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Abstract: Graphitic carbon nitride (g-C3N4) is a promising material for photocatalytic applications 

such as solar fuels production through CO2 reduction and water splitting, and environmental 

remediation through the degradation of organic pollutants. This promise reflects the advantageous 

photophysical properties of g-C3N4 nanostructures, notably high surface area, quantum efficiency, 

interfacial charge separation and transport, and ease of modification through either composite 

formation or the incorporation of desirable surface functionalities. Here, we review recent progress 

in the synthesis and photocatalytic applications of diverse g-C3N4 nanostructured materials, and 

highlight the physical basis underpinning their performance for each application. Potential new 

architectures, such as hierarchical or composite g-C3N4 nanostructures, that may offer further 

performance enhancements in solar energy harvesting and conversion are also outlined. 

Keywords: g-C3N4; photocatalysis; nanomaterials; CO2 reduction; H2 evolution; semiconductor; 

environmental remediation 

 

1. Introduction 

1.1. Background 

Future energy production, storage and security, and combating anthropogenic environmental 

pollution, represent key global challenges for both developed and emerging nations [1,2]. Sunlight, 

an essentially limitless source of clean energy, has the potential to address both these challenges [3,4], 

and its utilization to this end entered mainstream science following breakthroughs in semiconductor 

light harvesting for photocatalysis by Honda and Fujishima in the 1970s [5–7]. This discovery led to 

extensive research into titania semiconductor photocatalysts, principally for water splitting and the 

degradation of aqueous or airborne organic pollutants under UV light irradiation [8–13]. However, 

efficient harnessing of visible light (the major component of solar radiation that reaches the Earth’s 

surface) by photocatalysts to drive chemical transformations remains problematic [14–16] due to 

identifying suitable materials that possess narrow band gaps, high quantum yields, efficient charge 

carrier transport, and low rates of charge carrier recombination, and good thermo-, photo-, and 

chemical stability. The development of such low cost photocatalysts from earth abundant, and ideally 

non-toxic elements for visible light harvesting would unlock opportunities for their large-scale 

application to supplement existing renewable energy networks and pollution control systems. 
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1.2. Semiconductor Photocatalysis 

Semiconductor photocatalysis refers to the acceleration of chemical transformations (most 

commonly oxidations and reductions) brought about through the activation of a catalyst, comprising 

a semiconductor either alone or in combination with metal/organic/organometallic promoters, 

through light absorption, with subsequent charge and/or energy transfer to adsorbed species. Note 

that the direct activation of reactants and intermediates through light absorption is the realm of 

photochemistry; in establishing whether a transformation is truly photocatalytic it is therefore crucial 

to establish that photons are absorbed by the catalyst rather than adsorbates [17,18]. In the 

photocatalytic production of so-called ‘solar fuels’, photoexcited charge carriers drive the conversion 

of water and CO2 into H2, CO, CH4, CH3OH and related oxygenates and hydrocarbons [19–21]. Such 

processes parallel those in nature wherein sunlight absorbed by chlorophyll in plants promotes starch 

and oxygen production from carbon dioxide and water), and are hence termed artificial 

photosynthesis (Figure 1). Photoexcited charge carriers can also either induce the total oxidation 

(mineralization) of organic pollutants such as those encountered in aquatic environments, either 

directly, or through the creation of potent oxidants such as hydroxyl radicals [22]. 

 

Figure 1. (a) Natural, and (b) artificial photosynthesis through water splitting and CO2 reduction, and 

(c) photodegradation of aqueous organic pollutants. 

1.3. Photocatalytic Mechanisms 

Semiconductor photocatalysis is initiated by exciton formation following photon absorption and 

the excitation of electrons from the valence band into the conduction band (Step I). The resulting 

electron–hole pairs may recombine in either the bulk of the semiconductor, or at the surface, with the 

associated energy released through either fluorescence or thermal excitation of the lattice (Step II); 

recombination is the primary process that limits photocatalyst efficiency after photon capture. 

Electrons (and holes) that migrate to the surface of the semiconductor and do not undergo rapid 

recombination may participate in various oxidation and reduction reactions with adsorbates such as 

water, oxygen, and other organic or inorganic species (Steps III and IV) [9,10,23,24]. These steps are 

summarized below and illustrated in Figure 2: 

Step I Light absorption SC + h𝑣 → SC∗(eCB
− + hVB

+ ). 

Step II Recombination eCB
− + hVB

+ → h𝑣 + heat. 

Step III Reduction Adsorbate + eCB
− → Adsorbate−. 

Step IV Oxidation Adsorbate + hVB
+ → Adsorbate+. 
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Figure 2. Principal photophysical processes for a semiconductor (SC) under light irradiation. 

