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Abstract: Herein, we hydrothermally synthesize a type of prickly pear-like three-dimensional (3D)
porous MoS2 (ZT-MoS2), using a zinc oxide (ZnO) rod deposited on quartz glass substrates, as a
template for an advanced hydrogen evolution reaction (HER) catalyst. Microscopic and spectroscopic
tools comprehensively characterize the morphology of the ZT-MoS2 nanostructure, which exhibits
adequate edge active sites and defects, as well as a high component of active octahedral MoS2

(1T-MoS2). Electrochemical characterizations reveal the good HER performance of the ZT-MoS2

that presents a good overpotential of 110 mV, and a Tafel slope of 63 mV·dec−1, superior to most
of the previously reported MoS2-based HER catalysts. This work contributes to the design and
fabrication of 3D MoS2 with enhanced HER performance, which holds great promise for fuel cells and
energy conversion.
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1. Introduction

Nowadays, as an environmentally-friendly and abundant energy carrier, hydrogen is attracting
intense interest for sustainable energy resources due to the energy crisis [1]. Hydrogen evolution
from water splitting is the main strategy to generate hydrogen, and platinum (Pt)-based catalysts are
generally employed to enhance hydrogen evolution reaction (HER) [2–5]. However, their high-cost,
insufficient reservoir, and instability limit the widespread application of Pt-based catalysts. Thus, it is
urgent to exploit efficient alternative catalysts, such as various transition metals and their derivatives,
as well as metal-free catalysts [6–8]. Two-dimensional (2D) materials with a large specific surface
area, good charge migration rate, controllable electronic properties, good stackability, and mechanical
flexibility provide a unique advantage to HER catalytic activity [9]. Molybdenum sulfide (MoS2),
a type of two-dimensional layered material, has attracted much attention for its unique physical and
chemical properties [10]. Increasing theoretical and experimental evidence reveals that the hydrogen
adsorption energy on the edge of naturally van der Waals layered MoS2 is calculated to be close to
that of Pt, so that MoS2 has been considered as a promising substitute for Pt-based catalysts [11–13].
The edge sites of MoS2 were responsible for hydrogen evolution catalytic activity, and it possessed
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a lateral dimension size-dependent pattern. The deficiencies of aggregation and low conductivity of
bulk MoS2 limit its HER catalytic activity and widespread application [14,15].

Various efficient MoS2 nanostructures with numerous active sites and good conductivity are
continuously being explored. Firstly, this is an efficient strategy that introduces active edge sites
into MoS2; for example, MoS2 nanoplates [16], MoS2 nanoparticles [17], MoS2 quantum dots [18],
and three dimensional (3D) MoS2 [19] with numerous edge sites were developed. Secondly, MoS2

nanostructures can be doped with conductive elements or deposited on highly conductive matrices to
improve their conductivity. For example, Se-doped MoS2 and Au-doped MoS2 were designed [20,21];
MoS2 nanoparticles were conjugated on carbon nanotubes [22] and graphene [23], to form MoS2-based
heterogeneous composites. Moreover, this method offers a new avenue to improving the catalytic
ability that fabricates MoS2 with an adequate octahedral MoS2 (1T-MoS2) component [24].

Among these, a 3D MoS2 nanostructure with both considerable active sites and good substrate
transfer ability has received intense attention. To synthesize 3D MoS2, efficient templates are a
prerequisite to control the growth of MoS2. Recently, zinc oxide (ZnO) is emerging as an attractive
template for constructing 3D materials, since it can be easily and controllably synthesized to produce the
desired morphological structures. Various complicated nanostructures, such as silica, gold, and carbon
nanotubes, using a ZnO nanostructure as a template have been reported [25–28].

Herein, using ZnO as a template, a prickly pear-like 3D porous MoS2 (ZT-MoS2) was synthesized
by a facile hydrothermal synthesis route (Scheme 1). The MoS2 nanostructures were hydrothermally
synthesized in the presence of the ZnO template deposited on the quartz glass substrate. Numerous
small MoS2 nanoparticles and ZnO NRs modified on the suface of big MoS2 microbeads. The removal
of the ZnO from the nanocomposites generated the prickly pear-like 3D ZT-MoS2 nanostructure.
The synthesized ZT-MoS2 exhibited an outstanding HER performance with a good overpotential of
110 mV, and a small Tafel slope of 63 mV·dec−1, as well as extraordinary stability. It was superior to
pure MoS2 without using ZnO as template (P-MoS2), and to most previously reported MoS2-based
HER catalysts.
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Scheme 1. Schematic illustration of the synthesis procedure for the ZT-MoS2.

