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Abstract: To simulate the active site cavity structure function and axial coordination of cytochrome
P-450 enzymes, mesoporous chitosan(mesp-CTS) was used as a scaffold for a meso-sized cavity
to immobilize cobalt tetrakis(p-sulphophenyl)porphyrin chloride(Co TPPS). Immobilization was
achieved via an acid–base reaction and axial coordination of the H2N-C group to the Co ion in Co
TPPS, thus forming the biomimetic catalyst Co TPPS/mesp-CTS. Several approaches, including
scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET)technique, Fourier transform
infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric and
differential scanning calorimetry (TG-DSC), and X-ray photoelectron spectroscopy (XPS), were
used to characterize the grafted catalyst. The catalytic performance of Co TPPS/mesp-CTS in
ethylbenzene oxidation without any solvents and additives was investigated. The results showed
that only 0.96 × 10 mol of Co TPPS grafted onto mesp-CTS could be recycled three times for 200 mL
of ethylbenzene oxidation, with an average yield of 44.6% and selectivity of 68.8%. The highly
efficient catalysis can be attributed to promotion by mesp-CTS, including the effect of the mesoporous
structure and the axial coordination to the Co ion in Co TPPS. This biomimetic methodology provides
a method for clean production of acetophenone via ethylbenzene oxidation.
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1. Introduction

Methods for achieving highly efficient oxidation of ethylbenzene in high-value added products,
acetophenone and 1-phenylethanol, are very welcome in the chemical industry. Recently, the oxidation
of ethylbenzene has been optimized to produce high yields of acetophenone [1–10]. During the
production of high-value added products, however, there are many requirements that have to be met.
For example, the catalyst should be highly effective and recyclable [4], and should not produce toxic
by-products, while the oxidant should be eco-friendly and sustainable [3,5]. Furthermore, the catalytic
oxidation system should eliminate the use of solvents [5], the oxidation time should be as short
as possible [5], and the potential for explosions of the oxidation reaction at high temperatures and
pressures, even at room temperature, should be minimized [11]. To meet these requirements, some
scientists have technically employed the microstructured reactor successfully to solve the potentially
explosive problem, and the microreactor technique has been used to enhance the production rates
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of the hydrocarbon (alkylideneoxazoles and cyclohexane)oxidation with O2 [11,12] and an aqueous
solution of H2O2 [13], respectively; many investigators have also designed catalysts with excellent
properties, which were tested in various oxidation systems to investigate their catalytic effects. Many of
these catalysts were associated with several advantages, as well as disadvantages, with regard to
oxidation systems [1–10,14–17]. In most cases, the inability to satisfy the five criteria listed above
greatly limits their practical applications. Therefore, designing the best catalyst for the oxidation of
ethylbenzene to acetophenone remains a challenge.

Enzyme and biomimetic catalysts are useful in society because they are environmentally friendly.
Immobilized metaloporphyrins are biomimetic catalysts that have gained popularity because of their
distinctive catalytic activities and stability [18–21]. In addition, polymer-supported metaloporphyrins
have several advantages over conventional homogeneous catalysts because of the steric and electronic
effects of the supports, which in some respects are analogous to the influence of the polypeptide
chain in hemoproteins [22,23]. Many studies have attempted to mimic the cavity function and axial
coordination of cytochrome P450 enzymes using different metalloporphyrins with carrier cavities
and various axial ligands, which affected the catalytic activities of the metalloporphyrins [24,25], as
well as their product selectivities [26]. Previously reported models attempting to mimic cytochrome
P450enzymes possessed rather variable catalytic behavior, and thus producing efficient, stable P450
mimics remains challenging.

