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Abstract: This study describes the decomposition of CO2 using Dielectric Barrier Discharge (DBD)
plasma technology combined with the packing materials. A self-cooling coaxial cylinder DBD reactor
that packed ZrO2 pellets or glass beads with a grain size of 1–2 mm was designed to decompose
CO2. The control of the temperature of the reactor was achieved via passing the condensate water
through the shell of the DBD reactor. Key factors, for instance discharge length, packing materials,
beads size and discharge power, were investigated to evaluate the efficiency of CO2 decomposition.
The results indicated that packing materials exhibited a prominent effect on CO2 decomposition,
especially in the presence of ZrO2 pellets. Most encouragingly, a maximum decomposition rate of
49.1% (2-mm particle sizes) and 52.1% (1-mm particle sizes) was obtained with packing ZrO2 pellets
and a 32.3% (2-mm particle sizes) and a 33.5% (1-mm particle sizes) decomposing rate with packing
glass beads. In the meantime, CO selectivity was up to 95%. Furthermore, the energy efficiency
was increased from 3.3%–7% before and after packing ZrO2 pellets into the DBD reactor. It was
concluded that the packing ZrO2 simultaneously increases the key values, decomposition rate and
energy efficiency, by a factor of two, which makes it very promising. The improved decomposition
rate and energy efficiency can be attributed mainly to the stronger electric field and electron energy
and the lower reaction temperature.

Keywords: self-cooling; dielectric barrier discharge; CO2 decomposition; CO selectivity;
packing materials

1. Introduction

The fast-growing consumption of fossil fuels has resulted in continually increasing emissions
of carbon dioxide, which is identified as one of the major contributors to global warming. Therefore,
the decrease of environmental pollution via CO2 emissions has attracted worldwide attention. Different
strategies are being developed to address the wasted CO2 instead of releasing it into the atmosphere,
such as: carbon capture and storage, transformation and utilization of carbon and CO2 dissociation.
Direct dissociation of CO2 into other value-added fuels and chemicals provides a potential route for
efficient utilization of CO2 and reduction of CO2 emissions [1]. Various progresses have been explored
to convert CO2 into other value-added chemicals, such as CO2 reforming of CH4 for hydrogen and CO2

hydrogenation for the synthesis of methanol, methane, formaldehyde, dimethyl, etc. [2,3]. Additionally,
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direct decomposition of CO2 into CO has also attracted great interest, which can not only relieve the
pressure of economic growth, but also can achieve energy savings and emission reduction [4,5]. As a
common feedstock for industry, CO is a widely-used chemical feedstock that can be used as a reactant to
produce higher energy products. Not only can it be used for fuel synthesis, but also for the production
of chemicals, such as organic acids, esters and other chemicals. Thus, the selective decomposition of
CO2 into CO is no doubt a promising candidate for clean energy and chemicals. However, due to
the high structural stability of the CO2 molecule, considerable energy is needed for CO2 activation
and decomposition. The conventional thermal-chemical process for CO2 decomposition has many
different levels of limited scope. For example, the thermodynamic equilibrium calculation of CO2

conversion shows that CO2 begins to split into CO and O2 near 2000 K, yet with a very low conversion
rate (<1%). The decomposition of CO2 can only be carried out at an extraordinarily high temperature
(3000–3500 K), which consumes high energy and involves considerable economic cost [6]. Nowadays,
Non-Thermal Plasma (NTP) is a newly-developed technology, as an attractive alternative, which has
been successfully applied in many fields, for instance gas purification and energy conversion [7–12].
It has advantages such as a non-equilibrium character, a low energy cost and a unique ability to
initiate chemical reactions at low temperatures [13,14]. As a kind of non-thermodynamic equilibrium
plasma, its distinct non-equilibrium character means the gas temperature in the plasma can be close
to room temperature, whilst the electrons are highly energetic with a typical mean energy of 1–10 eV.
NTP can initiate a series of chemical processes, including ionization, initiation and dissociation [15].
Various types of plasma, like glow discharge, corona discharge [16–18], microwave discharge, radio
frequency discharge [19] and gliding arc discharge have been explored for CO2 decomposition [20].
Dielectric Barrier Discharge (DBD) plasma was also tested for CO2 splitting into CO, and it can generate
high energetic electrons (1–10 eV) and initiate the chemical reactions while keeping the background
temperature under ambient conditions [6]. It has been applied in many fields, such as the removal
of NOx [21], as well as the preparation of catalysts [22] and other materials [23]. The decomposition
and conversion of the stable CO2 using DBD plasma is no exception, which has attracted increasing
attention for its unique abilities.