Oxidation and reduction reactions are fundamental to photocatalytic environmental 

remediation and solar fuel production, and are ultimately limited by the reduction potential of 

photoexcited electrons in the conduction band and oxidation potential of photogenerated holes in the 

valence band. The redox potential, band energies and gap of a semiconductor therefore largely 

determine the likelihood and rate of charge transfer, and hence are key design parameters for 

photocatalysts [12,25]. Although the underlying physics of space charge carriers and surface-

electronic structure of photocatalysts varies between materials and applications, in essence, 

semiconductor photocatalysis represents interfacial reactions between electrons and holes generated 

through band gap excitation.  

2. Photocatalytic Materials 

The discovery of photocatalytic water splitting over titania electrodes under UV irradiation [5] 

has led to intensive research into explored H2 production through this approach. Similarly, the first 

report on the photocatalytic oxidation of cyanide ions over TiO2 powder [26] prompted a rapid 

expansion in environmental purification research and technologies, particularly for aqueous 

environments. In both cases, recent research has focused on identifying and developing alternative 

semiconductors to titania, offering superior performance under solar (rather than UV irradiation) 

[25]. Numerous semiconductors, including ZnO [27], Fe2O3 [28], WO3 [29], SrTiO3 [30], NaTaO3 [31], 

CdS [32], Ag3PO4 [29], BiPO4 [33], and g-C3N4 [34] are known photocatalysts, with their application 

dependent on their band gap (Figure 3). Despite a large body of literature, the practical utilization of 

such photocatalysts for solar fuels production or the degradation of organic pollutants remains a 

huge challenge due to poor visible light harvesting or efficient conversion of light energy to achieve 

chemical transformations [13,16,35]. 
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Figure 3. Band gap energy and band edge energies of different semiconductors. 

3. Graphitic Carbon Nitride (g-C3N4) 

Solar energy output reaching the Earth’s surface is dominated by three regions (Figure 4) of the 

electromagnetic spectrum, UV (~5%), visible (~45%), and IR (~50%) [36]; visible light photocatalysis 

therefore offers the best opportunity to obtain maximum solar energy. However, most photocatalysts 

possess relatively wide band gaps, such as TiO2 (3.0–3.2 eV) and are hence primarily active under UV 

irradiation (<385 nm) [8]. The quest for high performance visible light counterparts is reflected in the 

rapid growth of associated scientific papers and patents [8,10,15] for water splitting, CO2 reduction 

and pollutants degradation [35]. Graphitic carbon nitride (g-C3N4) is a promising metal-free, 

polymeric semiconductor (Figure 5a) with a narrow band gap suited to visible light absorption 

(Figure 5b), [34] and amenable to large-scale synthesis. g-C3N4 may also be readily doped or 

chemically functionalized, permitting tuning of its photophysical properties, and in contrast to many 

other organic semiconductors, graphitic carbon nitride also exhibits high thermal and chemical 

stability to oxidation, even at temperatures of 500 °C. There is an extensive literature describing the 

synthesis of g-C3N4 and its derivatives for various applications. [37–43] This Review focuses on 

applications in photocatalytic environmental remediation and solar fuel generation, with an 

emphasis on emerging synthetic strategies to improve the photoactivity of g-C3N4-based 

nanostructures through controlling size, morphology, light absorption, charge separation, and 

ultimately surface reactions. Future research directions are also highlighted. 
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Figure 4. Spectral irradiance of solar light. Reproduced with permission from [36]. Copyright Royal 

Society of Chemistry, 2015. 

 

Figure 5. (a) Graphitic carbon nitride structure comprising melem units, and (b) UV-vis diffuse 

reflectance spectrum and image (inset) of g-C3N4. Reprinted with permission from [34]. Copyright 

Springer Nature, 2009. 

4. g-C3N4 Nanostructures: Size and Shape 

Engineering materials at the nanoscale is critical to the development of devices for the electronics 

[44], catalysis [45], biomedical [46], sensing [47], and smart materials [48] sectors, with nanoparticles 

now in widespread use across science and engineering [48–51]. A number of key aspects differentiate 

nanomaterials from their bulk analogues. Nanomaterials possess a high surface: bulk atom ratio, 

which heavily influences their thermodynamic properties resulting in, e.g., melting temperature 

depression, and elevated solid–solid phase transition temperature. Quantum confinement effects, 

which influence the electrical and optical properties of nanomaterials, arise from their evolving band 

structure and the emergence of atomistic like behaviour. Many heterogeneous catalysts exhibit strong 

size-dependencies due to quantum confinement [52], notably gold [53,54], high surface areas, and the 
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exposure of low-coordination, high energy sites [45,55–57]. In concert, these aspects may enhance the 

rate of interfacial charge transfer from a photocatalyst surface to an adsorbate [58,59]. The use of 

nanostructured g-C3N4 is a fast growing area of photocatalysis research, with nanoparticles, 

nanorods, nanowires, nanotubes, nanospheres, and particularly nanosheets, demonstrating unique 

features as components of photocatalyst systems [39]. 