2. Results and Discussion

SEM, TEM, and high-resolution TEM (HRTEM) measurements (Figure 1) characterized the
morphologies of the P-MoS2 and ZT-MoS2. The ZT-MoS2 presented a prickly pear-like structure,
with numerous small MoS2 nanoparticles assembled on the surface of a 2.5 µm porous MoS2 microbead
(Figure 1a). The pore size of the porous microbeads in the ZT-MoS2 was about 135 nm (inset in
Figure 1a), which was similar to the diameter of the ZnO template (Figure S1). The S-to-Mo ratio was
about 2:1 (Figure S2), indicating the successful synthesis of MoS2. Zhang et al. reported that possible
intergrowth would be generated between ZnO and MoS2 [29]. However, the Energy Dispersive
X-ray Spectrometer (EDS) analysis (Figure S2) showed there was no Zn element, which might be
caused by the different synthesis processes. It was found that the ZnO template significantly affected
the morphology of ZT-MoS2 (Figure S3), and the HCl-mediated etching process could effectively
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remove the ZnO from the ZnO-MoS2 nanostructure (Figure 1a, Figures S2 and S4). The P-MoS2 was a
nanoflower structure with rippled and corrugated leaf structures (Figure 1d). The size of surface MoS2

nanoparticles decorated on the porous MoS2 microbeads in ZT-MoS2 was about 350 nm (Figure 1b)
(with an average surface area of 462.1 ± 5.2 m2 g−1, Table S1), which was smaller than that of P-MoS2

(450 nm) (Figure 1e). It indicated that the ZnO controllably confines the growth of the surface MoS2

nanoparticles. Both the ZT-MoS2 (Figure 1c) and P-MoS2 (Figure 1f) exhibited an interplanar spacing
of 6.3 Å assigned to the d spacing of (002) planes of MoS2, suggesting that the ZnO did not influence
the component of MoS2 [30]. Compared to the smooth and regular lattice of the P-MoS2, ZT-MoS2 had
more delaminated MoS2 (inset in Figure 1c). The resulting defects were beneficial to HER performance.
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Figure 1. Scanning electron microscopy (SEM) images of (a) ZT-MoS2 and (d) P-MoS2; transmission
electron microscopy (TEM) images of (b) ZT-MoS2 and (e) P-MoS2; high-resolution TEM (HRTEM)
images of (c) ZT-MoS2 and (f) P-MoS2. Inset a: porous size analysis of ZT-MoS2.

The composition and phase of the ZT-MoS2 and P-MoS2 were investigated by Raman spectroscopy
analysis. ZT-MoS2 presented two obvious characteristic peaks at 378 and 404 cm−1, attributed to
in-plane vibration E1

2g modes and out-of-plane vibration A1g modes, respectively (red curve in
Figure 2a) [31,32]. The characteristic peaks at 284, 490, and 234 cm−1 assigned to the E1g mode
forbidden in a back-scattering geometry on the surface perpendicular to the c-axis, two longitudinal
acoustic (2LAM) modes, and structural-defect-induced scattering (red curve in Figure 2a) were also
observed [33]. The P-MoS2 exhibited similar characteristic peaks (black curve in Figure 2a) compared
to the ZT-MoS2. However, the ZT-MoS2 revealed a larger E1

2g/A1g ratio and a wider half-wavelength
of E1

2g and A1g peaks than that of the P-MoS2 (Figure 2b), which indicated that more edge structures
existed in ZT-MoS2 nanostructures [29]. Additionally, ZT-MoS2 showed a red shift of E1

2g and a blue
shift of A1g compared to that of P-MoS2, illustrating the thinner layered structure of ZT-MoS2 when
compared with P-MoS2. It could be anticipated that both the larger edge structure and thinner layered
structure would lead to more active sites and endow ZT-MoS2 with better HER performance than
P-MoS2 [34,35].
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2g and A1g in (a).