Based on the considerations described above, we have investigated the oxidation of ethylbenzene
over powdered chitosan(pd-CTS)-supported manganese tetrakis(4-carbonylphenyl) porphyrin(Mn
TCPP/pd-CTS), nanoporous chitosan(np-CTS)-supported manganese tetrakis(4-carbonylphenyl)
porphyrin (Mn TCPP/np-CTS), and powdered chitosan(pd-CTS)-supported cobalt tetrakis
(4-carbonylphenyl) porphyrin (Co TPPS/pd-CTS), and found that the yields (one + ol) were 13.2%
averaged over three runs [27], 13.8% averaged over five runs [28], and 13.5% averaged over eight
runs [29], respectively. A comparison of the catalytic activity of Mn TCPP/pd-CTS with that of Mn
TCPP/np-CTS revealed that the latter gave higher ethylbenzene conversion (24.5 mol %) under reaction
conditions of 145 ◦C and 0.8 MPa, in comparison with the former(20.7 mol %) under reaction conditions
of 155 ◦C and 0.8 MPa. This finding indicates that np-CTS improved the catalytic performance of Mn
TCPP more effectively than pd-CTS. However, the selectivity (one + ol) of Mn TCPP/np-CTS (69.7%)
was lower than that of Mn TCPP/pd-CTS (85.5%). This led us to predict that the chitosan-mesoporous
action and the coordination to metalloporphyrins will improve the yields of the main products (one + ol),
thus we investigated the effects of each of these factors on selectivity with regard to the corresponding
ketone and alcohol.

In this study, to improve the selectivity and yield of acetophenone and 1-phenylethanol
production, we developed a novel mesoporous chitosan-grafted cobalt tetrakis(p-sulfophenyl)porphyrin
(Co TPPS/mesp-CTS) to catalyze the oxidation of ethylbenzene. The goal of this approach was to
develop and expand our previous studies [27–29] on the effect of chitosan’s cavity and axial coordination
on the catalytic activity of mesoporous chitosan-grafted cobalt tetrakis(p-sulfophenyl)porphyrin for
ethylbenzene oxidation, with the aim of understanding how the characteristics of chitosan promote the
catalytic activity of Co TPPS.

2. Experimental Section

2.1. Chemicals

All chemicals and solvents were of analytical grade, obtained commercially, and used as received
without further purification. Powdered chitosan (MW, ~7.7 × 104 Da; degree of deacetylation, 90.3%)
was purchased from Zhejiang Jinke Biochemistry Co., Ltd. (China). Deionized water was made in
our laboratory.
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2.2. H2 TPPS and Co TPPS Synthesis

Tetrakisphenylporphyrin (H2 TPP) was prepared as described previously [30]. In brief, a propionic
acid solution of pyrrole and benzaldehyde was refluxed for 40 min in nitrogen, and cooled slowly to
room temperature. The resulting crystallites of tetrakisphenylporphyrin were filtered, sequentially
washed with ethanol and water, and dried for further use.

Tetrakis(p-sulphophenyl)porphyrin [H2 T(p-SO3H)PP], designated as H2 TPPS, was synthesized
as described previously with minor modifications [31]. Two milliliters of freshly redistilled
chlorosulfonic acid was added drop-wise into a mixture of 15 mL chloroform solution and 0.75 g H2

TPP with stirring, and the mixture was heated at 30 ◦C for 1 h. To decompose the excess chlorosulfonic
acid, the resulting solution was poured slowly into ice water. The water evaporated and H2 TPPS was
allowed to dry, resulting in the formation of dark green crystals (1.04 g).

Cobalt tetrakis(p-sulphophenyl)porphyrin (Co TPPS) was synthesized as described previously
with minor modifications [31]. First, 0.3 g of H2 TPPS was dissolved in 70 mL of deionized water, the
mixture was refluxed, 0.1 g of hydrate cobalt chloride (CoCl2·6H2O) was added, and the mixture was
stirred for 1.5 h. The process of metalation was monitored by following the change of the Soret bands
from H2 TPPS to Co TPPS. After evaporation of the solvent, the resulting solid was recrystallized with
a mixture of methanol/water (v:v, 1:1). Thereafter, cobalt complex Co TPPS was purified by silica
column chromatography, using methanol as the elutant. A reddish-brown solid (0.2 g) was obtained
after evaporation of the methanol.

2.3. Preparation of Co TPPS/mesp-CTS Catalyst Material

Chitosan beads were prepared as described previously [32]. A mixture of 7.5 g of pd-CTS and
380 mL of acetic acid (3.9 wt %) was stirred vigorously for 12 h. The resulting chitosan-gelatinous
solution was added drop-wise to a 10% NaOH solution, forming many small, white chitosan-balls.
The chitsoan-balls were washed and soaked in water until the water was neutral. The neutral white
chitosan-balls were added to 1500 mL of glutaraldehyde solution (2.5 wt %) and cross-linked for
12 h. The white cross-linked chitosan-balls were rinsed extensively with water to remove all traces
of glutaraldehyde. Thereafter, a portion of the white chitosan-balls was freeze-dried for 36 h to yield
mesoporous CTS microspheres (mesp-CTS, mean pore diameter of 2–50 nm and mean ball diameter
of 3–4 mm, Figure 1), while another portion was dried under a vacuum at 80 ◦C for 24 h to yield
macroporous-CTS (macp-CTS, mean pore diameter larger than 50 nm and mean ball diameter of
3–4 mm, Figure 1).
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Figure 1. Images of mesoporous chitosan (mesp-CTS), cobalt tetrakis(p-sulphophenyl)porphyrin
chloride(Co TPPS)/mesp-CTS, macroporous-CTS (macp-CTS) and Co TPPS/macp-CTS; scanning
electron microscopy (SEM) images of mesp-CTS and Co TPPS/mesp-CTS.

