

Article

Prickly Pear-Like Three-Dimensional Porous MoS₂: Synthesis, Characterization and Advanced Hydrogen Evolution Reaction

Huiting Lu¹, Xin Chen^{2,*}, Wenhao Dai², Kai Zhang², Conghui Liu² and Haifeng Dong^{2,3,*}

- ¹ Department of Chemistry, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China; huitinglu@ustb.edu.cn
- ² Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China; daiwenhao734028@126.com (W.D.); zzhangkai@sina.com (K.Z.); conghuiliu@yeah.net (C.L.)
- ³ Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, China
- * Correspondence: chenxin513533@126.com (X.C.); hfdong@ustb.edu.cn (H.D.); Tel.: +86-010-82375840 (X.C. & H.D.)

Received: 8 April 2018; Accepted: 29 May 2018; Published: 4 June 2018

Abstract: Herein, we hydrothermally synthesize a type of prickly pear-like three-dimensional (3D) porous MoS_2 (ZT-MoS₂), using a zinc oxide (ZnO) rod deposited on quartz glass substrates, as a template for an advanced hydrogen evolution reaction (HER) catalyst. Microscopic and spectroscopic tools comprehensively characterize the morphology of the ZT-MoS₂ nanostructure, which exhibits adequate edge active sites and defects, as well as a high component of active octahedral MoS_2 (1T-MoS₂). Electrochemical characterizations reveal the good HER performance of the ZT-MoS₂ that presents a good overpotential of 110 mV, and a Tafel slope of 63 mV·dec⁻¹, superior to most of the previously reported MoS_2 -based HER catalysts. This work contributes to the design and fabrication of 3D MoS_2 with enhanced HER performance, which holds great promise for fuel cells and energy conversion.

Keywords: three-dimensional MoS₂; ZnO template; hydrogen evolution reaction; hydrothermal synthesis

1. Introduction

Nowadays, as an environmentally-friendly and abundant energy carrier, hydrogen is attracting intense interest for sustainable energy resources due to the energy crisis [1]. Hydrogen evolution from water splitting is the main strategy to generate hydrogen, and platinum (Pt)-based catalysts are generally employed to enhance hydrogen evolution reaction (HER) [2–5]. However, their high-cost, insufficient reservoir, and instability limit the widespread application of Pt-based catalysts. Thus, it is urgent to exploit efficient alternative catalysts, such as various transition metals and their derivatives, as well as metal-free catalysts [6–8]. Two-dimensional (2D) materials with a large specific surface area, good charge migration rate, controllable electronic properties, good stackability, and mechanical flexibility provide a unique advantage to HER catalytic activity [9]. Molybdenum sulfide (MoS₂), a type of two-dimensional layered material, has attracted much attention for its unique physical and chemical properties [10]. Increasing theoretical and experimental evidence reveals that the hydrogen adsorption energy on the edge of naturally van der Waals layered MoS₂ is calculated to be close to that of Pt, so that MoS₂ has been considered as a promising substitute for Pt-based catalysts [11–13]. The edge sites of MoS₂ were responsible for hydrogen evolution catalytic activity, and it possessed

a lateral dimension size-dependent pattern. The deficiencies of aggregation and low conductivity of bulk MoS₂ limit its HER catalytic activity and widespread application [14,15].

Various efficient MoS₂ nanostructures with numerous active sites and good conductivity are continuously being explored. Firstly, this is an efficient strategy that introduces active edge sites into MoS₂; for example, MoS₂ nanoplates [16], MoS₂ nanoparticles [17], MoS₂ quantum dots [18], and three dimensional (3D) MoS₂ [19] with numerous edge sites were developed. Secondly, MoS₂ nanostructures can be doped with conductive elements or deposited on highly conductive matrices to improve their conductivity. For example, Se-doped MoS₂ and Au-doped MoS₂ were designed [20,21]; MoS₂ nanoparticles were conjugated on carbon nanotubes [22] and graphene [23], to form MoS₂-based heterogeneous composites. Moreover, this method offers a new avenue to improving the catalytic ability that fabricates MoS₂ with an adequate octahedral MoS₂ (1T-MoS₂) component [24].

