Supplementary Materials: Prickly Pear-Like Three-Dimensional Porous MoS₂: Synthesis, Characterization and Advanced Hydrogen Evolution Reaction

Huiting Lu, Xin Chen, Wenhao Dai, Kai Zhang, Conghui Liu and Haifeng Dong

Materials	Onset Potential (mV)	Tafel Slope (mV)	Surface Area (m ² ·g ⁻¹)
ZT-MoS ₂ -H	-160	90.3	405.3 ± 4.6
ZT-MoS ₂	-110	63	462.1 ± 5.2
ZT-MoS ₂ -T	-185	135.5	389.4 ± 7.1

Table S1. HER activities of synthesized MoS2 catalysts.

Figure S1: (a) SEM image and (b) corresponding magnified SEM image of ZnO NRs.

Figure S2. Energy Dispersive X-ray Spectrometer (EDS) spectrum of ZT-MoS2.

Figure S3. SEM image of different ZT-MoS2: (a) ZT-MoS2-H, (b) ZT-MoS2 and (c) ZT-MoS2-T.

Figure S4. SEM image of MoS2 before HCl etching.

To obtain more information of the intrinsic catalytic activity, the turnover frequency (TOF) for the active sites of ZT-MoS₂ catalysts was further calculated using the roughness factor method according to the following equation.

$$D_c = D_s \times \frac{C_{dlc}}{C_{dls}} \tag{1}$$

$$TOF(s^{-1}) = \frac{j/(2 \times q)}{D_c}$$
⁽²⁾

where *Dc* and *Ds* was the density of active sites for catalyst (Sites/cm²) and standard sample (Sites/cm²), the *C*_{dlc} and *C*_{dls} was the double layer capacitor (*C*_{dl}) for catalysts calculated and for standard MoS₂ (60 μ F/cm) by the CV experiment at different scan rates (Figure S5), the *j* (A/cm²) was the current density of LSV at -500 mV and *q* was the elementary charge (1.6 × 10⁻¹⁹ C). The active sites of ZT-MoS₂ was 3.53 × 10¹⁷ sites/cm², which was 1.3 times higher than the MoS₂ (2.75 × 10¹⁷ sites/cm²). The ZT-MoS₂ presented a superior TOF of 1.25 s⁻¹ to P-MoS₂ (0.69 s⁻¹), further indicating advanced HER catalytic activity of ZT-MoS₂.

Figure S5. Electrochemical measurement for determining TOF: (**a**) a cyclic voltammetry (CV) curve of ZT-MoS₂ at different scan rates. (**b**) Current density of CV experiment at overpotential 500 mV vs RHE as a function of scan rates.

Figure S6. Polarization curves of different ZT-MoS2: (a) ZT-MoS2-H, (b) ZT-MoS2 and (c) ZT-MoS2-T.