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Abstract: In the present study, a new biosensor based on lipase from Candida rugosa (CRL) was
developed for amlodipine besylate drug (AMD) with biodegradable material using a mixture of
polyaniline iron oxide and gelatin. Polyaniline/Fe2O3 (PANI@Fe2O3) was prepared by a chemical
polymerization method in a medium of ammonium persulfate as an oxidant and characterized by
employing Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and Ultra-violet
(UV) spectroscopy. The purified enzyme was entrapped in the biocomposite matrix film with the aid
of a glutaraldehyde cross-linking reagent to establish the immobilization of the lipase. The principle
of the biosensor is based on the electrochemical properties of amlodipine besylate (AMD), which were
studied for the first time using the cyclic voltammetric method. The cathodic behavior of AMD was
measured on the irreversible reduction signal at −0.185 V versus Ag/AgCl at pH 7.4 and 30 ◦C in a
phosphate alkaline buffer.
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1. Introduction

Over the past few decades, biosensors have emerged from the laboratories into the everyday life
of millions of people around the world. Like some other sensors, they were first developed for the
detection of particular low-molecular species, e.g., metabolites or disease biomarkers, of importance for
clinical diagnostics, pharmaceutics, and the healthcare industry [1]. Biosensors have been developed
and used in a wide variety of analytical fields, including environmental monitoring, chemical, physics,
and biotechnology research, etc.

Conducting polymers have attracted much attention in the development of efficient biosensors.
Their unique electroactive properties allow them to act as excellent substrates for the immobilization
of biomolecules and rapid transfer of electrons [2–6]. Amongst the various conducting polymers,
polyaniline (PANI) has been extensively studied as an important conducting material that possesses
interesting electrical, electrochemical, and optical properties. The potential applications of PANI
include corrosion, secondary batteries, electrochromic devices, and biosensors. In recent years,
the preparation of hybrid nanocomposites with both magnetic and electrical properties has received
great attention in the industrial and academic fields. Magnetic nanoparticles have been considered
interesting materials for the immobilization of desired biomolecules because of their biocompatibility,
strong superparamagnetic property, low toxicity, etc. [7,8]. For instance, nanocomposites based on
conducting polymers and magnetic nanoparticles are some of the most widely studied materials.

Enzymatic biosensors based on polymerized films constitute an important field of pharmaceutical
research [9,10]. Enzymes interact specifically with some substrates, and can thus be used for the
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detection of these substrates. The lipase produced by Candida rugosa is one of the most commonly used
enzymes in organic solvents owing to its high activity in hydrolysis, esterification, transesterification,
aminolysis, and biosensing [11–13].

Cardiovascular drugs are among the most prescribed medications nowadays since various
cardiovascular diseases are predominant in developed countries worldwide. In this group, the most
important drugs are antihypertensives, cardiotonics, antiarrhythmics, anticoagulants, coronary
vasodilators, and hypolipemics. Since nifedipine was introduced in Germany in 1975 by Bayer
AG [14], many other products such as nicardipine, nilvadipine, nitrendipine, foridone, nimodipine,
benidipine, manidipine, amlodipine, felodipine, and lercanidipine have appeared on the market [15].

Amlodipine, chemically, 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3,5-
pyridinedicarboxylic acid, 3-ethyl,5-methylester, besylate (Figure 1) [15], is a dihydropyridine calcium
channel blocker, which acts only on the L-type channel to produce its pharmacological effect [16].
Like most dihydropyridine derivatives, it has greater selectivity for vascular smooth muscle than
for myocardial tissue, and therefore its main effect is vasodilatation. Amlodipine is used alone or
in combination with other medicines for the treatment of chronic stable angina and certain types of
vasospastic angina, and in the management of mild to moderate essential hypertension.

Catalysts 2018, 8, x FOR PEER REVIEW  2 of 13 

 

Enzymatic biosensors based on polymerized films constitute an important field of 

pharmaceutical research [9,10]. Enzymes interact specifically with some substrates, and can thus be 

used for the detection of these substrates. The lipase produced by Candida rugosa is one of the most 

commonly used enzymes in organic solvents owing to its high activity in hydrolysis, esterification, 

transesterification, aminolysis, and biosensing [11–13]. 