Among these, a 3D MoS₂ nanostructure with both considerable active sites and good substrate transfer ability has received intense attention. To synthesize 3D MoS₂, efficient templates are a prerequisite to control the growth of MoS₂. Recently, zinc oxide (ZnO) is emerging as an attractive template for constructing 3D materials, since it can be easily and controllably synthesized to produce the desired morphological structures. Various complicated nanostructures, such as silica, gold, and carbon nanotubes, using a ZnO nanostructure as a template have been reported [25–28].

Herein, using ZnO as a template, a prickly pear-like 3D porous MoS_2 (ZT- MoS_2) was synthesized by a facile hydrothermal synthesis route (Scheme 1). The MoS_2 nanostructures were hydrothermally synthesized in the presence of the ZnO template deposited on the quartz glass substrate. Numerous small MoS_2 nanoparticles and ZnO NRs modified on the suface of big MoS_2 microbeads. The removal of the ZnO from the nanocomposites generated the prickly pear-like 3D ZT- MoS_2 nanostructure. The synthesized ZT- MoS_2 exhibited an outstanding HER performance with a good overpotential of 110 mV, and a small Tafel slope of 63 mV· dec^{-1} , as well as extraordinary stability. It was superior to pure MoS_2 without using ZnO as template (P- MoS_2), and to most previously reported MoS_2 -based HER catalysts.

Scheme 1. Schematic illustration of the synthesis procedure for the ZT-MoS₂.

2. Results and Discussion

SEM, TEM, and high-resolution TEM (HRTEM) measurements (Figure 1) characterized the morphologies of the P-MoS₂ and ZT-MoS₂. The ZT-MoS₂ presented a prickly pear-like structure, with numerous small MoS₂ nanoparticles assembled on the surface of a 2.5 µm porous MoS₂ microbead (Figure 1a). The pore size of the porous microbeads in the ZT-MoS₂ was about 135 nm (inset in Figure 1a), which was similar to the diameter of the ZnO template (Figure S1). The S-to-Mo ratio was about 2:1 (Figure S2), indicating the successful synthesis of MoS₂. Zhang et al. reported that possible intergrowth would be generated between ZnO and MoS₂ [29]. However, the Energy Dispersive X-ray Spectrometer (EDS) analysis (Figure S2) showed there was no Zn element, which might be caused by the different synthesis processes. It was found that the ZnO template significantly affected the morphology of ZT-MoS₂ (Figure S3), and the HCl-mediated etching process could effectively

remove the ZnO from the ZnO-MoS₂ nanostructure (Figure 1a, Figures S2 and S4). The P-MoS₂ was a nanoflower structure with rippled and corrugated leaf structures (Figure 1d). The size of surface MoS₂ nanoparticles decorated on the porous MoS₂ microbeads in ZT-MoS₂ was about 350 nm (Figure 1b) (with an average surface area of $462.1 \pm 5.2 \text{ m}^2 \text{ g}^{-1}$, Table S1), which was smaller than that of P-MoS₂ (450 nm) (Figure 1e). It indicated that the ZnO controllably confines the growth of the surface MoS₂ nanoparticles. Both the ZT-MoS₂ (Figure 1c) and P-MoS₂ (Figure 1f) exhibited an interplanar spacing of 6.3 Å assigned to the d spacing of (002) planes of MoS₂, suggesting that the ZnO did not influence the component of MoS₂ [30]. Compared to the smooth and regular lattice of the P-MoS₂, ZT-MoS₂ had more delaminated MoS₂ (inset in Figure 1c). The resulting defects were beneficial to HER performance.

Figure 1. Scanning electron microscopy (SEM) images of (a) ZT-MoS₂ and (d) P-MoS₂; transmission electron microscopy (TEM) images of (b) ZT-MoS₂ and (e) P-MoS₂; high-resolution TEM (HRTEM) images of (c) ZT-MoS₂ and (f) P-MoS₂. Inset a: porous size analysis of ZT-MoS₂.

