

Article

MDPI

Supporting Materials: Dehydrogenation Catalysts for Synthesis of O-Phenylphenol via Cu/Ni/Mg/Al Hydrotalcite-Like Compounds as Precursors

Jilong Wang ¹, Tianchi Zhang ^{1,2}, Kai Li ¹, Yanan Cao ¹ and Yongping Zeng ^{1,*}

Figure S1. FT-IR image of Cu/Ni/Mg/Al before calcination (a) and calcination (b).

Figure S2. TG-DTG of the precursors in N₂.

Figure S3. N2 adsorption-desorption isotherms of CNMA-(0-4).

Figure S4. The pore size distributions for all catalysts.

Figure S5. HRTEM and elemental mapping images of catalysts after reduction (**a**) Cu/Mg/Al/Ni catalysts (**b**) Cu -K map (**c**) Ni-K map (**d**) Mg-K map (**e**) Al-K map.

Sample	nCu:nNi:nMg:nAl	FWHM	d(Cu ⁰)xrd
	molar ratio	(0) ^a	(nm)
CNMA-0	2.5:0:3.5:2	1.562	5.5
CNMA-1	2.25:0.25:3.5:2	1.862	4.6
CNMA-2	2:0.5:3.5:2	2.004	4.3
CNMA-3	1.75:0.75:3.5:2	2.123	4.0
CNMA-4	1.5:1:3.5:2	2.447	3.5

Table S1. FWHM and the size of Cu⁰ particles by XRD.

^a The FWHM of the Cu⁰ particles.

Table S2. The properties of the samples with different amount of Ni.

Catalysts	Surface (m²·g ⁻¹)	Pore volume (cm ³ ·g ⁻¹)	Average pore diameter(nm)
CNMA-0	37	0.2789	29.946
CNMA-1	32	0.1789	21.961
CNMA-2	37	0.2286	24.251
CNMA-3	47	0.2095	17.749
CNMA-4	144	0.3331	9.1947

Table S3. Temperatures for Reduction peak and the percentage of α peak for these samples.

Sample No.	Τα (°C)	Τβ(°C)	Tγ(°C)	Α α/(Αα+Αβ+Αγ) %
CNMA-0	186	286	-	12.07
CNMA -1	248	283	-	17.58
CNMA -2	259	307	413	52.97
CNMA -3	237	295	392	27.67
CNMA -4	295	386	-	77.60

Table S4. Distribution of the basic type for the samples with different Ni amount.

Samala No	TPD peak position [temperature (°C)] &(Area)		
Sample No.	Site α	Site β	
CNMA -0	-	-	
CNMA -1	244 (0.14)	299(2.12)	
CNMA -2	247 (0.33)	311 (3.25)	
CNMA -3	248 (0.21)	310 (1.43)	
CNMA -4	258(1.02)	326(4.50)	

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).