Cardiovascular drugs are among the most prescribed medications nowadays since various 

cardiovascular diseases are predominant in developed countries worldwide. In this group, the most 

important drugs are antihypertensives, cardiotonics, antiarrhythmics, anticoagulants, coronary 

vasodilators, and hypolipemics. Since nifedipine was introduced in Germany in 1975 by Bayer AG 

[14], many other products such as nicardipine, nilvadipine, nitrendipine, foridone, nimodipine, 

benidipine, manidipine, amlodipine, felodipine, and lercanidipine have appeared on the market [15]. 

Amlodipine, chemically, 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-

3,5-pyridinedicarboxylic acid, 3-ethyl,5-methylester, besylate (Figure 1) [15], is a dihydropyridine 

calcium channel blocker, which acts only on the L-type channel to produce its pharmacological effect 

[16]. Like most dihydropyridine derivatives, it has greater selectivity for vascular smooth muscle than 

for myocardial tissue, and therefore its main effect is vasodilatation. Amlodipine is used alone or in 

combination with other medicines for the treatment of chronic stable angina and certain types of 

vasospastic angina, and in the management of mild to moderate essential hypertension. 

N

O

NH2H3C

O

H3C
O

O

CH3

O

Cl

 

Figure 1. Chemical structures of amlodipine. 
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Figure 1. Chemical structures of amlodipine.

Several methods, based on various analytical techniques, have been described in the literature
for the determination of amlodipine besylate in pure form as well as in chemistry laboratory
formulations, pharmaceutical formulations, and biological fluids. They include spectrophotometric
methods [17,18], spectrofluorometric methods [19], high-performance thin-layer chromatography [20],
high-performance liquid chromatography (HPLC) [21,22], liquid chromatography (LC) [23],
gas chromatography (GC) [24], capillary electrophoresis [25], flow injection analysis [26],
and enzyme-linked immunosorbent assay [27].

Although these methods have high sensitivity, they are unfortunately multistep, time-consuming
processes, requiring extensive pretreatment of the sample and qualification for rapid detection.
In recent years, there has been increased attention focused on developing electroanalytical methods
for amlodipine (AMD) analysis using gold electrodes [28], pyrolytic graphite (PG) [29], glassy carbon
(GC), or carbon paste [30,31]. Considerable attention has been focused on the chemical modification
of microelectrodes in order to enhance electroanalytical performance. Graphene–chitosan (GC)
nanocomposite [32] and a multi-walled carbon nanotube-modified carbon paste [33] have been
developed recently. In addition, boron-doped diamond (BDD) electrodes have been fabricated [34,35].

In the present work, we described the synthesis of polyaniline with iron oxide composites for
fabrication in the presence of a gelatin substrate for the immobilization of Candida rugosa lipase (CRL),
and then used this modified platinum electrode in amlodipine biosensor detection. The polyaniline
was characterized with SEM micrography, FTIR and UV-vis spectroscopy. To the best of our
knowledge, this is the first fabrication of polyaniline and gelatin for an amlodipine biosensor based
on Candida rugosa lipase. In addition, the experimental conditions for fabrication and analytical
performance of the biosensor were optimized with electrochemical methods. Finally, we investigated
the performance of the amlodipine biosensor, based on pH and the temperature of the buffer solution.
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2. Results and Discussion

2.1. Polyaniline Iron Oxide Characterization

2.1.1. Polyaniline Iron Oxide Scanning with SEM Micrography

Figure 2a,b show the SEM micrographs displaying the surface morphology of conducting
PANI@Fe2O3 composites synthesized by the chemical oxidative method, in which a uniform in the
surface of polyaniline was observed. The uniform distribution of Fe2O3 contained uniform particles
that indicated the good dispersion of iron oxide on the rice straw surface.

In addition, the presence of iron oxide nanoparticles with good dispersion of Fe2O3 on the surface
of polyaniline has a strong influence on various electrical parameters of these nanocomposites.