The composition and phase of the ZT-MoS₂ and P-MoS₂ were investigated by Raman spectroscopy analysis. ZT-MoS₂ presented two obvious characteristic peaks at 378 and 404 cm⁻¹, attributed to in-plane vibration E^{1}_{2g} modes and out-of-plane vibration A_{1g} modes, respectively (red curve in Figure 2a) [31,32]. The characteristic peaks at 284, 490, and 234 cm⁻¹ assigned to the E_{1g} mode forbidden in a back-scattering geometry on the surface perpendicular to the c-axis, two longitudinal acoustic (2LAM) modes, and structural-defect-induced scattering (red curve in Figure 2a) were also observed [33]. The P-MoS₂ exhibited similar characteristic peaks (black curve in Figure 2a) compared to the ZT-MoS₂. However, the ZT-MoS₂ revealed a larger E^{1}_{2g}/A_{1g} ratio and a wider half-wavelength of E^{1}_{2g} and A_{1g} peaks than that of the P-MoS₂ (Figure 2b), which indicated that more edge structures existed in ZT-MoS₂ nanostructures [29]. Additionally, ZT-MoS₂ showed a red shift of E^{1}_{2g} and a blue shift of A_{1g} compared to that of P-MoS₂, illustrating the thinner layered structure of ZT-MoS₂ when compared with P-MoS₂. It could be anticipated that both the larger edge structure and thinner layered structure would lead to more active sites and endow ZT-MoS₂ with better HER performance than P-MoS₂ [34,35].

Figure 2. (a) Raman spectra of the P-MoS₂ and ZT-MoS₂ after HCl etching, (b) the corresponding high resolution of E_{2g}^1 and A_{1g} in (a).

The high-resolution XPS of the Mo 3d peak and the corresponding S 2p peak of the ZT-MoS₂ and P-MoS₂ were depicted in Figure 3. The Mo 3d of ZT-MoS₂ shown in Figure 3a could be deconvoluted into four peaks of 228.9, 230.1, 232.1, and 233.6 eV assigned to Mo⁴⁺ $3d_{5/2}$, Mo⁵⁺ $3d_{5/2}Mo^{4+} 3d_{3/2}$, and Mo⁵⁺ $3d_{3/2}$, respectively. The peak of 226.2 eV ascribed to S²⁻ 2s was also observed. Mo⁴⁺ $3d_{5/2}$ and Mo⁴⁺ $3d_{3/2}$ are related to trigonal prismatic MoS₂ (2H-MoS₂), while Mo⁵⁺ $3d_{5/2}$ and Mo⁵⁺ $3d_{3/2}$ are associated with the1T-MoS₂ [36,37]. These results illustrated the co-existence of 2H-MoS₂ and 1T-MoS₂ in the synthesized ZT-MoS₂. The high-resolution XPS of S 2p presented characteristic peaks at S²⁻ $2p_{3/2}$ and S²⁻

As shown in Figure 4a, the onset overpotential of ZT-MoS₂ was 110 ± 5 mV, which was smaller than that of P-MoS₂ ($200 \pm 4 \text{ mV}$) and ZnO-MoS₂ ($240 \pm 4 \text{ mV}$). The onset overpotential of ZT-MoS₂ also competed with previously reported MoS₂-based HER catalysts [29,40]. The potential of the current density reached to 10 mA·cm⁻² was further analyzed. The potential of ZT-MoS₂ was 250 mV when the current density reached 10 mA·cm⁻², which was smaller than the 370 and 435 mV of P-MoS₂ and ZnO-MoS₂. The Tafel slope of the Pt/C shown in Figure 4b was 35 mV dec⁻¹, consistent with previous reports [20,23]. ZT-MoS₂ exhibited a Tafel slope of 63 mV·dec⁻¹, smaller than the 98 mV·dec⁻¹ of P-MoS₂ and 107 mV·dec⁻¹ of ZnO-MoS₂, suggesting that the HER reaction rate of ZnO-MoS₂ would increase faster along with the increase of the overpotential when compared with P-MoS₂ and ZnO-MoS₂ [41]. The electrochemical impedance spectroscopy (EIS) measurements (Figure 4c) revealed a smaller impedance of the $ZT-MoS_2$ than the P-MoS₂. It demonstrated that ZT-MoS₂ dramatically enhanced the electron transfer and reaction mass accessibility to the active sites. Furthermore, we carried out a long-term cycling test for more than 5000 cycles to investigate the stability of ZT-MoS₂. The negligible difference before and after 5000 cycles indicated the remarkable stability of ZT-MoS₂ during the long-term electrochemical catalytic process (Figure 4d). The turnover frequency (TOF) for the active sites of the ZT-MoS₂ catalyst was calculated using the roughness factor method according to the following equation [42]. The ZT-MoS₂ presented a TOF of 1.25 s^{-1} . It was 1.81-fold higher than the TOF of P-MoS₂ (0.69 s⁻¹), further indicating the advanced HER catalytic activity of ZT-MoS₂ (Figure S5).