Many relevant works have been reported for the direct decomposition of pure CO2, CO2

conversion or reacting with other gases, such as adding inert gases to dilute the pure CO2 under the
assistance of DBD plasma [24,25]. It was reported that nitrogen is more effective for CO2 decomposition
among argon, nitrogen and helium as diluents, but this will produce unwanted by-products inevitably,
which is not preferable from the industrial application point of view [26]. Therefore, many previous
works have focused on the dissociation or conversion of CO2 without diluting. Further fundamental
works reported that different packing dielectric materials can enhance the conversion of CO2 and
improve the energy efficiency of the plasma process [14]. Yu et al. investigated the conversion of
CO2 in a packed-bed DBD reactor using silica gel, quartz, α-Al2O3, γ-Al2O3 and CaTiO3 as packing
materials and proved that the introduction of dielectric materials into the plasma reactor resulted in
an increased electric field, which then increased the electron energy and led to an expected higher
CO2 conversion [27]. Similarly, a series of CaxSr(1−x)TiO3 has also been used as a dielectric material
for the splitting of CO2 in a DBD reactor to prove the importance of the high permittivity dielectrics,
which can increase the discharge power of plasma accompanied by dense and strong micro-discharges,
thereby significantly enhancing the decomposition of CO2 [28–30]. Yap et al. [31] reported the best
conversion with an Alternating Current (AC) sinusoidal activation when using the glass beads as
packing materials. In recent reports, CeO2 was packed to understand the oxygen storage/release
capacity on the improvement of CO2 conversion in the packed DBD reactor [32]. Duan et al. [33]
obtained a CO2 conversion of 41.9% in a CaO-packed DBD micro-plasma reactor. Mei et al. [34] proved
that in the coaxial dielectric barrier discharge reactor, the discharge power was the most important
factor that affected the CO2 conversion. Furthermore, they showed that BaTiO3 pellets exhibited a
better performance than TiO2 pellets and glass beads due to the higher dielectric constant and the better
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synergistic effect of plasma-catalysis [6,34]. Moreover, the design of the reactor is also of importance
for CO2 conversion [35].

In this study, a self-cooling coaxial cylinder DBD reactor was applied to decompose pure CO2 into
CO and O2 at atmospheric pressure and ambient temperature, which was the same as the previous
apparatus of Zhou et al. [36]. The commercial ZrO2 pellets and glass beads were used as packing
materials to demonstrate the improvement of the decomposition rate and energy efficiency for CO2

splitting. Condensate water can take away the heat that is introduced in the process of plasma discharge
to maintain the temperature of the reactor. Key factors like packing materials and discharge power,
discharge length and bead size were investigated to evaluate the efficiency of CO2 decomposition.
Interestingly, a high decomposition rate and energy efficiency could be obtained. The physical
discharge characteristics of DBD plasma were also investigated to understand the interactions between
the dielectric materials and DBD plasma in CO2 decomposition.

2. Results and Discussion

2.1. Effect of Discharge Length on CO2 Decomposition Rate and Energy Efficiency

In order to further be sure of the influence of DBD plasma on the decomposition of CO2,
the discharge length of the unpacked DBD reactor was changed to conduct the experiment. As Figure 1a
shows, the CO2 decomposition rate increased clearly with the increasing discharge length. This can
be attributed to competing effects primarily. Firstly, increasing the discharge length from 100–200
mm significantly increased the residence time of CO2 gas in the reactor, which positively increased
the probability of CO2 molecules colliding with highly energetic electrons and reactive species [34].
However, a longer discharge region will need increasing surface area of the DBD reactor, leading to
higher energy loss due to heat dissipation [37], as shown in Figure 1b. In this study, increasing the
discharge length significantly increased the residence time of CO2 in the reaction, which plays a more
dominant role in the decomposition of CO2 compared to the negative effects (e.g., increased energy
loss); therefore, 200 mm was chosen as the optimum discharge length to conduct the experiment.
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Figure 1. CO2 decomposition rate (a) and energy efficiency (b) in the reactor without packing at
different discharge powers (frequency: 12 kHz; feed flow rate: 20 mL/min; 20 ◦C condensate water).