The high-resolution XPS of the Mo 3d peak and the corresponding S 2p peak of the ZT-MoS2 and
P-MoS2 were depicted in Figure 3. The Mo 3d of ZT-MoS2 shown in Figure 3a could be deconvoluted
into four peaks of 228.9, 230.1, 232.1, and 233.6 eV assigned to Mo4+ 3d5/2, Mo5+ 3d5/2Mo4+ 3d3/2,
and Mo5+ 3d3/2, respectively. The peak of 226.2 eV ascribed to S2− 2s was also observed. Mo4+ 3d5/2
and Mo4+ 3d3/2 are related to trigonal prismatic MoS2 (2H-MoS2), while Mo5+ 3d5/2 and Mo5+ 3d3/2
are associated with the1T-MoS2 [36,37]. These results illustrated the co-existence of 2H-MoS2 and
1T-MoS2 in the synthesized ZT-MoS2. The high-resolution XPS of S 2p presented characteristic peaks
at S2− 2p3/2 and S2− 2p1/2 associated with 2H-MoS2 at 161.6 and 162.9 eV, while S2− 2p3/2 and S2−

2p1/2 related to 1T-MoS2 at 162.5 and 164.1 eV (Figure 3b), which further confirmed the co-existence of
1T-MoS2 and 2H-MoS2 in ZT-MoS2 [38]. The P-MoS2 exhibited higher peaks of Mo4+ 3d5/2 and Mo4+

3d3/2 related to 2H-MoS2 than the ZT-MoS2(Figure 3c), and the characteristic peaks of S2− 2p3/2 and
S2− 2p1/2 assigned to 2H-MoS2 at 161.6 and 162.9 eV were also larger than that of ZT-MoS2 (Figure 3d).

It was calculated that ZT-MoS2 consisted of 60.7 ± 5.2% 2H-MoS2 and 39.3 ± 4.3% 1T-MoS2, while
P-MoS2 was composed of 70.5 ± 3.8% 2H-MoS2 and 29.5 ± 4.7% 1T-MoS2. The high 1T-MoS2 in
ZT-MoS2 can also contribute to the advanced HER catalytic activity [39].

As shown in Figure 4a, the onset overpotential of ZT-MoS2 was 110 ± 5 mV, which was smaller
than that of P-MoS2 (200 ± 4 mV) and ZnO-MoS2 (240 ± 4 mV). The onset overpotential of ZT-MoS2

also competed with previously reported MoS2-based HER catalysts [29,40]. The potential of the
current density reached to 10 mA·cm−2 was further analyzed. The potential of ZT-MoS2 was 250 mV
when the current density reached 10 mA·cm−2, which was smaller than the 370 and 435 mV of
P-MoS2 and ZnO-MoS2. The Tafel slope of the Pt/C shown in Figure 4b was 35 mV·dec−1, consistent
with previous reports [20,23]. ZT-MoS2 exhibited a Tafel slope of 63 mV·dec−1, smaller than the
98 mV·dec−1 of P-MoS2 and 107 mV·dec−1 of ZnO-MoS2, suggesting that the HER reaction rate
of ZnO-MoS2 would increase faster along with the increase of the overpotential when compared
with P-MoS2 and ZnO-MoS2 [41]. The electrochemical impedance spectroscopy (EIS) measurements
(Figure 4c) revealed a smaller impedance of the ZT-MoS2 than the P-MoS2. It demonstrated that
ZT-MoS2 dramatically enhanced the electron transfer and reaction mass accessibility to the active
sites. Furthermore, we carried out a long-term cycling test for more than 5000 cycles to investigate the
stability of ZT-MoS2. The negligible difference before and after 5000 cycles indicated the remarkable
stability of ZT-MoS2 during the long-term electrochemical catalytic process (Figure 4d). The turnover
frequency (TOF) for the active sites of the ZT-MoS2 catalyst was calculated using the roughness factor
method according to the following equation [42]. The ZT-MoS2 presented a TOF of 1.25 s−1. It was
1.81-fold higher than the TOF of P-MoS2 (0.69 s−1), further indicating the advanced HER catalytic
activity of ZT-MoS2 (Figure S5).
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P-MoS2, ZnO-MoS2. (b) Tafel plots of Pt/C, ZT-MoS2, P-MoS2, ZnO-MoS2. (c) Electrochemical
impedance spectroscopy (EIS) Nyquist plots of ZT-MoS2 and P-MoS2. (d) Durability test of ZT-MoS2