Catalysts 2018, 8, x FOR PEER REVIEW  3 of 13 

 

2. Results and Discussion 

2.1. Polyaniline Iron Oxide Characterization  

2.1.1. Polyaniline Iron Oxide Scanning with SEM Micrography 

Figure 2a,b show the SEM micrographs displaying the surface morphology of conducting 

PANI@Fe2O3 composites synthesized by the chemical oxidative method, in which a uniform in the 

surface of polyaniline was observed. The uniform distribution of Fe2O3 contained uniform particles 

that indicated the good dispersion of iron oxide on the rice straw surface. 

In addition, the presence of iron oxide nanoparticles with good dispersion of Fe2O3 on the surface 

of polyaniline has a strong influence on various electrical parameters of these nanocomposites. 

  
(a) (b) 

Figure 2. SEM micrographs, (a) 10 μm and (b) 5 μm, of the surface of conducting PANI@Fe2O3 

composites. 

2.1.2. FTIR Spectral Characterization 

Infrared transmission spectroscopy (FTIR) has been widely used to examine conducting 

polymers. Figure 3a shows the FTIR spectra of PANI@Fe2O3. The bands at 1599 and 1498 cm−1 of PANI 

(curve a) correspond to the stretching mode of C–N and C–C of quinoid and benzenoid rings. The 

bands at 1298 and 1242 cm−1 are attributed to the C–N stretching mode of the benzenoid ring, and the 

signal at 1168 cm−1 is assigned to the protonated PANI (N–H). The presence of a sharp and strong 

band at 592–588 cm−1 indicates the presence of Fe–O stretching vibrations. This indicates the 

formation of polymer composites [36]. The FTIR spectrum of Fe2O3 is shown in Figure 3b, with 

characteristic peaks originating from the Fe–O vibration in the range of 400–600 cm−1. The FTIR 

spectra of the PANI@Fe2O3 composites showed bands at 831 and 881 cm−1, which are characteristic 

peaks of PANI. The peak at 684 cm−1 is usually assigned to the C–H out of plane bending in PANI.  

 
(a) 

Figure 2. SEM micrographs, (a) 10 µm and (b) 5 µm, of the surface of conducting
PANI@Fe2O3 composites.

2.1.2. FTIR Spectral Characterization

Infrared transmission spectroscopy (FTIR) has been widely used to examine conducting polymers.
Figure 3a shows the FTIR spectra of PANI@Fe2O3. The bands at 1599 and 1498 cm−1 of PANI (curve a)
correspond to the stretching mode of C–N and C–C of quinoid and benzenoid rings. The bands at
1298 and 1242 cm−1 are attributed to the C–N stretching mode of the benzenoid ring, and the signal
at 1168 cm−1 is assigned to the protonated PANI (N–H). The presence of a sharp and strong band
at 592–588 cm−1 indicates the presence of Fe–O stretching vibrations. This indicates the formation
of polymer composites [36]. The FTIR spectrum of Fe2O3 is shown in Figure 3b, with characteristic
peaks originating from the Fe–O vibration in the range of 400–600 cm−1. The FTIR spectra of the
PANI@Fe2O3 composites showed bands at 831 and 881 cm−1, which are characteristic peaks of PANI.
The peak at 684 cm−1 is usually assigned to the C–H out of plane bending in PANI.
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Figure 3. FT-IR spectra of (a) PANI/Fe2O3 composites (b) pure Fe2O3.

2.1.3. UV Spectroscopy

The UV-vis absorption spectra of PANI/Fe2O3 composite dispersions are shown in Figure 4.
The typical absorption spectrum of PANI dispersions has two distinct absorption peaks at 342 and
683 nm after fitting (Figure 4). The peak at 343 nm arises from π–π* electron transition within benzenoid
segments, and the wide peak at 683 nm is related to the doping level of polyaniline with iron oxide.
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Figure 4. UV-vis spectra of PANI@Fe2O3 composites.

2.2. Electrochemical Characteristics of the Electrode Surface

The cyclic voltammograms of soluble electro active species provide a convenient tool to monitor
the various stages of the biosensor buildup on the Pt electrode.