2.2. Effect of Discharge Power and Beads Size on CO2 Decomposition and Energy Efficiency

The CO2 decomposition rate as a function of bead size at different discharge powers is illustrated
in Figure 2. ZrO2 and glass beads with a size of 1 mm and 2 mm were applied to investigate the
influence on CO2 decomposition. Figure 2a shows that the smaller bead size was more beneficial for
CO2 decomposition under other fixed conditions. When decreasing the beads size, more dielectric
spheres would be needed to fill the reactor, which increased the discharge surface area, reinforced
the surface discharge and hence, caused, a higher CO2 decomposition rate. Similarly, Van Laer and
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Bogaerts [38] reported that a suitable range of bead size was needed to obtain a high CO2 decomposition
and energy efficiency.

Discharge power is also one of the key factors influencing CO2 decomposition in the DBD plasma
technique. According to associated reports, the discharge power determined whether there was
sufficient energy for activating and decomposing the CO2 molecule [6]. The CO2 decomposition rate
and energy efficiency at different discharge powers in the DBD reactor are shown in Figure 2a,b. There is
a general observation that the CO2 degradation rate increased with the increasing discharge power,
but the energy efficiency was affected in the opposite manner. A higher discharge power meant more
energy was injected into this system, therefore generating more chemically-active species and reactant
molecules in the reaction, and enough energy would activate electron and reactant molecules, as well as
increase the mutual collision opportunities between active species, so more chemical bonds would be
broken and more active substances formed. However, the CO2 decomposition rate tends to saturate
when the discharge power rises above 55 W, so a suitable range of discharge power is necessary from
the viewpoint of energy savings. Furthermore, the reason for the decreased energy efficiency with the
increasing discharge power could be due to the lost energy, which was consumed as heat, and it can be
evidenced by the increasing temperature of the condensate water. At the same discharge power of 55 W,
the CO2 decomposition rate in the unpacked reactor was 26.1%, but it reached 33.5% and 52.1% when the
DBD reactor was packed with 1-mm glass beads and ZrO2 pellets, respectively. Meanwhile, the energy
efficiency only in ZrO2 pellets packing was also improved by a factor of two.

Catalysts 2018, 8, x FOR PEER REVIEW  4 of 11 

 

Discharge power is also one of the key factors influencing CO2 decomposition in the DBD plasma 

technique. According to associated reports, the discharge power determined whether there was 

sufficient energy for activating and decomposing the CO2 molecule [6]. The CO2 decomposition rate 

and energy efficiency at different discharge powers in the DBD reactor are shown in Figure 2a,b. 

There is a general observation that the CO2 degradation rate increased with the increasing discharge 

power, but the energy efficiency was affected in the opposite manner. A higher discharge power 

meant more energy was injected into this system, therefore generating more chemically-active species 

and reactant molecules in the reaction, and enough energy would activate electron and reactant 

molecules, as well as increase the mutual collision opportunities between active species, so more 

chemical bonds would be broken and more active substances formed. However, the CO2 

decomposition rate tends to saturate when the discharge power rises above 55 W, so a suitable range 

of discharge power is necessary from the viewpoint of energy savings. Furthermore, the reason for 

the decreased energy efficiency with the increasing discharge power could be due to the lost energy, 

which was consumed as heat, and it can be evidenced by the increasing temperature of the 

condensate water. At the same discharge power of 55 W, the CO2 decomposition rate in the unpacked 

reactor was 26.1%, but it reached 33.5% and 52.1% when the DBD reactor was packed with 1-mm 

glass beads and ZrO2 pellets, respectively. Meanwhile, the energy efficiency only in ZrO2 pellets 

packing was also improved by a factor of two. 

  

Figure 2. CO2 decomposition rate (a) and energy efficiency (b) using different packing bead sizes at 

different discharge powers (frequency: 12 kHz; feed flow rate: 20 mL/min; 20 °C condensate water; 

discharge length: 200 mm). 