A 10-mL sample of Co TPPS solution (30 mg) was added slowly to a 250-mL suspension of mesp-CTS
microspheres (30 g) with gentle stirring over 1 h at room temperature. The resulting microspheres
were filtered and dried under a vacuum at 55 ◦C for 6 h to yield Co TPPS/mesp-CTS. The content of
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cobalt tetrakis(p-sulphophenyl)porphyrin in the filtrate was determined by ultraviolet-visible (UV-vis)
spectroscopy [33]. The content of grafted cobalt tetrakis(p-sulphophenyl)porphyrin in the microspheres
was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES Spectroflame
model FVMØ3). The sample was digested using a traditional acid method (HNO3 and HCl), diluted
adequately, and analyzed for cobalt. The content of grafted Co TPPS per gram of mesp-CTS microspheres
was 1.02 mg, which was consistent with that determined by UV-vis spectroscopy [33]. Co TPPS/macp-CTS
was prepared using a similar method, and the content of grafted Co TPPS per gram of macp-CTS was
1.01 mg.

2.4. Characterization Equipment

Scanning electron microscopy (SEM) images were obtained with a S-3400 scanning electron
microscope. Nitrogen adsorption/desorption measurements were carried out on a Gemini VII
porosimetry analyzer. The specific surface area and pore size distribution were calculated by
Brunauer–Emmett–Teller (BET) and BJH(Barrett-Joyner-Halenda) methods, respectively. IR spectra
were obtained with a Nexus 470 Fourier transform infrared (FT-IR) spectrophotometer using the
KBr disk method in the range of 400–4000 cm. UV-vis spectra were obtained with a TU-1810SPC
spectrophotometer in the range of 300–700 nm, and analyses were performed with a 1-cm path
length cell. Thermogravimetric and differential scanning calorimetry (TG-DSC) was conducted on
a STA 409 PC/PG Luxx thermo analyzer in an atmosphere of air with a flow rate of 20 mL per min.
X-ray photoelectron spectrometry (XPS) was conducted on a Kratos Ultra Axis DLD photoelectron
spectrometer using a monochromatic Al Kαradiation source with a pass energy of 40 eV.

2.5. Measurement of Catalytic Performance forCo TPPS/Mesp-CTS

Catalytic oxidation of ethylbenzene was carried out in a 0.25-L autoclave reactor equipped with
a magnetic stirrer and a frozen ethanol recondenser at −20 ◦C [34]. In brief, the substrate (200 mL) and
catalyst (0.97 × 10 mol Co TPPS) were added to the reactor. The reaction was performed at a specific
temperature (130–150 ◦C). When the reaction reached the required temperature, O2 was continuously
bubbled into the autoclave at the desired pressures (0.6–1.0 MPa). During the 4-h oxidation reaction,
samples were drawn at 30-min intervals and analyzed/quantified by gas chromatography-mass
spectrometry (GC-MS), using a Shimadzu GC-16A chromatograph equipped with a 30 m × 0.32 mm
× 0.5 µm FFAP capillary column and a flame ionization detector. Bromobenzene was used as the
internal reference. To study the reuse potential of the chitosan-grafted metalloporphyrin materials,
the catalysts were separated from the reaction mixture after the reaction was terminated, washed in
ethanol, air-dried to remove residual oxidation products, and used for oxidation of ethylbenzene.