through 5000 cycles linear sweep voltammetry (LSV).
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These results revealed the superb HER catalytic ability of ZT-MoS2, which can be explained as
follows: firstly, the unique prickly pear-like 3D porous MoS2 structures possess many edge active
sites confirmed by HRTEM (Figure 1e) and Raman Spectrum analysis (Figure 2b), which contribute to
the advanced HER performance (Figure 4a,b). Moreover, adequate defects (Figure 1e) and abundant
1T-MoS2 (Figure 3a,b) were included in ZT-MoS2, enabling the advanced HER catalytic activity. Lastly,
the porous 3D structure facilitated the reaction mass transfer during the reaction, which creates
the ready accessibility of active sites to the substrate, while the surface of the nanostructure also
contributed to its good performance (Table S1). In comparison, both the MoS2 microbeads without
decorated MoS2 nanoparticles and the MoS2 microbeads decorated with crowded MoS2 nanoparticles
(Figure S3) exhibited inferior HER to ZT-MoS2 (Figure S6). The negligible difference before and after a
5000 cycles long-term test (Figure 4d) indicated the extraordinary stability of the synthesized ZT-MoS2.
It suggested that the numerous edge active sites and the good accessibility of active sites to the reaction
substrate were significant factors in the efficient HER performance.

3. Materials and Methods

3.1. Reagent

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O), hexamethylenetetramine (C6H12N4), zinc acetate
dihydrate (C4H10O6Zn), thiourea (H2NCSN2), and hexaammonium heptamolybdate tetrahydrate
((NH4)6Mo7O24·4H2O) were purchased from Sigma (St. Louis, MO, USA). Potassium hexacyanoferrate
(III) (K3Fe(CN)6), potassium hexacyanoferrate (II) trihydrate (K4Fe(CN)6·3H2O), potassium chloride
(KCl), hydrochloric acid (HCl), sulfuric acid (H2SO4), and ethanol absolute were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All reagents used in this study were of
analytical grade.

3.2. Preparation of ZnO Nanorods (NRs)

The ZnO NRs were synthesized in accordance with a method set out in a previous report,
with some modification [43]. Briefly, ZnO NRs were synthesized on quartz glass substrates with
dimensions of 5.5 × 2.5 cm. Firstly, a droplet of 2 mL zinc acetate (5 mM) in ethanol was spin-coated
on the quartz glass substrates three times, and then the quartz glass was annealed at 300 ◦C for 30 min
in a tube furnace. The resulting quartz glass was kept in the aqueous solution containing zinc nitrate
hexahydrate (50 mM) and hexamethylenetetramine (50 mM) at 100 ◦C for 10 h in a sealed Schott-Duran
bottle. Following this, the substrates were then rinsed thoroughly with ultrapure water and dried
overnight at 60 ◦C in an oven.

3.3. Fabrication of ZT-MoS2 and P-MoS2

(NH4)6Mo7O24·4H2O (1 mmol) and thiourea (30 mmol) were dissolved in ultrapure water
(40 mL) to form a homogeneous solution, and the solution was transferred to a 50 mL Teflon-lined
stainless-steel autoclave. Different amounts of prepared quartz glass (0.5, 1, and 2) were immersed
into the Teflon-lined stainless-steel autoclave and kept at 180 ◦C for 24 h to obtain different ZT-MoS2

(termed as ZT-MoS2-H, ZT-MoS2 and ZT-MoS2-T, respectively). The solution was naturally cooled
down to room temperature, and 3 mL 10% HCl solution was added to etch the ZnO NRs. The resulting
ZT-MoS2 dispersed in the solution was generated by centrifuging at 8000 rpm, which was washed
thoroughly in the ultrapure water, and then dried at 60 ◦C by a vacuum freeze dryer to obtain about
4 mg ZT-MoS2 powder each time.

(NH4)6Mo7O24·4H2O (1 mmol) and thiourea (30 mmol) were dissolved in ultrapure water (40 mL)
to form a homogeneous solution and the solution was transferred to a 50 mL Teflon-lined stainless-steel
autoclave. The solution was naturally cooled down to room temperature and 3 mL HCl solution was
added. The resulting P-MoS2 dispersed in the solution was generated by centrifuging at 8000 rpm,
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which was washed thoroughly in the ultrapure water, and then dried at 60 ◦C by a vacuum freeze
dryer to obtain P-MoS2 powder.

