BC/MB, four peaks can be deconvoluted into, which are assigned to the pyridinic
N (398.7 eV), pyrrolic N (399.8 eV), graphitic N (401.2 eV) and (403.2eV), respectively. Usually, it is
accepted that the pyridinic N and graphitic N are active species for the ORR [43]. Compared with the
C-BC/MP, the N/S-CNF has a higher amount (77.3 at. %) of the two species and thus should display
better catalysis performance for the ORR. In addition, the high-resolution S2p spectra (Figure 5f) show
the peaks of P1/2 and P3/2 at binding energy of 163.5 and 164.3 eV which attribute to C–S–C bonds,
and the ones at 166.0–170 eV are associated with the oxidized-S species that are chemically inactive
for the ORR [30]. Similar to the case of N, the N/S-CNF also possesses higher amount (74.4%) of the
active S species than that (64%) of C-BC/MP. Therefore, combining all the above results of SEM, PSD,
XRD, XPS, and so on, a conclusion can be drawn that the PMB is more suitable as N and S source to
prepare efficient elecrocatalyst for the ORR than the MB.

2.3. Electrocatalytic Activity of the N/S-CNF for the ORR

The electrocatalytic activity of the N/S-CNF for the ORR was evaluated by cyclic voltammetry
(CV) measurements in 0.1 M KOH electrolyte. Being compared with the smooth CV curve obtained
from the N2-saturated electrolyte (Figure 6a), the CV curve in O2-saturated electrolyte shows a
cathodic peak at 0.78 V, implying the electrocatalytic activity of N/S-CNF for the ORR in alkaline
media. The ORR performance of the N/S-CNF was further measured with the rotating disk electrode
(RDE) using linear sweep voltammetry (LSV) technique. As control subjects, the ORR activities of the
C-BC, C-BC/MB and Pt/C electrocatalyst were also tested under the same experimental conditions
(Figure 6b). Unsurprisingly, the C-BC shows the worst catalytic activity due to lacking active centres
derived from N/S doping. With the benefit of N/S doping, the C-BC/MB exhibits a significant
performance boost over the C-BC. Especially, with the aid of the large surface area and high amount of
active N and S species, the N/S-CNF shows the best catalytic performance for the ORR, featuring with
a comparable E1/2 value (0.80 V) to the commercial 20 wt % Pt/C (0.83 V). In addition, the E1/2 value
(0.80 V) is also more positive than some of the reported N,S-co-doped carbon-based electrocatalysts
(Table 1). Especially, the E1/2 (0.80 V) in this work is 170 mV higher than that reported N-S-CNF-800
(MB) [31], which was prepared through BC physically absorbing MB and followed the carbonization
process. We think the novel preparation method should be responsible for the improved catalytic
activity. Firstly, based on the adsorption kinetic of MB on the cellulose [44] a harsh adsorption
condition, heating the saturated solution of MB containing the dried BC at 100 ◦C for 4.5 h with
autoclave, was employed to increase the adsorption amount of MB. Secondly, the N/S-CNF was
obtained by carbonizing the BC/PMB hybrid that derived from the in situ polymerization of MB on
the BC surface, but not by directly carbonizing the BC/MB hybrid as mentioned in the literature [31].
Obviously, compared with the small molecule compound, N,S-containing polymer is much more
suitable as N/S source for the synthesis of carbon-based electrocatalyst with high ORR catalytic activity.
To clarify the influence of synthesis parameters on the catalytic activity of N/S-CNF, a series of samples
were prepared. The corresponding LSV curves for the ORR (Figure S5) reveal that the catalytic activity
of N/S-CNF is sensitive to the synthesis condition, and the optimized experimental parameters are
critical for achieving the N/S-CNF with high catalytic activity.

The catalysis kinetic of the N/S-CNF for the ORR was further investigated. It is normal that
the limiting diffusion current increases with the rotation speed due to the thinned diffusion layer
(Figure 6c). The transferred electron number (n) per oxygen molecule involved in the ORR process
was calculated with Koutecky–Levich equation, which was to be ca. 3.89 in the potential range of
0.4 to 0.6 V, demonstrating an approximate four-electron pathway. To elucidate the electron transfer
mechanism, the hydrogen peroxide yields were measured with rotating ring-disk electrode (RRDE).
As shown in Figure 6f, the ring current originating from the oxidation of hydrogen peroxide ions
(HO2

−) is low. The calculated percentage of HO2
− is below 17% over the potential range from 0.2 to