3. Results and Discussion

3.1. Characterization for the Co TPPS/mesp-CTS Material

Figure 1 shows images of mesp-CTS, Co TPPS/mesp-CTS, macp-CTS, and Co TPPS/macp-CTS.
The slight color change from the various supports after grafting to the corresponding materials indicates
that Co TPPS grafted to mesp-CTS and macp-CTS. When the acid–base reaction was used to graft Co
TPPS to CTS, Co TPPS molecules rarely aggregated together. Although there were apparent differences
in the microstructure of Co TPPS/mesp-CTS andmesp-CTS by SEM (Figure 1), there were only slight
differences in the specific surface areas and adsorption average pore diameters of Co TPPS/mesp-CTS
and mesp-CTS. In addition, the BET adsorption isothermal lines of Co TPPS/mesp-CTS and mesp-CTS
were identical and similar, respectively, to the III type (Figure 2). However, the BET adsorption
isothermal lines of Co TPPS/macp-CTS and macp-CTS were more similar to the II type, and rather
different from those of Co TPPS/mesp-CTS and mesp-CTS (Figure 2). Therefore, Co TPPS/macp-CTS
and macp-CTS both possessed macroporous structures (Figure 1). Our results indicate that the BJH
pore-size distributions of Co TPPS/mesp-CTS and mesp-CTS were similar. The average pore diameters
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of Co TPPS/mesp-CTS and mesp-CTS were approximately 23 nm (Table 1). We predicted that the
catalytic performance of Co TPPS/mesp-CTS would be better than that of Co TPPS/macp-CTS [35].
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Table 1. Physical characteristics of mesoporous chitosan (mesp-CTS) and cobalt tetrakis
(p-sulphophenyl)porphyrin chloride(Co TPPS)/mesp-CTS. BET; BJH.

Material BET Surface Area (m/g) BJH Total Pore Volume
(cm/g)

BJH Adsorption Average Pore
Diameter (nm)

mesp-CTS 104.2 0.64 23.1
Co TPPS/mesp-CTS 102.2 0.64 23.0

Figure 3A shows the FT-IR spectra of pd-CTS, mesp-CTS, Co TPPS, and Co TPPS/mesp-CTS.
For pd-CTS, the peaks at 3370 cm and 1596 cm were assigned to the stretching vibration of amino
groups, and the peak at 1654 cm was attributed to the carbonyl stretching vibration of the secondary
amide [36,37]. The peak at 3370 cm was attributed to the hydroxyl group of chitosan. After chitosan was
cross-linked with glutaraldehyde to form mesp-CTS, the intensities of the peaks at 3370 cm and 1596 cm
decreased. The formation of a C=N bond between chitosan and glutaraldehyde caused the change in
the carbonyl stretching vibration to be minor. For Co TPPS, the peak at 3438 cm was attributed to the
stretching vibration of the hydroxyl groups in SO3H. The peaks at 1635, 1398, 1039, and 1006 cm were
assigned to the porphyrin skeletal modes, while the peaks at 1180 and 1127 cm were vested in sulfonic
acid group vibrations. The peak at 640 cm−1 was assigned to the in-plane-deformation vibration of
the pyrrolyl and phenyl groups [38]. When Co TPPS was grafted onto mesp-CTS, thus forming Co
TPPS/mesp-CTS, a peak appeared at 3413 cm that was narrower than that of Co TPPS, but slightly
larger than that of mesp-CTS. This was because of the acid–base reaction between the sulfonic acid
groups of Co TPPS and the amino groups of mesp-CTS, which broke the hydrogen bond in Co TPPS.
The acid–base reaction was also supported by the initial peak at 1180 cm in the FT-IR spectrum of Co
TPPS, which was absent from that of Co TPPS/mesp-CTS. Instead, two new peaks appeared at 1259
and 1072 cm [39]. It is possible that the peak at 1069 cm in the FT-IR spectrum of mesp-CTS may have
contributed to the peak at 1072 cm.
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TPPS/macp-CTS), Co TPPS, mesp-(or macp-)CTS and, powdered chitosan (pd-CTS), with an effective
frequency range of 400–4000 cm; (B) ultraviolet-visible(UV-vis) spectra of an aqueous solution of H2

TPPS (ε = 5.3 × 10 L·mol cm) and Co TPPS (ε = 2.7 × 10 L·mol cm) and an aqueous suspension of
Co TPPS/mesp-CTS(or Co TPPS/macp-CTS) (ε = 0.4 × 10 L·mol cm); and (C) UV-DRS (vis diffuse
reflectance spectra) spectra of mesp-CTS(or macp-CTS), Co TPPS, and Co TPPS/mesp-CTS (or Co
TPPS/macp-CTS).