3.4. Characterization

The morphologies of these products were observed under scanning electron microscopy (SEM)
(HITACHI S-4800, Tokyo, Japan) and transmission electron microscopy (TEM) (JEM-2010, JEOL Ltd.,
Tokyo, Japan, 200 kV). High-resolution TEM images were taken using a JEOL 2100F microscope
(JEOL Ltd., Tokyo, Japan, 200 kV) with an accelerating voltage of 200 kV. X-ray photoelectron
spectroscopy (XPS) measurements were performed using an AXIS ULTRADLD instrument (Kratos,
Manchester, UK) equipped with an Al Kα X-ray source. Raman spectra were recorded on an
InVia-Reflex Raman microscope (Renishaw, London, UK) with a laser excitation wavelength of 532 nm.
The porosity was performed with a nitrogen adsorption–desorption isotherm using a surface area
analyzer (QuadraSorb SI 2000-08, Quantachrome Instruments, Boynton Beach, FL, USA).

3.5. Electrochemical Measurements

Electrochemical measurements were performed using an electrochemical station (CHI 852C,
Shanghai Chenhua Instrument Co., Shanghai, China) in a three-electrode system. A three-electrode
system was employed, consisting of a saturated calomel electrode (SCE) as the reference electrode,
a graphite rod as the counter electrode, and a glass carbon rotating disk electrode (RDE) or glassy
carbon electrode (GCE) loaded on the catalyst as the working electrode. Linear sweep voltammetry
(LSV) measurements were run in 0.5 M H2SO4 (purged with pure N2) at a scan rate of 5 mV·s−1 and at
1400 rpm [17]. For durability measurement, the LSV was performed at a scan rate of 50 mV·s−1 from
0.2 to −0.6 V for 5000 cycles.

Typically, 2 mg of the catalyst was dispersed in 2 mL of ultrapure water to form homogeneous
ink under sonication. Then, 20 µL of the catalyst ink was loaded onto the RDE (3 mm in diameter,
loading ~0.283 mg·cm−2). 5µL of 1 wt % Nafion solution was dropped onto the electrode after the ink
was dried. Cyclic Voltammetry (CV) measurements using GCE as the working electrode were run in
0.5 M H2SO4 (purged with pure N2) at scan rates of 150, 120, 90, 60, 30, and 10 mV·s−1, respectively.
The EIS measurements were recorded in the same configuration using the 1 mmol·L−1 K3Fe(CN)6,
1 mmol·L−1 K4Fe(CN)6·3H2O, 0.1 mol·L−1 KCl as the electrolyte at η = 0.2 V from 10−2 to 5 × 105 Hz
with a voltage amplitude of 5 mV.

4. Conclusions

In conclusion, a prickly pear-like 3D porous MoS2 nanostructure with advanced HER performance
was developed by using a simple and ZnO-mediated hydrothermal synthesis route. Comprehensive
microscopic and spectroscopic measurements including SEM, TEM, HRTEM, Raman spectra, and XPS
were employed to characterize the morphology and components of the ZT-MoS2. The prickly pear-like
3D porous ZT-MoS2 consisted of numerous small MoS2 nanoparticles decorated on large porous MoS2

microbeads. It displayed many edge active sites and defects as well as abundant 1T-MoS2. The ZT-MoS2

exhibited a superior HER catalytic activity compared with structures using P-MoS2 as a template,
and most of the previously reported MoS2-based HER catalysts, such as MoS2/MoSe2 films [31]
and Core-shell MoO3-MoS2 nanowires [41]. Additionally, ZT-MoS2 presented extraordinary stability
during the long-term cycling test. This work paves a new avenue for the controllable design of efficient
3D MoS2 with advanced HER performance, which can be easily extended to other analogous materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/6/235/s1,
Table S1: HER activities of synthesized MoS2 catalysts, Figure S1: (a) SEM image and (b) corresponding magnified
SEM image of ZnO NRs, Figure S2: Energy Dispersive X-ray Spectrometer (EDS) spectrum of ZT-MoS2, Figure S3:
SEM image of different ZT-MoS2: (a) ZT-MoS2-H, (b) ZT-MoS2 and (c) ZT-MoS2-T, Figure S4: SEM image of MoS2
before HCl etching, Figure S5: Electrochemical measurement for determining TOF: (a) a cyclic voltammetry (CV)
curve of ZT-MoS2 at different scan rates. (b) Current density of CV experiment at overpotential 500 mV vs. RHE
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as a function of scan rates, Figure S6: Polarization curves of different ZT-MoS2: (a) ZT-MoS2-H, (b) ZT-MoS2 and
(c) ZT-MoS2-T.
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