
Supplementary Materials: Ru-Pd bimetallic catalysts supported on CeO₂-MnO_x oxides as efficient systems for H₂ purification through CO preferential oxidation

Roberto Fiorenza¹, Luca Spitaleri¹, Antonino Gulino^{1,2} and Salvatore Scirè ^{1,*}

- 2.2. Catalysts Characterization
- 2.2.1. Temperature Programmed Reduction (H2-TPR)

Figure S1. H₂-TPR profiles with peaks deconvolution for Ru/CeO₂-MnO $_{\times}$ (A) and Ru-Pd/CeO₂-MnO $_{\times}$ (B) samples.

Table S1. H2-TPR quantification for the investigated catalysts

Catalysts	LT peak (°C)	H2 uptake (μmol/g _{cat})	MT peak (°C)	H2 uptake (μmol/g _{cat})	HT peak (°C)	H2 uptake (μmol/g _{cat})
CeO ₂	-	-	-	-	500	161
Ru/CeO2	164	396	190	544	325	210
CeO ₂ -MnO _x	-	-	-	-	435	295
Ru/CeO2-MnOxx	199	381	246	644	314	221
Pd/CeO ₂ -MnO _x	-	-	275	821	-	-
Ru-Pd/CeO ₂ -MnO _x	139	80	209	1963	278	62

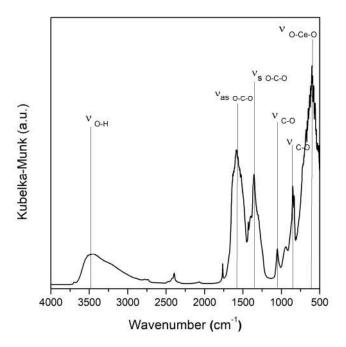
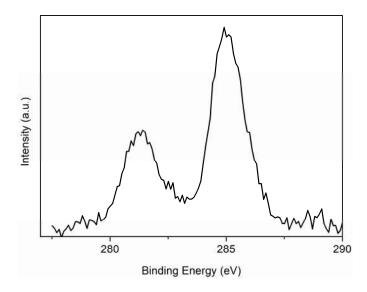



Figure S2. Drift spectra of bare CeO₂.

2.2.3. XPS Measurements

Figure S3. Al K α excited XPS of the 1%Ru/CeO₂ in the Ru 3d – C 1s energy region. The peak at 281.3 eV is due to the Ru 3d_{5/2} state, the peak at 285.0 eV is due both to the adventious carbon and Ru 3d_{3/2} state.

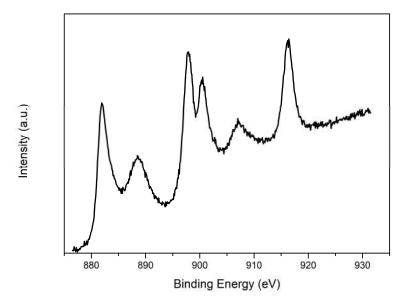
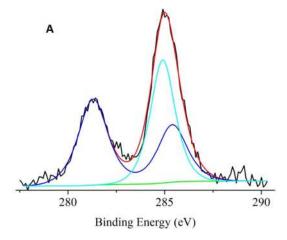
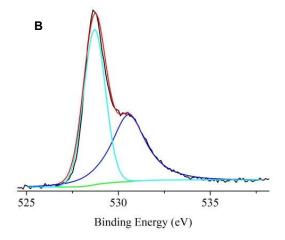




Figure S4. Al $K\alpha$ excited XPS of the Ru/CeO2 in the Ce 3d energy region.

Figure S5A. Al $K\alpha$ excited XPS of the Ru/CeO₂ in the Ru 3d – C 1s energy region; the black line refers to the experimental profile; the green line refers to the background; the peaks at 281.3 and 285.4 eV (blue line) represent the Ru 3d_{5/2,3/2} spin-orbit components, the peak at 285.0 eV (cyan line) refers to the adventitious carbon; the red line, superimposed to the experimental profile, refers to the sum of the Gaussian components.

Figure S5B. Al K α excited XPS of the Ru/CeO₂ in the O 1s energy region. The black line refers to the experimental profile; the green line refers to the background; the cyan line refers to the 528.7 eV peak; the blue line refers to the 530.6 eV peak; the red line, superimposed to the experimental profile, refers to the sum of the Gaussian components.

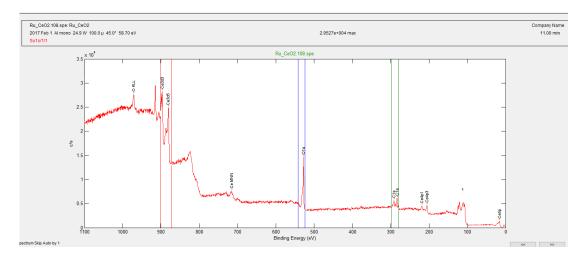


Figure S6. XPS survey spectrum of Ru/CeO_2 .