The reaction between Co TPPS and mesp-CTS was further verified by UV-vis analysis (Figure 3B).
For H2 TPPS and Co TPPS, Soret bands were observed at 433 and 425 nm, respectively; the Q bands
of H2 TPPS appeared at 594 and 644 nm [40], but that of Co TPPS appeared at 539 nm. A blueshift
of the Soret band and Q band occurred, indicating that the Co ion of CoCl24H2O coordinated with
the H2 TPPS free base to form Co TPPS [18]. The Soret and Q bands in Co TPPS/mesp-CTS (or
macp-CTS), Co TPPS, and mesp-CTS (or macp-CTS) were consistent with previously published
reports [41]. When Co TPPS was grafted onto mesp-CTS, the Soret band of Co TPPS at 425 nm
shifted to 430 nm (Figure 3B). This shift to the red region of the spectrum is similar to the result of
axially coordinating the nitrogen atom in the supports to the cobalt porphyrins [18,41]. As a result
of the low amount of metalloporphyrins grafted onto the surface support, the Soret peak height
of Co TPPS/mesp-CTS was markedly lower than that of Co TPPS. In comparison with Co TPPS,
the Soret band of Co TPPS/mesp-CTS exhibited a small redshift (ca. 5 nm). This phenomenon suggests
that the axial coordination of these ligands to metalloporphyrins resulted in a shift in metal electron
density [42].
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The UV-DRS spectrum of Co TPPS/mesp-CTS was different from that of Co TPPS and mesp-CTS
(Figure 3C), indicating that Co TPPS was grafted onto mesp-CTS. This difference was present because
the sulfonyl groups in Co TPPS reacted with the amino groups in mesp-CTS.

The electron cloud densities (ECDs) of the elements on the surface of the Co TPPS/mesp-CTS
catalyst, especially that of cobalt, were changed to different degrees after Co TPPS was immobilized on
mesp-CTS. Table 2 and Figure 4 show the binding energies (BEs) of key elements in Co TPPS/mesp-CTS,
Co TPPS, and mesp-CTS.

There were two BE peaks at 782.1 and 797.6 eV that corresponded to Co 2p3/2 and Co 2p1/2,
respectively, for Co TPPS, indicating the presence of Co [43]. There was one major BE peak at 798.0 eV,
indicating the presence of Co [44] (Figure 4). After Co TPPS was grafted onto mesp-CTS (or macp-CTS),
the BE peaks of Co 2p3/2 and Co 2p1/2 in Co TPPS/mesp-CTS (or macp-CTS) increased from 782.1
and 797.6 eV to 786.6 and 798.0 eV, respectively. The BE peak of Cl in Co TPPS at 199.6 eV shifted to
196.4 eV after Co TPPS/mesp-CTS (or macp-CTS) was formed. Additionally, there were two BE peaks
at 398.6 and 399.9 eV for Co TPPS, as well as two BE peaks at 398.0 and 399.8 eV for Co TPPS/mesp-CTS
(or macp-CTS), which were in accordance with a previous study reporting that the pyrrolic and iminic
nitrogens in the porphyrin ring were found between 398–400 eV [45]. The electron BE peak of N 1s in
the H2N– group unit in mesp-CTS (or macp-CTS) was found at 397.7 eV. However, when mesp-CTS (or
macp-CTS) was grafted to cobalt porphyrin, the peak shifted to 398.1 eV. This finding was indicative
of axial coordination of lone-pair electrons from the H2N– unit to the Co ion in Co TPPS [46]. The BEs
shown in shown in Table 2 correspond well with those in previous reports [47–53].
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Table 2. Binding energies of key elements. X-ray photoelectron spectroscopy (XPS).