Figure 3. High resolution X-ray photoelectron spectroscopy (XPS) spectrum recorded for the Mo 3D of (**a**) ZT-MoS₂ and (**c**) P-MoS₂, and S 2p of (**b**) ZT-MoS₂ (**d**) P-MoS₂. The data were the average of three measurements.

Figure 4. Electrochemical characterizations of as-product catalysts. (**a**) Polarization curves of Pt/C, ZT-MoS₂, P-MoS₂, ZnO-MoS₂. (**b**) Tafel plots of Pt/C, ZT-MoS₂, P-MoS₂, ZnO-MoS₂. (**c**) Electrochemical impedance spectroscopy (EIS) Nyquist plots of ZT-MoS₂ and P-MoS₂. (**d**) Durability test of ZT-MoS₂ through 5000 cycles linear sweep voltammetry (LSV).

These results revealed the superb HER catalytic ability of ZT-MoS₂, which can be explained as follows: firstly, the unique prickly pear-like 3D porous MoS₂ structures possess many edge active sites confirmed by HRTEM (Figure 1e) and Raman Spectrum analysis (Figure 2b), which contribute to the advanced HER performance (Figure 4a,b). Moreover, adequate defects (Figure 1e) and abundant 1T-MoS₂ (Figure 3a,b) were included in ZT-MoS₂, enabling the advanced HER catalytic activity. Lastly, the porous 3D structure facilitated the reaction mass transfer during the reaction, which creates the ready accessibility of active sites to the substrate, while the surface of the nanostructure also contributed to its good performance (Table S1). In comparison, both the MoS₂ microbeads without decorated MoS₂ nanoparticles and the MoS₂ microbeads decorated with crowded MoS₂ nanoparticles (Figure 4d) indicated the extraordinary stability of the synthesized ZT-MoS₂. It suggested that the numerous edge active sites and the good accessibility of active sites to the reaction substrate were significant factors in the efficient HER performance.

3. Materials and Methods

3.1. Reagent

Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), hexamethylenetetramine (C₆H₁₂N₄), zinc acetate dihydrate (C₄H₁₀O₆Zn), thiourea (H₂NCSN₂), and hexaammonium heptamolybdate tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O) were purchased from Sigma (St. Louis, MO, USA). Potassium hexacyanoferrate (III) (K₃Fe(CN)₆), potassium hexacyanoferrate (II) trihydrate (K₄Fe(CN)₆·3H₂O), potassium chloride (KCl), hydrochloric acid (HCl), sulfuric acid (H₂SO₄), and ethanol absolute were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All reagents used in this study were of analytical grade.

3.2. Preparation of ZnO Nanorods (NRs)

The ZnO NRs were synthesized in accordance with a method set out in a previous report, with some modification [43]. Briefly, ZnO NRs were synthesized on quartz glass substrates with dimensions of 5.5×2.5 cm. Firstly, a droplet of 2 mL zinc acetate (5 mM) in ethanol was spin-coated on the quartz glass substrates three times, and then the quartz glass was annealed at 300 °C for 30 min in a tube furnace. The resulting quartz glass was kept in the aqueous solution containing zinc nitrate hexahydrate (50 mM) and hexamethylenetetramine (50 mM) at 100 °C for 10 h in a sealed Schott-Duran bottle. Following this, the substrates were then rinsed thoroughly with ultrapure water and dried overnight at 60 °C in an oven.

3.3. Fabrication of ZT-MoS₂ and P-MoS₂

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (1 mmol) and thiourea (30 mmol) were dissolved in ultrapure water (40 mL) to form a homogeneous solution, and the solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave. Different amounts of prepared quartz glass (0.5, 1, and 2) were immersed into the Teflon-lined stainless-steel autoclave and kept at 180 °C for 24 h to obtain different ZT-MoS₂ (termed as ZT-MoS₂-H, ZT-MoS₂ and ZT-MoS₂-T, respectively). The solution was naturally cooled down to room temperature, and 3 mL 10% HCl solution was added to etch the ZnO NRs. The resulting ZT-MoS₂ dispersed in the solution was generated by centrifuging at 8000 rpm, which was washed thoroughly in the ultrapure water, and then dried at 60 °C by a vacuum freeze dryer to obtain about 4 mg ZT-MoS₂ powder each time.