Figure 5A shows the cyclic voltammograms of the 5 mM [Fe(CN)6]4−/3− probe for the bare
platinum and modified Pt electrodes in PBS, pH 7.2, at a scan rate of 50 mVs−1. The Pt surface
was modified with polyaniline bio-film (PANI@Fe2O3-Ge-GA-CRL). It can be seen that, for a bare Pt
electrode, a characteristic quasi-reversible redox cycle with anodic and cathodic peak currents was
obtained. When the Pt surface was functionalized with PANI@Fe2O3 and lipase enzymes, the electron
transfer between the redox probe and the modified surface was changed. As a result, an obvious
decrease of the anodic and the cathodic peaks was observed, leading to a high ∆Ep and indicating the
formation of a bioactive layer.



Catalysts 2018, 8, 233 5 of 13

Electrochemical impedance spectroscopy can also give detailed information on the dielectric
constant and the barrier properties of the deposit layer changes. Figure 5B shows the impedance
spectra of the bare and the modified platinum electrode. The bare Pt electrode reveals a very small
semicircle, implying a very low electron transfer resistance (Ret) of the redox probe. When the electrode
is modified with PANI@Fe2O3-Ge-GA-CRL film, the Ret increases significantly. The deposit film was
defined with negatively charged (COO–) of the enzyme (amino acids containing carboxyl (–COOH)
functional groups), which acts as an electrostatic barrier that resists the [Fe(CN)6]4−/3− redox probe
and hinders its ability to diffuse into the layer. This phenomenon probably results from the inhibition
of the electron transfer kinetics between the redox probe and the surface of the modified electrode.
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Figure 5. (A) Voltammograms at 50 mVs−1 and (B) Diagram of Nyquist at −200 mV potential, of (a) Pt
bare electrode and (b) Pt electrode modified with an enzymatic membrane in phosphate buffered saline
(PBS) solution (0.1 M). In the presence of Fe (CN6)3−/4−.

2.3. Cyclic Voltammetry Study of the Biosensor

2.3.1. Concentration Effect

The electrochemical response of AMD was studied by performing cyclic voltammetry in a solution
containing between 10−12 and 10−6 M of AMD at the CRL-PANI@Fe2O3/Ge-Pt electrode. The cyclic
voltammograms recorded at this electrode are shown in Figure 6. The cyclic voltammetry plots of
AMD show a prominent cathodic peak at ≈−0.18 V, while no anodic peak is observed in the reverse
scan, indicating the irreversible reduction of AMD at the electrode surface.
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Figure 6. CV voltammograms of various AMD concentrations in 5 mM PBS at pH 7.4.
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A calibration curve was plotted between the magnitude of current response and logarithm of
amlodipine concentration (Figure 7). A linear dependent relation was observed, which followed
the equation:

Y = 7.6 × 10−2 + 3.5 × 10−3 .log (AMD concentration); R = 0.993. (1)

The electrochemical amlodipine lipase sensor developed by us exhibited a wide linearity from
10−12 M to 10−5 M (on a logarithmic scale), as well as a low detection limit of 10−12 M with a regression
coefficient of 0.993.
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2.3.2. Proposed Reaction Mechanism for Amlodipine

The kinetic of catalytic reaction of the enzyme is one of the most important parts in the
development of a biosensor.

For this purpose, kinetics were investigated in order to provide detailed information on the
elementary reaction steps of the hydrolysis of the 1,4-dihydropyridine class (including the amlodipine
substrate used in our study) by lipase. These 1,4-DHPs, including nifedipine and amlodipine,
were subjected to enzymatic kinetic resolution via hydrolysis in the presence of lipases in water
saturated with organic solvent [37,38].

In 1992, lipase was observed in the hydrolysis of 1,4-dihydropyridine derivatives by Hirose et al.
A new series of 4-aryl-1,4-dihyropyridines are being used as substrates for many enzymes to obtain
enantiopure compounds. The enzymatic hydrolysis of Candida rugosa by purified lipase has been
investigated using 1,4-dihyropyridine diester as a substrate [39].