Three reasons may account for this result. Firstly, filling materials in the discharge zone made a 

more stable, uniform and stronger discharge, and all these were favorable for higher CO2 

decomposition because it meant more CO2 molecules were activated. Additionally, the intensity of 

the electric field between the contact points of the pellets to pellets or the pellets to the reactor wall 

could be enhanced because of the polarization of the dielectric materials. Though the electric field 

was enhanced by the increased discharge power regardless of the packing materials used [27], the 

presence of packing materials may have further strengthened the average electric field near contact 

points of the pellets, heightening the electric electron temperature, which facilitated electron  

collision [39,40], hence causing a higher CO2 decomposition rate in the packed reactor. The 

morphology of ZrO2 pellets may also be conducive to the transfer of electrons, thus accelerating the 

decomposition of CO2. Because ZrO2 is a kind of high performance structure ceramic material, it owns 

a higher dielectric constant (27) than glass beads (9), which is proven to play a significant role in CO2 

decomposition [39]. In addition, ZrO2 is also a kind of basic oxide, and it plays an important role in 

CO2 decomposition due to the acidity of CO2. This was proved in Duan X’s study: the base properties 

of the packing materials affected the chemisorption of CO2 in the process of CO2 decomposition [34]. 

That is advantageous to CO2 decomposition. 

Furthermore, ZrO2 exhibits better reaction activity than glass beads possibly due to the fast 

oxygen ion migration rate of ZrO2 [41,42], so the oxygen containing active substances was produced 

on the surface of ZrO2 pellets, or oxygen ions could be quickly transferred, thus inhibiting the 

Figure 2. CO2 decomposition rate (a) and energy efficiency (b) using different packing bead sizes at
different discharge powers (frequency: 12 kHz; feed flow rate: 20 mL/min; 20 ◦C condensate water;
discharge length: 200 mm).

Three reasons may account for this result. Firstly, filling materials in the discharge zone made a
more stable, uniform and stronger discharge, and all these were favorable for higher CO2 decomposition
because it meant more CO2 molecules were activated. Additionally, the intensity of the electric field
between the contact points of the pellets to pellets or the pellets to the reactor wall could be enhanced
because of the polarization of the dielectric materials. Though the electric field was enhanced by
the increased discharge power regardless of the packing materials used [27], the presence of packing
materials may have further strengthened the average electric field near contact points of the pellets,
heightening the electric electron temperature, which facilitated electron collision [39,40], hence causing
a higher CO2 decomposition rate in the packed reactor. The morphology of ZrO2 pellets may also be
conducive to the transfer of electrons, thus accelerating the decomposition of CO2. Because ZrO2 is
a kind of high performance structure ceramic material, it owns a higher dielectric constant (27) than
glass beads (9), which is proven to play a significant role in CO2 decomposition [39]. In addition,
ZrO2 is also a kind of basic oxide, and it plays an important role in CO2 decomposition due to the
acidity of CO2. This was proved in Duan X’s study: the base properties of the packing materials
affected the chemisorption of CO2 in the process of CO2 decomposition [34]. That is advantageous to
CO2 decomposition.
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Furthermore, ZrO2 exhibits better reaction activity than glass beads possibly due to the fast oxygen
ion migration rate of ZrO2 [41,42], so the oxygen containing active substances was produced on the
surface of ZrO2 pellets, or oxygen ions could be quickly transferred, thus inhibiting the recombination
of oxygen free radicals with the generated CO to promote the continuous decomposition of CO2.
In addition, the thermal conductivity of ZrO2 is higher than that of glass. It may also contribute to the
energy transfer in the reaction process and the activation of CO2 molecules. Therefore, ZrO2 enhanced
the CO2 decomposition compared to glass beads.

2.3. Effect of Packing Materials on Discharge Characteristics

It can be noticed from the V-Q curve of the CO2 discharge that the characteristics vary in the
reactor with and without packing. A typical filamentary discharge in the discharge with no packing
can be observed, and this be confirmed by the numerous peaks in the discharge signal of Figure 3a.
In contrast, as is shown in Figure 3b,c, packing ZrO2 or glass beads into the discharge zone generates
a typical packed-bed effect and leads to a transition in the discharge behavior from a filamentary
discharge to a combination of surface discharge and filamentary discharge, because of the decrease of
the spikes in the discharge signal.
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Figure 3. Discharge characteristics of CO2 in the Dielectric Barrier Discharge (DBD) reactor with or
without packing: (a) without packing; (b) glass beads; (c) ZrO2 (discharge power: 55 W; feed flow rate:
20 mL/min; 20 ◦C condensate water; discharge length: 200 mm; beads size: 1 mm).