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (1 mmol) and thiourea (30 mmol) were dissolved in ultrapure water (40 mL) to form a homogeneous solution and the solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave. The solution was naturally cooled down to room temperature and 3 mL HCl solution was added. The resulting P-MoS₂ dispersed in the solution was generated by centrifuging at 8000 rpm,

which was washed thoroughly in the ultrapure water, and then dried at 60 $^{\circ}$ C by a vacuum freeze dryer to obtain P-MoS₂ powder.

3.4. Characterization

The morphologies of these products were observed under scanning electron microscopy (SEM) (HITACHI S-4800, Tokyo, Japan) and transmission electron microscopy (TEM) (JEM-2010, JEOL Ltd., Tokyo, Japan, 200 kV). High-resolution TEM images were taken using a JEOL 2100F microscope (JEOL Ltd., Tokyo, Japan, 200 kV) with an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed using an AXIS ULTRADLD instrument (Kratos, Manchester, UK) equipped with an Al K α X-ray source. Raman spectra were recorded on an InVia-Reflex Raman microscope (Renishaw, London, UK) with a laser excitation wavelength of 532 nm. The porosity was performed with a nitrogen adsorption–desorption isotherm using a surface area analyzer (QuadraSorb SI 2000-08, Quantachrome Instruments, Boynton Beach, FL, USA).

3.5. Electrochemical Measurements

Electrochemical measurements were performed using an electrochemical station (CHI 852C, Shanghai Chenhua Instrument Co., Shanghai, China) in a three-electrode system. A three-electrode system was employed, consisting of a saturated calomel electrode (SCE) as the reference electrode, a graphite rod as the counter electrode, and a glass carbon rotating disk electrode (RDE) or glassy carbon electrode (GCE) loaded on the catalyst as the working electrode. Linear sweep voltammetry (LSV) measurements were run in $0.5 \text{ M H}_2\text{SO}_4$ (purged with pure N₂) at a scan rate of $5 \text{ mV} \cdot \text{s}^{-1}$ and at 1400 rpm [17]. For durability measurement, the LSV was performed at a scan rate of $50 \text{ mV} \cdot \text{s}^{-1}$ from 0.2 to -0.6 V for 5000 cycles.

Typically, 2 mg of the catalyst was dispersed in 2 mL of ultrapure water to form homogeneous ink under sonication. Then, 20 μ L of the catalyst ink was loaded onto the RDE (3 mm in diameter, loading ~0.283 mg·cm⁻²). 5 μ L of 1 wt % Nafion solution was dropped onto the electrode after the ink was dried. Cyclic Voltammetry (CV) measurements using GCE as the working electrode were run in 0.5 M H₂SO₄ (purged with pure N₂) at scan rates of 150, 120, 90, 60, 30, and 10 mV·s⁻¹, respectively. The EIS measurements were recorded in the same configuration using the 1 mmol·L⁻¹ K₃Fe(CN)₆, 1 mmol·L⁻¹ K₄Fe(CN)₆·3H₂O, 0.1 mol·L⁻¹ KCl as the electrolyte at $\eta = 0.2$ V from 10⁻² to 5 × 10⁵ Hz with a voltage amplitude of 5 mV.