Lipase from Pseudomonas sp. catalyzed the hydrolysis of ethoxycarbonylmethyl esters of 1,4-DHP
through the splitting of both ‘outer’ and ‘inner’ ester groups to give the corresponding carboxylic acid
or methyl ester [40].

In addition, the hydrolysis of of 4-(3-nitrophenyl)-1,4-DHP was carried out by Holdgrun and
Sih (1991) and Sih et al. (1992) in phosphate buffer at pH 7.0 with different lipases. When the
reaction medium was n-butanol/water (10:1), the lipase-catalyzed hydrolysis proceeded with good
enantioselectivity. The degradation of diesters was achieved through a two-step reaction (Scheme 1);
the first step produced monoacids, and prolongation of the reaction time led to achiral di-acids [41,42].
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Scheme 1. Kinetic enzymatic hydrolysis of racemic 1,4-DHPs with two steps [41,42].

Using t-butyl methyl ether as the solvent in addition to methanol as the nucleophile for
Pseudomonas lipase and water as the nucleophile for C. rugosa lipase (CRL), the transformations
of 1,4-DHPs were investigated (Scheme 2) [43].
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Scheme 2. Kinetic enzymatic hydrolysis of racemic 1, 4-DHPs [43].

In our study, we used amlodipine as the substrate for Candida rugosa lipase. The enzymatic
kinetics of the hydrolysis reaction were studied using CV with varied substrate concentrations. We only
observed one peak on the first negative scan at a potential of about −0.18 V (SCE), with no reversal
peak in the positive scan. The one irreversible peak shown in this study indicated that only one
dominant reaction occurs. We are able to propose the mechanism of the enzymatic transformations
(Scheme 3).
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2.3.3. Scan Rate Effect

The effect of scan rate on the peak current was studied by performing CV in 1.0 × 10−6 M AMD
at various scan rates ranging from 50 to 200 mVs−1 (Figure 8). The CV plots show an increase in the
cathodic peak current with the increasing scan rate, with a shift in the peak potential to more negative
values. These studies showed irreversible chemical behavior at the surface of the bioactive layer.
Furthermore, the cathodic peak current shows a linear dependence on the square root of the scan rate,
implying that the electrochemical reduction of AMD at the electrode surface is diffusion-controlled
(Figure 8). A fit to the current gives the following regression equation:

Ip = −0.03 + 0.01161·υ1/2, R = 0.998. (2)
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Figure 8. CV voltammograms of 1.0 × 10−6 M AMD in PBS at pH 7.4 on Pt-modified electrode for
series of scan rates from 50 to 200 mV s−1.

2.4. Optimization of Working Conditions

2.4.1. pH Effect on Biosensor Response

Generally, the effect of pH of the supporting electrolyte on the current response of the monitored
analyte plays an important part in its detection and quantification [44]. The pH of the medium has an
important role in biosensor studies for obtaining the best biosensor response. In order to determine the
effect of the pH value on the biosensor response, different buffer systems were investigated. Phosphate
buffers containing 1.0 × 10−6 M AMD were used in the experiments and all of the buffers had a
concentration of 50 mM. From the experiments, the optimum pH value was found to be 7.4 (Figure 9).
The response at pH 7.4 was set to 100%. Below and above pH 7.4, decreases were observed in the
biosensor response.
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Figure 9. The effect of pH on the biosensor response. [Working conditions; phosphate buffer, 50 mM
and T = 35 ◦C. 5 mg/mL amlodipine solution].

2.4.2. Effect of Temperature on Biosensor Response

To determine the influence of temperature on the response of the biosensor, experiments were
carried out between 25 and 50 ◦C under the best working conditions obtained from the optimization
studies. Results are given in Figure 10. The results showed that the best biosensor response
was obtained at 35 ◦C. Below and above this temperature, decreases in the biosensor response
were recorded.
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Figure 10. The effect of temperature on the biosensor response. [Working conditions; phosphate buffer,
50 mM and pH = 7.4, 5 mg/mL amlodipine solution].