Figure 4 presents the Lissajous figure of CO2 decomposition in the DBD reactor with or without
packing materials, at the discharge power of 55 W. It shows the change of the discharge characteristic
during the decomposition of CO2. Compared with non-packing materials, the Lissajous figure changed
from a parallelogram to an oval shape when ZrO2 pellets or glass beads were filled in the DBD reactor.
At the same discharge power, the applied voltage increased from 9.8 kV (pk-pk) without packing to
11.5 kV with the ZrO2 packing and to 10.6 kV (pk-pk) with the glass bead packing. It was obviously
observed that the discharge mode varied from filamentary discharge to a mode of filamentary discharge
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combined with surface discharge, and we could obtain a more stable and uniform discharge form.
As a result, the introduction of packing materials into the DBD reactor had a promotional effect
on the discharge characteristics. Yu et al. [27] also published a consistent report on the discharge
characteristics of CO2 conversion in the dielectric packed-bed plasma reactor, and the result was
further proved by Mei et al. [6]. The introduction of packing materials caused the presence of a strong
electrical field and thus led to a high electron energy near the contact points of the pellets, hence the
improved CO2 decomposition.
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Figure 4. Lissajous figure of CO2 decomposition in the DBD reactor with or without packing materials
(discharge power: 55 W; feed flow rate: 20 mL/min; 20 ◦C condensate water; discharge length: 200 mm;
beads size: 1 mm).

2.4. Effect of Packing Materials on CO Selectivity

The function of discharge power on CO selectivity is presented in the Figure 5a. The selectivity of
CO throughout the reaction remained around 94–96%, and the difference of CO selectivity in different
discharge power was not obvious in our experimental condition. It can be concluded that discharge
power played a minor role in the CO selectivity. The CO2 decomposition at the same discharge power
and feed flow rate was also conducted to investigate the effect of packing materials on CO selectivity,
as is shown in Figure 5b. The CO selectivities of the three different conditions were almost the same,
and the CO selectivity remained at about 95% regardless of the packing materials. It can be concluded
that packing materials played a minor role in the CO selectivity using self-cooling dielectric barrier
discharge plasma.
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2.5. The Investigation of Carbon Deposition

After reaction, some black carbon deposition was clearly observed on the surface of the inner
electrode and ZrO2 pellets present in the discharge zone, suggesting that carbon was produced during
the CO2 decomposition in the DBD plasma combined with ZrO2. Figure 6 is the SEM pictures of the
surface of ZrO2 pellets before and after the reaction; it shows that the surface of the ZrO2 pellets was
covered with carbon deposition. Because high energy electrons generated by the DBD plasma had a
range of 1–10 eV [35], which was not enough for the dissociation of CO molecules, because of its high
dissociation energy (11 eV), the carbon deposition may have come from the decomposition of CO2 at
temperatures higher than 20 ◦C of condensate water.
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2.6. Reaction of CO and O2

To gain insight into the role of packing dielectric materials and the principles of the CO2

decomposition, the oxidation of CO, which is the reverse reaction of CO2 decomposition, was still
investigated using ZrO2 pellets and glass beads as the packing materials at different discharge powers,
and the results are shown in Figure 7 CO conversion increased with the increasing discharge power.
Apparently, the CO conversion without packing was higher than that of the packed DBD reactor.
Though ZrO2 exhibited a promotional effect on the CO2 decomposition, it was not conducive for CO
conversion at the same condition. In all cases, CO2 was formed as the only product, and no carbon
deposition was generated. This was in agreement with the above result that CO could not split into C
in this condition due to its high dissociation energy of CO molecules (11.1 eV). Therefore, the DBD
plasma conditions with electron energy in the range of 1–10 eV were optimum for the electron impact
dissociation of CO2 [27].
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2.7. Comparison of Obtained Values in Different Packed DBD Reactors

Table 1 shows the compared values of the CO2 decomposition and energy efficiency using
different packed DBD reactors. Though the DBD reactor made of quartz has been widely applied for
CO2 decomposition, the self-cooling DBD reactor made of Pyrex glass can also be utilized for CO2

decomposition [37]. A relatively higher CO2 decomposition rate, together with a stable CO selectivity,
was obtained when using the same packing materials like ZrO2 pellets. Fifty two-point-one percent
(1-mm ZrO2) of the CO2 decomposition rate was an accurate value, which has been repeatedly verified.

Table 1. Obtained values in different packed DBD plasma reactors.