0.8 V, which corresponds to a transfer number of ~3.88. This is agreement with the results obtained
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from the Koutecky–Levich plots, again illuminating a nearly 4e− pathway for the ORR catalyzed by
the N/S-CNF.
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Figure 6. (a) CV curves of the N/S-CNF in N2/O2-saturated 0.1 M KOH solution at scan rate of
50 mV·s−1; (b) ORR polarization curves of the C-BC, C-BC/MB, N/S-CNF and Pt/C electrocatalysts at
scan rate of 10 mV·s−1 and a rotation rate of 1600 rpm; (c) LSV curves of N/S-CNF at different rotation
rates, and the inset is the corresponding Koutecky–Levich plots; (d) RRDE measurements for N/S-CNF
electrode; chronoamperometry curves of the N/S-CNF and Pt/C obtained at 0.75 V for (e) the stability
test; and (f) methanol tolerance test before and after adding 1 M methanol. (b–f) were obtained in
O2-saturated 1 M KOH solution.
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Table 1. The difference of half wave potential between the N/S-co-doped carbon-based elecrocatalyst
and 20 wt % Pt/C for the ORR in 0.1 M KOH solution.

Sample ∆E 1
2 (mV) Ref.

N/S-CNFs 30 This work
N-S-CNF-800 (MB) 200 [31]

NS-3DrGO-950 64 [43]
N,S-PGN-800 30 [45]

NSC800 35.4 [46]
NSC-A2 80 [47]
PAC-5S 48 [48]

S1N5-OMC 65 [49]
N/S-2DPC-60 27 [50]
N,S-hcs-900 ◦C 40 [51]

NS-G 72 [52]
N,S-CN 50 [53]

CNx/CSx-GNRs 1000◦ for 2.5 h 50 [54]

Subsequently, the chronoamperometric responses is used to evaluate the electrocatalytic activity
and stability of the N/S-CNF. As shown in Figure 6e, after a brief transient period, the oxygen reduction
current at the N/S-CNF electrode remains stable for the long time (6000 s) of polarization, while the
current at the Pt/C electrode reduced to about 77% during the same test period, implying the excellent
durability of the N/S-CNF.

Methanol-tolerance is an important benchmark for the electrocatalyst used in fuel cells,
the catalysis performance of the N/S-CNF in KOH electrolyte containing methanol was investigated
by chronoamperometry. As displayed in Figure 6f, after adjusting the concentration of methanol to
1 M in the O2-saturated 0.1 M KOH electrolyte, the ORR current for Pt/C electrocatalyst shows a
drastic surge and cannot be recovered to the initial level. Conversely, the current level of the N/S-CNF
remains virtually unchanged, indicating its excellent methanol-tolerance.

3. Materials and Methods

3.1. Materials

BC membranes were supplied by Hainan Yida Food Co., Ltd., (Hainan, China), stored in acetic
acid solution. Before use, BC membranes were immersed into a 0.1 M sodium hydroxide solution at
100 ◦C for 60 min to remove the residual cells, and then thoroughly washed with deionized water until
pH reached neutral. To facilitate experimental operation, the BC membranes were cut to quadrate
pieces with size of 3 × 3 cm, and followed by freeze drying at −50 ◦C. All other chemicals were
purchased from Aladdin Reagent Co. Ltd., (Shanghai, China) and used as received.

3.2. Preparation of BC/MB and BC/PMB

6 mL of the saturated solution of MB was poured into the autoclave with volume of 15 mL, and the
dried BC membranes of 15 mg were soaked into it. To accelate adsorption of MB on BC membrane,
the autoclave was sealed and heated at 100 ◦C for 4.5 h. The blued BC membranes were washed by
water to remove the physically adsorbed day molecules, and then immsered into 10 mL of ammonium
peroxydisulphate solution (0.1 M) for 1.5 h to make the methylene blue polymerize. The purple BC
membranes were freeze-dried, and transferred into a tubular furnace for carbonization under a flowing
N2 atmosphere at 800 ◦C for 2 h with a heating rate of 2 ◦C·min−1. After cooled to room temperature,
the black carbon powder coded as N/S-CNF was achieved. To compare, the controlled samples were
also prepared with the BC membranes adsorbing and unadsorbing MB by the similar process.
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3.3. Electrochemical Measurements