3. Experimental

3.1. Apparatus

The electrochemical experiments were conducted using an EC-Lab SP Modular Research Grade
Potentiostat/Galvanostat, and the software EC-Lab was used for the treatment of the data and the
control of the experiments. A three-electrode cell was used to study the electrochemical behavior of
this material via cyclic voltammetry and electrochemical impedance spectroscopy (EIS); the reference
electrode was a saturated calomel electrode (SCE), a platinum wire with a diameter of 1 mm was used
as the auxiliary electrode, and the working electrode was a plate with an area of 0.5 cm2. In dynamic
measurements, impedance data was obtained at an AC amplitude of 10 mV and a frequency range



Catalysts 2018, 8, 233 10 of 13

varying from 100 Hz to 100 kHz. The experiments were performed in a dark faraday box to eliminate
electrical interferences.

3.2. Chemicals and Reagents

All chemicals were commercially available and used as received. Candida rugosa lipase, purchased
from Sigma Chemical Life Science (JABAN, Tiemcen, Algeria), was used for experiments without
further purification. Aqueous solutions (25% w/v) of glutaraldehyde (GA) were purchased from
Sigma-Aldrich, hydrogenchloride (HCl), monomer aniline, ammonium persulfate ((NH4)2S2O4, APS),
iron oxide (Fe2O3), and gelatin. Pure amlodipine besylate was obtained from MM LABORATOIRES
(Annaba, Algeria). The buffer solution used for all experiments was phosphate buffered saline (PBS),
containing 140 mM NaCl, 2.7 mM KCl, 0.1 mM Na2HPO4, and 1.8 mM KH2PO4, with a pH of 7.4.
The reagents were of analytical grade and used as purchased without any further pretreatment. All
solutions were prepared using demineralized water.

3.3. Preparation of PANI/Iron Oxide

The synthesis of PANI-iron oxide was carried out using a chemical polymerization method.
For the activation of the aniline molecule, aniline monomer (0.1 M) was mixed in 1 M HCl and
stirred for 15 min to form aniline hydrochloride (Solution A). Then, 0.2 g Fe2O3 microspheres were
added as a mass fraction to the above solution with vigorous stirring in order to keep the iron oxide
homogeneously suspended in the solution and subsequently sonicated for 30 min, resulting in a
homogeneous mixture. To this solution, 0.1 M ammonium persulfate activated by 1 M HCl (Solution B),
which acts as an oxidizer, was slowly added dropwise with continuous stirring at 4–5 ◦C for 5 h to
completely polymerize the mixture (Scheme 4). The precipitate was filtered, washed with deionized
water and acetone, and finally dried in an oven for 24 h to achieve a constant mass [44,45].
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chemical polymerization.

3.4. Electrode Modification and Immobilization of the Enzyme Candida rugosa Lipase

For the construction of the bioactive layer, the Pt electrodes were polished on a piece of velvet
with alumina slurry, washed thoroughly with distilled water, and then sonicated for 5 min in ethanol
and distilled water, respectively. Two milligrams of PANI@Fe2O3 and 3 mg of gelatin were dissolved
in 100 µL (pH 7.4) of a 50 mM phosphate buffer at 40 ◦C. Then, 80 µL of the solution was dispersed on
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the Pt electrode surface, and allowed to dry for 30 min at 4 ◦C. For cross-linking, the electrode surface
was immersed in glutaraldehyde solution (5% v/v) for 5 min. Then, 5 mg Candida rugosa lipase were
immobilized on the surface of the electrode. Finally, the electrode was rinsed with distilled water to
eliminate the excess glutaraldehyde (Scheme 5).
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4. Conclusions

Conducting polyaniline@Fe2O3 composites have been synthesized successfully by a simple
chemical procedure. The FTIR analysis confirms the chemical structure of PANI@Fe2O3. UV-vis
spectra confirm the formation of doped polymers.

The present study showed that the CRL/Ge-PANI@Fe2O3-modified Pt electrode was a very good
candidate for the construction of a sensitive CRL biosensor for AMD analysis. The cathodic behavior
of AMD was measured on the irreversible reduction signal at −0.185. It would be interesting to
investigate other biosensors based on lipase for the analysis of 1,4-DHPs drugs.
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