XPS Spectra Existential form of the Key Element Binding Energy/eV

Co TPPS/mesp-CTS Co TPPS mesp-CTS

Co 2p Co–N
798.0 797.6 -
786.6 782.1 -

Cl 2p Cl–Co 196.4 199.6 -

N 1s

N–C= (N=C) 399.8 399.9 -
N–Co 398.0 398.6 -

NH2–C 398.1 - 397.7
N=C 400.5 - 400.6

NH–C=O 400.9 - 400.9
NH3–C 401.5 - -

C 1s

C=O, O–C–O 287.8 - 288.0
C–N, C=N,

C–O, C–O–C 285.0 284.8 285.0
C–C, C=C 283.8 283.2 283.6

O 1s
O–S 531.3 532.2 -
O=S – 531.8 -

After Co TPPS was grafted onto mesp-CTS (or macp-CTS), the ECD of Co was reduced because
the BE of Co increased [d(BE) = +0.4 and +4.5 eV]. The ECD reduction was the result of the following
changes: the ECD of Cl increased because the BE of Cl decreased [d(BE)= −3.2 eV]. At the same
time, the ECD of N in the porphyrin ring increased because the BE of N decreased [d(BE) = −0.1
and −0.6 eV], the ECD of N in amino groups in Co TPPS/mesp-CTS decreased [d(BE) = +0.4 eV].
In summary, all of the electron density changes above resulted in a more positive charge on the Co
ion in the porphyrin ring after grafting to the support, which indicated that Co TPPS/mesp-CTS(or
macp-CTS) would facilitate activation of O2more effectively than Co TPPS.

To examine the thermal stability of Co TPPS/mesp-CTS and Co TPPS/macp-CTS, thermogravimetric
(TG) and differential scanning calorimetry (DSC) curves were recorded, as shown in Figure 5. There were
two steps in their mass processes; the first mass loss step (~8.9%) occurred at a temperature lower
than 100 ◦C, whereas the second mass loss step (~6.4%) occurred between 100–180 ◦C. The first mass
loss step was likely because of the escape of intermolecular water from mesp-CTS or macp-CTS, while
the second mass loss step resulted from the decomposition of intramolecular water from mesp-CTS or
macp-CTS. The immobilized Co porphyrin did not decompose at 150 ◦C. This finding was expected,
because a previous report indicated that decomposition of cobalt porphyrin required a temperature
greater than 370 ◦C [54].
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3.2. Oxidation of Ethylbenzene over Co TPPS/mesp-CTS

Oxidation of ethylbenzene with Co TPPS/mesp-(or macp-)CTS and Co TPPS in the presence of
molecular oxygen yielded acetophenone and 1-phenylethanol as the major products, and benzaldehyde,
benzoic acid, and bis(1-phenylethyl) ester as the major by-products. All products were identified by
GC-MS and chemical analysis data.

The effect of temperature on the oxidation of ethylbenzene over Co TPPS/mesp-CTS was
investigated at 130–150 ◦C (Figure 6A). In general, when the temperature was lower than 140 ◦C,
increasing the reaction temperature increased the catalyst turnover number (TON), enhanced
ethylbenzene conversion, and improved the yields of major products. For example, the yields of
major products increased from 23.2% (130 ◦C) to 32.0% (140 ◦C); however, the yields subsequently
decreased as the temperature reached >140 ◦C. The same rule holds true for the catalyst TON and
ethylbenzene conversion. The optimal reaction temperature for the oxidation of ethylbenzene over Co
TPPS/mesp-CTS was determined to be 140 ◦C. At the optimal temperature, the supported catalyst
was used to investigate the effects of oxygen pressure on ethylbenzene oxidation. Figure 6B shows that
oxygen pressure exerted a pronounced influence on ethylbenzene oxidation. The catalytic activity was
greatest at 0.8 MPa, with a conversion rate of 47.1% and acetophenone and 1-phenylethanol yields of
32.0%, and no further enhancement of catalytic activity was achieved at higher oxygen pressures. It is
possible that an excessively high oxygen concentration decreases catalyst activity because of chitosan
carbonization [55], while an excessively low oxygen concentration inhibits ethylbenzene oxidation.
Therefore, the optimal oxidation pressure was determined to be 0.8 MPa.
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Oxidation of ethylbenzene in the absence of a catalyst resulted in a yield of 4.7% (Table 3),
indicating that auto-oxidation of ethylbenzene occurred at a very low level.In other words, Co
TPPS/mesp-CTS or Co TPPS was responsible for the oxidation of ethylbenzene as described above.
Figure 6C shows changes in Co TPPS/mesp-CTS activity with different amounts of the catalyst at
the optimal reaction temperature of 140 ◦C and the optimal pressure of 0.8 MPa. The ethylbenzene
conversion rate, catalyst TON, and major product yields often, but not always, increased as the amount
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of the catalyst increased; however, when the amount of the catalyst was increased to 1.44 × 10−6 mol,
each of these parameters decreased. These results describe the so-called ‘catalyst inhibitor conversion’
phenomenon reported by Black [56] and Guo et al. [57,58], which is known from several auto-oxidation
reactions catalyzed by transition metal salts in low polar media.