Electrochemical experiments were carried out by computer-controlled CHI 760E (Chenhua
Instrument, Shanghai, China) electrochemical workstation equipped with RDE apparatus at room
temperature, using a standard three-electrode system. The electrocatalyst-modified working electrode
was prepared with the elelctrocatalyst ink, which was obtained by mixing 10 mg of electrocatalyst and
5 mL of water/Nafion solution, and sonicating the mixture for 60 min. After the working electrode
loaded 10 µL of electrocatalyst ink was dried at room temperature, the CV and LSV tests were measured
in N2- or O2-saturated 0.1 M KOH solution, by using a saturated calomel and carbon rod as reference
electrode and counter electrode, respectively. All potentials in this work were reported with respect
to reversible hydrogen electrode (RHE). The electron transfer number (n) was determined by the
Koutecky–Levich equation:

1/j = 1/jk + 1/Bω0.5 (1)

Here, jk is the kinetic current density, and B is expressed by the following expression:

B = 0.2 × n × F × (DO2)2/3 × ν−1/6 × CO2 (2)

where n represents the number of electrons transferred per oxygen molecule; F is the Faraday constant
(F = 96,485 C·mol−1); DO2 is the diffusion coefficient of O2 in 0.1 M KOH (1.9 × 10−5 cm2·s−1); ν is the
kinematic viscosity of the electrolyte solution (0.01 cm2·s−1); CO2 is the concentration of dissolved O2

(1.2 × 10−6 mol·cm−3). The constant 0.2 is adopted when the rotation speed is expressed in rpm.
The n and H2O2 yield (%) were measured with RRDE, and calculated with the followed equations:

n = 4Id/(Id + Ir/N) (3)

H2O2 (%) = 100 × (4 − n)/2 (4)

where Id is the disk current density, Ir is the ring current density, and N = 0.37 is the current
collection efficiency.

3.4. Characterization

The crystalline structure, morphology and surface composition of sample were physically
characterized by XRD (D/max-rC) (Rigalcu, Tokyo, Japan), TEM (JEM-2100F) (JEOL, Tokyo, Japan)
equipped with EDS, SEM (SU-8020) (Hitachi High-Technologies Corp., Japan), Raman Spectrometer
(In Via Reflex) (Renishaw PLC, Wotton-under-Edge, UK) and XPS (AXIS ULTRA) (Kratos Analytical
Ltd., Hadano, Japan). The surface area and pore volume of the samples were measured on a physical
adsorption instrument (ASAP 2400) (Norcross, GA, USA), the functional groups were analyzed by
using Fourier transform infrared spectroscopy (FTIR, Nicolet Is10) (Thermo Fisher Scientific, Waltham,
MA, USA), and the thermal decomposition behavior was measured by TGA (Q600) (TA Instruments,
New Castle, DE, USA).

4. Conclusions

We developed a facile method to fabricate superior ORR catalysts. By simply in situ polymerization
of MB on the surface of BC, followed by carbonization, the N/S-CNF nanomaterials was obtained.
It was found that, compared with the small molecular substance, the polymer as nitrogen/sulfur
source can significantly enhance the catalytic activity of the resultant N,S-co-doped carbon nanofibers.
Benefited from the synergistic effect of the multiple active sites, as well as the enriched porosity and
high surface area, the N/S-CNF revealed excellent ORR activity in alkaline media with a half-wave
potential of about 0.80 V. Moreover, the N/S-CNF showed better long-term stability and methanol
tolerance than that commercial 20 wt % Pt/C, demonstrating its potential application in fuel cells and
metal-air batteries as alternative Pt electrocatalysts.



Catalysts 2018, 8, 269 12 of 15

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/7/269/s1,
Figure S1: EDS spectra of (a) the BC/MB and (b) BC/PMB, Figure S2: SEM image of the PMB, Figure S3:
The dark field TEM image of the C-BC/MB and the corresponding element mapping images of S, N, O and C,
Figure S4: The diameter (b) and length (c) distribution of the nanofibers obtained from TEM image (a) of the
sample N/S-CNF, Figure S5: Linear sweep voltammetry curves of the samples of N/S-CNF prepared at different
condition. Fixed the other experiment parameters, (a) the concentration of MB in the adsorption process of MB on
BC was varied from 0.01 to 0.1 mol/L; (b) the heat treatment temperature in the adsorption process of MB on BC
was varied from 60 to 150 ◦C; (c) the polymerization time of MB was varied from 0.5 to 6 h. All these linear sweep
voltammetry curves were obtained from O2-saturated 0.1 M KOH solution at scan rate of 10 mv/s and a rotation
rate of 1600 rpm.
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