4. Conclusions

In conclusion, a prickly pear-like 3D porous MoS₂ nanostructure with advanced HER performance was developed by using a simple and ZnO-mediated hydrothermal synthesis route. Comprehensive microscopic and spectroscopic measurements including SEM, TEM, HRTEM, Raman spectra, and XPS were employed to characterize the morphology and components of the ZT-MoS₂. The prickly pear-like 3D porous ZT-MoS₂ consisted of numerous small MoS₂ nanoparticles decorated on large porous MoS₂ microbeads. It displayed many edge active sites and defects as well as abundant 1T-MoS₂. The ZT-MoS₂ exhibited a superior HER catalytic activity compared with structures using P-MoS₂ as a template, and most of the previously reported MoS₂-based HER catalysts, such as MoS₂/MoSe₂ films [31] and Core-shell MoO₃-MoS₂ nanowires [41]. Additionally, ZT-MoS₂ presented extraordinary stability during the long-term cycling test. This work paves a new avenue for the controllable design of efficient 3D MoS₂ with advanced HER performance, which can be easily extended to other analogous materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/6/235/s1, Table S1: HER activities of synthesized MoS₂ catalysts, Figure S1: (a) SEM image and (b) corresponding magnified SEM image of ZnO NRs, Figure S2: Energy Dispersive X-ray Spectrometer (EDS) spectrum of ZT-MoS₂, Figure S3: SEM image of different ZT-MoS₂: (a) ZT-MoS₂-H, (b) ZT-MoS₂ and (c) ZT-MoS₂-T, Figure S4: SEM image of MoS₂ before HCl etching, Figure S5: Electrochemical measurement for determining TOF: (a) a cyclic voltammetry (CV) curve of ZT-MoS₂ at different scan rates. (b) Current density of CV experiment at overpotential 500 mV vs. RHE

as a function of scan rates, Figure S6: Polarization curves of different ZT-MoS₂: (a) ZT-MoS₂-H, (b) ZT-MoS₂ and (c) ZT-MoS₂-T.

Author Contributions: H.D. and X.C. conceived the project. H.L. designed the experiment and synthesized the material; W.D. and K.Z. carried out the characterization of materials; X.C. and C.L. performed the electrochemical Measurements; H.L. and X.C. analyzed the data and wrote the main manuscript text; H.D. modified the manuscript. All authors have given approval to the final version of the manuscript.

Acknowledgments: The work was supported by National Key R&D Program of China (Grant Nos. 2016YFC0106602 and 2016YFC0106601); National Natural Science Foundation of China (Grant Nos. 21645005, 21475008); the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University (PRRD-2016-YB2); the Open Research Fund Program of Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University (PA160105).

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. *Nature* **2001**, *414*, 332–337. [CrossRef] [PubMed]
- 2. Bard, A.J.; Fox, M.A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. *Acc. Chem. Res.* **1995**, *28*, 141–145. [CrossRef]
- 3. Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.X.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. *Chem. Rev.* **2010**, *110*, 6446–6473. [CrossRef] [PubMed]
- 4. Norskov, J.K.; Christensen, C.H. Chemistry—Toward efficient hydrogen production at surfaces. *Science* **2006**, *312*, 1322–1323. [CrossRef] [PubMed]
- Greeley, J.; Jaramillo, T.F.; Bonde, J.; Chorkendorff, I.B.; Norskov, J.K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. *Nat. Mater.* 2006, *5*, 909–913. [CrossRef] [PubMed]
- Hou, Y.D.; Laursen, A.B.; Zhang, J.S.; Zhang, G.G.; Zhu, Y.S.; Wang, X.C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. *Angew. Chem. Int. Ed.* 2013, *52*, 3621–3625. [CrossRef] [PubMed]
- Li, Y.G.; Hasin, P.; Wu, Y.Y. Ni_xCO₃-XO₄ nanowire arrays for electrocatalytic oxygen evolution. *Adv. Mater.* 2010, 22. [CrossRef] [PubMed]
- Casado-Rivera, E.; Volpe, D.J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T.; Angelo, A.C.D.; DiSalvo, F.J.; Abruna, H.D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. *J. Am. Chem. Soc.* 2004, *126*, 4043–4049. [CrossRef] [PubMed]
- 9. Di, J.; Yan, C.; Handoko, A.D.; Seh, Z.W.; Li, H.; Liu, Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. *Mater. Today* **2018**. [CrossRef]
- 10. Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. *ACS Catal.* **2014**, *4*, 3957–3971. [CrossRef]
- 11. Karunadasa, H.I.; Montalvo, E.; Sun, Y.J.; Majda, M.; Long, J.R.; Chang, C.J. A molecular MoS₂ edge site mimic for catalytic hydrogen generation. *Science* **2012**, *335*, 698–702. [CrossRef] [PubMed]
- 12. Laursen, A.B.; Kegnaes, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. *Energy Environ. Sci.* **2012**, *5*, 5577–5591. [CrossRef]
- 13. Wang, T.Y.; Liu, L.; Zhu, Z.W.; Papakonstantinou, P.; Hu, J.B.; Liu, H.Y.; Li, M.X. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. *Energy Environ. Sci.* **2013**, *6*, 625–633. [CrossRef]
- Kibsgaard, J.; Chen, Z.B.; Reinecke, B.N.; Jaramillo, T.F. Engineering the surface structure of MoS₂ to preferentially expose active edge sites for electrocatalysis. *Nat. Mater.* 2012, *11*, 963–969. [CrossRef] [PubMed]
- Jaramillo, T.F.; Jorgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H₂ evolution from MoS₂ nanocatalysts. *Science* 2007, 317, 100–102. [CrossRef] [PubMed]
- Yan, Y.; Xia, B.Y.; Ge, X.M.; Liu, Z.L.; Wang, J.Y.; Wang, X. Ultrathin MoS₂ nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. *ACS Appl. Mater. Interfaces* 2013, *5*, 12794–12798. [CrossRef] [PubMed]

