

Supplementary Material: An Efficient Photocatalyst for Fast Reduction of Cr(VI) by Ultra-Trace Silver Enhanced Titania in Aqueous Solution

Shengyan Pu^{1,2,*}, Yaqi Hou¹, Hongyu Chen ¹, Daili Deng¹, Zeng Yang ¹, Shengyang Xue ¹, Rongxin Zhu ¹, Zenghui Diao ³ and Wei Chu²

- ¹ State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; houyaqilove@gmail.com (H.Y.); chenhongyu98@163.com (C.H.); dengdaili.1022@gmail.com (D.H.); yangzeng199529@gmail.com (Y.Z.); shengyangxue@gmail.com (X.S.); rongxinzhu@outlook.com (Z.R.)
- ² Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China; wei.chu@polyu.edu.hk
- ³ School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; zenghuid86@scsio.ac.cn
- * Corresponding: pushengyan@gmail.com or pushengyan13@cdut.cn; Tel./Fax: +86-(0)-28-8407-3253

Received: 10 May 2018; Accepted: 14 June 2018; Published: date

1. Tables

Table S1 BET data for different silver loadings.

Ag/TiO ₂ wt%	0	0.01	0.03	0.06	0.10	0.30	0.60	1	3
Specific surface area (m^2/g)	45.49	48.88	50.37	48.26	47.26	46.85	46.29	50.32	51.62

Table S2 BET data for different solvent concentration.

Solvent concentration	0%	25%	50%	75%	100%
Specific surface area (m^2/g)	44.92	35.80	46.23	50.18	48.26

Table S3 XPS date of atomic (Ag@TiO₂, 0.6 wt%).

Name	Area (N) TPP-2M	Atomic %
Ti2p	0.2	15.25
Ols	0.58	43.93
C1s	0.54	40.65
Ag3d	0	0.17

2. Equations

The reaction mechanism of Cr(VI) reduction in acidic condition was as following:

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$
 (S1)
 $E^0 = 0.98 \text{ eV}$

The reaction mechanism of Cr(VI) reduction in neutral condition was as following:

$$Cr_2O_7^{2-} + 8H^+ + 3e^- \rightarrow Cr^{3+} + 4H_2O$$
 (S2)
 $E^0 = 0.56 \text{ eV}$

The reaction mechanism of Cr(VI) reduction in alkaline condition was as following:

$$Cr_2 O_7^{2-} + 4H_2 O + 3e^- \rightarrow Cr(OH)_3 + 50H^-$$
 (3)
 $E^0 = 0.56 \text{ Ev}$

3. Figures

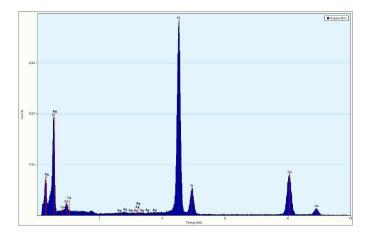
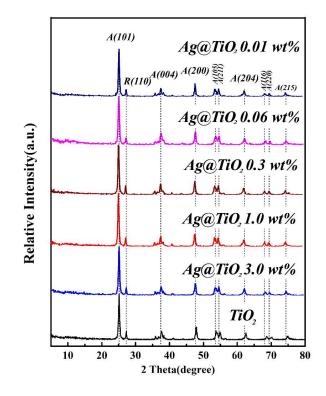



Figure S1 The Energy Dispersive Spectrdmeter of Ag@TiO2 catalyst.

Figure S2 XRD patterns of the Ag@TiO₂ nanocomposites, in which A is anatase phase and R is rutile phase.

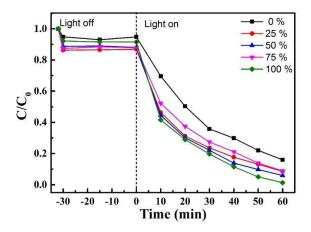


Figure S3 Effect of different concentration of empty scavenger (Ethanol) on Cr reduction.

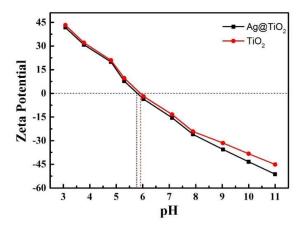


Figure S4 Zeta potential of bare TiO2 and Ag@TiO2 catalyst.

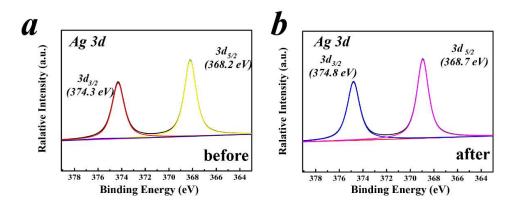


Figure S5 High resolution XPS of Ag 3d of Ag@TiO2 catalyst before (a) and after (b) reaction.

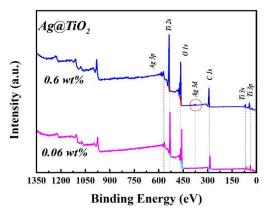


Figure S6 The survey spectrum XPS spectra of the Ag@TiO2 composites.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).