Figure 6D shows the effect of time on ethylbenzene oxidation. The ethylbenzene conversion rate
and the yields of major products increased rapidly from 0–3 h, but increased slowly from 3–4 h. It is
likely that the products formed during oxidation covered the surface of the solid catalyst, leading
to catalyst activation oppression [59]. Although selectivity (acetophenone and 1-phenylethanol)
decreased slowly before the fourth hour, while the catalyst TON increased slightly, these changes
were insignificant. Therefore, a 4-h reaction time is optimal for the oxidation of ethylbenzene over Co
TPPS/mesp-CTS.

The stability and reusability of a supported catalyst is very important. We report that 0.96 × 10 mol
Co TPPS grafted onto 1 g of mesp-CTS can be reused up to four times, on average, for ethylbenzene
oxidation, which provided a catalyst TON of 2.46 × 10 and a ketone and alcohol yield of 44.6% (Table 3).
These results show that the catalytic performance of the grafted catalyst was better than that of other
catalysts, such as Co TPPS and Co TPPS/macp-CTS. These benefits were likelybecause of the formation
of the mesoporous catalyst and axial coordination.

The mechanism of metalloporphyrin-catalyzed oxidations of ethylbenzene by molecular oxygen
has been a matter of debate for the past several years, but the primary mechanism is now generally
considered to be metalloporphyrin-catalyzed free radical oxidation [60–62]. Several different
cobalt porphyrins have been employed as catalysts for the activation of O2 [41,63–66]. Based on
the metalloporphyrin/O2 system discussed above, a possible catalytic cycle with a high-valent
[mesp-CTS/TPPS Co=O] species as the active oxidant is proposed (Scheme 1). Mesp-CTS/TPPS CoCl
is reduced to mesp-CTS/TPPS Coby the loss of a chlorine radical. The intermediate reacts immediately
with O2 to form [mesp-CTS/TPPS Co]2O2. However, the O–O bond in [mesp-CTS/TPPS Co]2O2

is homogeneously cleaved by heating, forming an active intermediate, [mesp-CTS/TPPS Co=O].
The [mesp-CTS/TPPS Co=O] promptly abstracts an α–hydrogen atom from ethylbenzene, producing

[
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CoTPPS/macroporous-CTS(macp-CTS) and Co TPPS. a  

Catalyst Run TON (×106) Yield (%) 
Selectivity (%) 

-on -ol -al (-ac) + (-es)
Co TPPS/mesp-CTS 1 1.10 42.8 65.4 5.4 3.4 25.8 

2 1.65 50.0 65.4 6.0 3.6 25.0
3 2.04 43.7 62.4 4.5 3.1 30.0
4 5.05 42.0 62.5 3.5 3.2 30.8

Average 2.46 44.6 63.9 4.9 3.3 27.9
Co TPPS b 1 0.90 34.8 53.3 4.0 3.1 39.6

Co TPPS/macp-CTSb 1 0.99 36.8 60.1 4.9 4.0 31.0 
No catalyst 4.7 43.3 13.3 8.8 34.6 

a Yield = acetophenone + 1-phenylethanol; TON = catalyst turnover number; -on: acetophenone; -ol: 
1-phenylethanol; -al: benzaldehyde; -ac: benzoic acid; -es: 1-phenylethyl benzoate. Reaction
conditions: 0.2 L ethylbenzene, 140 °C, 0.8 MPa, 0.72 × 10−6 mol Co TPPS, 4 h reaction time; b Co
TPPS could not be recovered; the catalytic performance of recovered Co TPPS/macp-CTS was
weakened.
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acetophenone, are generated in radical chain transfer processes; 1-phenylethanol is generated first,
followed by acetophenone, as shown in Scheme 1 and Figure 7 (left).