Packing Materials ZrO2 ZrO2 BaTiO3 BaTiO3 CaTiO3

Reactor Quartz Glass Quartz Quartz Quartz
Decomposition rate (%) 42 52.1 28 38.3 20.5

Energy efficiency (%) 9.6 7.0 7.1 17 4.8
CO selectivity (%) 50 94–96 — — —

Power (w) 60 55 50 — 35.3
Reference 38 This work 6 35 27

3. Experimental Setup

Figure 8 shows the schematic diagram of the experimental setup, which is basically consistent
with the previous apparatus in Zhou et al. [37]. It contains 3 parts: a DBD plasma reactor, a flow control
device and a GC detection and analysis system. The experiments were performed using a self-cooling
DBD reactor (BEIJING SYNTHWARE GLASS, Beijing, China) made of Pyrex, which consisted of a
double coaxial cylinder, a High-Voltage (HV) electrode and a Low-Voltage (LV) electrode. The HV
electrode was a stainless steel rod (2 mm in diameter), on which a 1 mm-thick copper wire was wrapped,
and it was installed in the axis of the double coaxial glass cylinder and linked to an alternating current
power supply. Condensate water used as a cooling agent was fed into the shell of the concentric
cylinder DBD reactor. The LV electrode that grounded by a wire placed into condensate water. The HV
and LV electrodes formed a cylindrical discharge space.
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During the course of the experiment, condensate water can take away the heat produced during
plasma discharge, to keep the temperature of the reactor at the designed temperature. It has been
proven that decreasing the temperature of the reactor was advantageous to CO2 decomposition [43,44].
In this work, we controlled the temperature of the condensed water at 20 ◦C, while this value was
optimized in Zhou et al. [37]. The flow rate of pure CO2 was fixed at 20 mL/min. The applied voltage
was measured by a high-voltage probe (Tektronix P6015A), and the current was recorded by a current
monitor. The voltage on the external capacitor was measured to obtain the charge generated in the
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discharge. All of the electrical signals were sampled by a four-channel digital oscilloscope (TDS3054B).
The discharge power was obtained by the area calculation of the Q-U Lissajous figure. The gas products
were analyzed by gas chromatography (GC-2014C), which was equipped with a thermal conductivity
detector (TCD), and H2 was used as the carrier gas. For comparison, CO2 decomposition was also
carried out in the DBD reactor without packing materials.

In this study, ZrO2 pellets and glass beads with a grain size of 1–2 mm were fully packed in the
discharge area as dielectric packing materials, both of which were commercial reagents without any
treatment (Shanghai Gongtao Ceramics Co., Ltd., Shanghai, China).

To evaluate the performance of the plasma process, the Specific Input Energy (SIE), CO2

decomposing rate and selectivity towards CO were defined as follows:

CO2 decomposition rate (%) =
CO2 decomposed

CO2 input
× 100%

CO selectivity (%) =
CO formed

CO2 decomposed
× 100%

Energy efficiency (η) =
∆H ×CO2 decomposed× F

60×Vm × P
× 100%

where P is the discharge power, F is the feed flow rate (mL/min) of CO2, ∆H is the enthalpy of reaction:
CO2 → CO + 1

2O2 , ∆H = 279.8 kJ/mol and Vm = 22.4 L/ mol, and Vm is the molar volume.

4. Conclusions

Decomposition of CO2 into CO and O2 has been carried out in a self-cooling DBD plasma
reactor packed with ZrO2 and glass beads at low temperatures and ambient pressure. It could be
concluded that a longer discharge length and a smaller bead size were beneficial for CO2 decomposition.
The introduction of packing materials shifted the discharge mode from filamentary discharge to a
combination of filamentary and surface discharge. In comparison with the CO2 decomposition rate
in the empty reactor and glass-packed reactor, which reached 26.1% and 33.5%, respectively, a CO2

decomposition rate of 52.1% was obtained in the ZrO2 (1 mm) packed DBD reactor at the same
condition. ZrO2 exhibited a superior promotional effect on the decomposition of CO2 and energy
efficiency by up to a factor of 1.9 and 2.1, respectively, compared with the result of the unpacked DBD
reactor. Additionally, the main product of this work was CO, with slight carbon deposition that came
from the dissociation of CO2. The results indicated that the dielectric constant and particle morphology
of the packing materials matter greatly in the decomposition of CO2.
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