- Dong, H.F.; Liu, C.H.; Ye, H.T.; Hu, L.P.; Fugetsu, B.S.; Dai, W.H.; Cao, Y.; Qi, X.Q.; Lu, H.T.; Zhang, X.J. Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. *Sci. Rep.* 2015, *5*, 17542. [CrossRef] [PubMed]
- Xu, S.J.; Li, D.; Wu, P.Y. One-pot, facile, and versatile synthesis of monolayer MoS₂/WS₂ quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. *Adv. Funct. Mater.* 2015, 25, 1127–1136. [CrossRef]
- 19. Zhou, W.J.; Zhou, K.; Hou, D.M.; Liu, X.J.; Li, G.Q.; Sang, Y.H.; Liu, H.; Li, L.G.; Chen, S.W. Three-dimensional hierarchical frameworks based on MoS₂ nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. *ACS Appl. Mater. Interfaces* **2014**, *6*, 21534–21540. [CrossRef] [PubMed]
- 20. Ren, X.P.; Ma, Q.; Fan, H.B.; Pang, L.Q.; Zhang, Y.X.; Yao, Y.; Ren, X.D.; Liu, S.Z. A Se-doped MoS₂ nanosheet for improved hydrogen evolution reaction. *Chem. Commun.* **2015**, *51*, 15997–16000. [CrossRef] [PubMed]
- 21. Shi, Y.; Wang, J.; Wang, C.; Zhai, T.T.; Bao, W.J.; Xu, J.J.; Xia, X.H.; Chen, H.Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS₂ nanosheets. *J. Am. Chem. Soc.* **2015**, *137*, 7365–7370. [CrossRef] [PubMed]
- 22. Li, P.; Yang, Z.; Shen, J.X.; Nie, H.G.; Cai, Q.R.; Li, L.H.; Ge, M.Z.; Gu, C.C.; Chen, X.; Yang, K.Q.; et al. Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction. *ACS Appl. Mater. Interfaces* **2016**, *8*, 3543–3550. [CrossRef] [PubMed]
- 23. Li, Y.G.; Wang, H.L.; Xie, L.M.; Liang, Y.Y.; Hong, G.S.; Dai, H.J. MoS₂ nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. *J. Am. Chem. Soc.* **2011**, 133, 7296–7299. [CrossRef] [PubMed]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.W.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. *Nano Lett.* 2013, *13*, 6222–6227. [CrossRef] [PubMed]
- Krishna, K.S.; Vivekanandan, G.; Ravinder, D.; Eswaramoorthy, M. ZnO: A versatile template to obtain unusual morphologies of silica, gold and carbon nanostructures. *Chem. Commun.* 2010, 46, 2989–2991. [CrossRef] [PubMed]
- 26. Zeng, H.B.; Cai, W.P.; Liu, P.S.; Xu, X.X.; Zhou, H.J.; Klingshirn, C.; Kalt, H. ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. *ACS Nano* **2008**, *2*, 1661–1670. [CrossRef] [PubMed]
- 27. Gong, W.; Chen, W.S.; He, J.P.; Tong, Y.; Liu, C.; Su, L.; Gao, B.W.; Yang, H.K.; Zhang, Y.; Zhang, X.J. Substrate-independent and large-area synthesis of carbon nanotube thin films using ZnO nanorods as template and dopamine as carbon precursor. *Carbon* **2015**, *83*, 275–281. [CrossRef]
- 28. Liu, J.P.; Jiang, J.; Bosman, M.; Fan, H.J. Three-dimensional tubular arrays of MnO₂-NiO nanoflakes with high areal pseudocapacitance. *J. Mater. Chem.* **2012**, *22*, 2419–2426. [CrossRef]
- 29. Zhang, K.N.; Zhang, Y.; Zhang, T.N.; Dong, W.J.; Wei, T.X.; Sun, Y.; Chen, X.; Shen, G.Z.; Dai, N. Vertically coupled ZnO nanorods on MoS₂ monolayers with enhanced Raman and photoluminescence emission. *Nano Res.* **2015**, *8*, 743–750. [CrossRef]
- 30. Kong, D.S.; Wang, H.T.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS₂ and MoSe₂ films with vertically aligned layers. *Nano Lett.* **2013**, *13*, 1341–1347. [CrossRef] [PubMed]
- Rao, C.N.R.; Matte, H.; Maitra, U. Graphene analogues of inorganic layered materials. *Angew. Chem. Int. Ed.* 2013, 52, 13162–13185. [CrossRef] [PubMed]
- Wang, H.T.; Lu, Z.Y.; Kong, D.S.; Sun, J.; Hymel, T.M.; Cui, Y. Electrochemical tuning of MoS₂ nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947. [CrossRef] [PubMed]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS₂. ACS Nano 2010, 4, 2695–2700. [CrossRef] [PubMed]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jorgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Norskov, J.K. Biornimetic hydrogen evolution: MoS₂ nanoparticles as catalyst for hydrogen evolution. *J. Am. Chem. Soc.* 2005, 127, 5308–5309. [CrossRef] [PubMed]
- 35. Xie, J.F.; Zhang, H.; Li, S.; Wang, R.X.; Sun, X.; Zhou, M.; Zhou, J.F.; Lou, X.W.; Xie, Y. Defect-rich MoS₂ ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. *Adv. Mater.* **2013**, 25. [CrossRef] [PubMed]