Table 3. Comparison of the catalytic performance of Co TPPS/mesp-CTSwith that of CoTPPS/
macroporous-CTS(macp-CTS) and Co TPPS. a
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2 1.65 50.0 65.4 6.0 3.6 25.0
3 2.04 43.7 62.4 4.5 3.1 30.0
4 5.05 42.0 62.5 3.5 3.2 30.8

Average 2.46 44.6 63.9 4.9 3.3 27.9

Co TPPS b 1 0.90 34.8 53.3 4.0 3.1 39.6
Co TPPS/macp-CTS b 1 0.99 36.8 60.1 4.9 4.0 31.0

No catalyst 4.7 43.3 13.3 8.8 34.6
a Yield = acetophenone + 1-phenylethanol; TON = catalyst turnover number; -on: acetophenone; -ol: 1-phenylethanol;
-al: benzaldehyde; -ac: benzoic acid; -es: 1-phenylethyl benzoate. Reaction conditions: 0.2 L ethylbenzene, 140 ◦C,
0.8 MPa, 0.72 × 10−6 mol Co TPPS, 4 h reaction time; b Co TPPS could not be recovered; the catalytic performance
of recovered Co TPPS/macp-CTS was weakened.
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Scheme 1. A proposed mechanism for ethylbenzene oxidation over mesoporous chitosan(mesp-CTS)
grafted cobalt porphyrin.

Under the optimum oxidation conditions described above, the selectivity (one + ol) and TON
obtained from ethylbenzene oxidation over three catalysts are shown in Figure 7. The selectivity for
1-phenylethanol decreased with the reaction time, while the selectivity for acetophenone increased,
as shown in Figure 7 (left), which means that 1-phenylethanol was generated first and quickly
oxidized into acetophenone (Scheme 1). The selectivity of Co TPPS/mesp-CTS for acetophenone
and 1-phenylethanol was higher than that of Co TPPS/macp-CTS and Co TPPS because there were
many mesoporous cavities with hydrophilic groups (-OH) and mesopores, which are important
factors in mass transport and diffusion, in Co TPPS/mesp-CTS [67,68]. As the mesopores captured
ketones and alcohols, dispersal of the freshly generated acetophenone to the other active catalytic site,
[mesp-CTS/TPPS Co=O] (Scheme 1), was delayed, which facilitated further oxidation of acetophenone
into by-products (al + ac + es). However, Co TPPS/macp-CTS with macropores and Co TPPS had
catalytic characteristics different from those of Co TPPS/mesp-CTS. Co TPPS/macp-CTS and Co TPPS
had relatively open airways (bigger pores or no pores), which facilitated transportation of acetophenone
and 1-phenylethanolto other active catalytic sites and oxidation, and thus provided lower selectivity for
the main products (Table 3). This is likelythe reason that Co TPPS/mesp-CTS had the highest selectivity
to ketones and alcohols, as shown in Figure 7 (right). In our previous work [27,28], Mn TCPP/pd-CTS
had better selectivity and yield (one + ol) than Mn TCPP/np-CTS (in fact, Mn TCPP/mesp-CTS).
This difference was likely caused by the higher temperature of ethylbenzene oxidation (155 ◦C), but
Mn TCPP/mesp-CTS still showed better ethylbenzene conversion than Mn TCPP/pd-CTS, at least
partly because of the catalytic characteristics of the mesoporous catalyst material.

Figure 7 (right) shows that Co TPPS/mesp-CTS, just like Co TPPS/macp-CTS, had better TON and
ethylbenzene conversion than Co TPPS, because the Co ion in Co TPPS/mesp-CTS had a more positive
charge than that in Co TPPS after the NH2-group-coordination of the cobalt porphyrin. In addition,
Co TPPS/mesp-CTS showed better selectivity to ketones and alcohols than Co TPPS/macp-CTS,
because of the characteristics of the mesoporous catalyst material.
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These findings show that mesp-CTS exerts an important influence on the catalytic activity of
Co TPPS for oxidation of ethylbenzene because of its characteristic mesopores and axial coordination.

4. Conclusions

In comparison with Co TPPS/macp-CTS and Co TPPS, the moderate biomimetic catalyst
Co TPPS/mesp-CTS catalyzed the oxidation of ethylbenzene under mild reaction conditions to
provide better selectivity and yields of acetophenone and 1-phenylethanol. The mesoporous action
and axial coordination of mesp-CTS to Co TPPS promoted catalytic selectivity (one + ol) and
ethylbenzene conversion, which increased yields of ketones and alcohols. These properties stem
from the characteristics of the mesoporous catalyst material, Co TPPS/mesp-CTS, which was created
by ligating and grafting cobalt porphyrin onto the amino groups of chitosan, and the resulting change
in the ECD of the cobalt ion in the catalyst. Immobilization of the catalyst Co TPPS on chitosan
to produce Co TPPS/mesp-CTS also increased the catalytic stability of Co TPPS for the oxidation
of ethylbenzene.
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