- Shi, Y.M.; Wang, Y.; Wong, J.I.; Tan, A.Y.S.; Hsu, C.L.; Li, L.J.; Lu, Y.C.; Yang, H.Y. Self-assembly of hierarchical MoS_x/CNT nanocomposites (2 < x < 3): Towards high performance anode materials for lithium ion batteries. *Sci. Rep.* 2013, *3*, 2169. [CrossRef] [PubMed]
- Pingli, Q.; Guojia, F.; Weijun, K.; Fei, C.; Qiao, Z.; Jiawei, W.; Hongwei, L.; Xingzhong, Z. In situ growth of double-layer MoO₃/MoS₂ film from MoS₂ for hole-transport layers in organic solar cell. *J. Mater. Chem. A* 2014, 2, 2742–2756. [CrossRef]
- Dai, W.H.; Dong, H.F.; Fugetsu, B.; Cao, Y.; Lu, H.T.; Ma, X.L.; Zhang, X.J. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. *Small* 2015, *11*, 4158–4164. [CrossRef] [PubMed]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS₂ nanosheets. *J. Am. Chem. Soc.* 2013, 135, 10274–10277. [CrossRef] [PubMed]
- 40. Chen, Z.B.; Cummins, D.; Reinecke, B.N.; Clark, E.; Sunkara, M.K.; Jaramillo, T.F. Core-shell MoO₃-MoS₂ nanowires for hydrogen evolution: A functional design for electrocatalytic materials. *Nano Lett.* **2011**, *11*, 4168–4175. [CrossRef] [PubMed]
- 41. Merki, D.; Hu, X.L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. *Energy Environ. Sci.* **2011**, *4*, 3878–3888. [CrossRef]
- 42. Behranginia, A.; Asadi, M.; Liu, C.; Yasaei, P.; Kumar, B.; Phillips, P.; Foroozan, T.; Waranius, J.C.; Kim, K.; Abiade, J.; et al. Highly efficient hydrogen evolution reaction using crystalline layered three-dimensional molybdenum disulfides grown on graphene film. *Chem. Mater.* **2016**, *28*, 549–555. [CrossRef]
- 43. Handoko, A.D.; Liew, L.-L.; Lin, M.; Sankar, G.; Du, Y.; Su, H.; Dong, Z.; Goh, G.K.L. Elucidation of thermally induced internal porosity in zinc oxide nanorods. *Nano Res.* **2018**, *11*, 2412–2423. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).