2-dimensional g-C3N4: 2D-based materials offer an exceptionally high specific surface area, 

good crystallinity, rich options for host-guest interactions, maximal light absorption, and improved 

charge-carrier separation over their 3D analogues [60]. Numerous 2D nanomaterials have been 

reported as heterogeneous catalysts in recent years, with g-C3N4 emerging as one of the most 

promising photocatalysts. Ping and co-workers developed a facile method to prepare g-C3N4 

nanosheets by direct thermal oxidative ‘etching’ of bulk g-C3N4 under air (Figure 6) [61]. In this 

method, the hydrogen-bond strands of polymeric melon units which form the interlayers, are 

gradually removed by oxidation such that the thickness of bulk g-C3N4 can be reduced to the desired 

nanoscale by controlling the etch time, and hence represents a simple, low-cost, and scalable 

synthesis. The resultant nanosheets exhibit a blue shift of the intrinsic absorption edge in their UV-

vis spectra relative to the bulk. The increase in band gap of nanosheets (2.97 eV; Figure 7A) relative 

to their bulk counterpart (2.77 eV) is further confirmed by a blue shift in the fluorescence emission 

spectrum of 20 nm (Figure 7B). This widening of the band gap reflects quantum confinement which 

raises and lowers the conduction and valence band edges respectively [62]. Electronic properties of 

the nanosheets were determined from the corresponding I−V curve, semiconducting characteristics 

observed for single g-C3N4 nanosheets, suggesting electron transport within the nanosheet plane. In 

contrast, no current was detected for bulk particle under an applied bias spanning −10–+10 V, 

evidencing extremely poor electronic conductivity for bulk g-C3N4. The lifetime of charge carriers in 

the nanosheets from time-resolved fluorescence decay spectra also exceeded that of bulk g-C3N4.  

 

Figure 6. Thermal exfoliation as a low-cost and green method to prepare ultrathin g-C3N4 nanosheets 

from bulk g-C3N4 in water. Reproduced with permission from [61]. Copyright John Wiley & Sons Inc., 

2012. 
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Figure 7. (A) Diffuse reflectance UV-Vis spectra (DRUVS), and (B) photoluminescence (PL) spectra of 

bulk (a) and exfoliated nanosheet (b) g-C3N4. Reproduced with permission from [61]. Copyright John 

Wiley & Sons Inc., 2012. 

Xiaodong and co-workers developed a different liquid exfoliation strategy as a low-cost and 

green route to ultrathin g-C3N4 nanosheets from bulk g-C3N4 in water, illustrated in Figure 8 [63]. 

From a range of solvents, water effectively exfoliated the g-C3N4 into ultrathin nanosheets, possibly 

reflecting its high polarity. The morphology of the exfoliated g-C3N4 showed free-standing 

nanosheets 120 nm across that were almost transparent, and displayed a well-defined Tyndall effect 

in solution (Figure 8 inset) indicating the presence of monodisperses ultrathin nanosheets. These g-

C3N4 nanosheets were very stable in acidic and alkaline environments, but exhibited pH-dependent 

photoluminescence. The g-C3N4 nanosheets show superior photoabsorption to the bulk counterpart, 

resulting in an extremely high PL quantum yield of up to 19.6%. Liquid exfoliation of g-C3N4 in 

isopropanol [64] and methanol [65] resulted in nanosheets with improved photocatalytic 

performance for the degradation of organic pollutants relative to bulk g-C3N4. 

 

Figure 8. Liquid exfoliation route as a low-cost and green method to prepare the ultrathin g-C3N4 

nanosheets from bulk g-C3N4 in water. Reprinted with permission from [63]. Copyright American 

Chemical Society, 2013. 

1-dimensional g-C3N4: In recent years, 1D nanostructures have attracted interest as 

photocatalysts due to their unique morphology and photophysical properties [66,67], and hence there 

is interest in preparing 1D g-C3N4. 1D g-C3N4 nanorods with different aspect ratios were prepared by 

the reflux of g-C3N4 nanoplates as a function of solvent and reflux time [68]. The transformation from 

g-C3N4 nanoplates to nanorods reflects an exfoliation and subsequent re-growth process, which 

results in ‘rolling-up’ of individual nanosheets into rods (Figure 9a). The photocatalytic activity of 

the as-prepared nanorods for methylene blue (MB) degradation in water was explored under visible 
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light (λ > 420 nm) and simulated solar irradiation (λ > 290 nm). The resulting photocatalytic activity 

and photocurrent response of g-C3N4 nanorods under visible and solar light were about 50–100% 

greater than the g-C3N4 nanoplates.  

 

Figure 9. (a) Synthesis, and (b) Transmission electron microscopy (TEM) images of g-C3N4 nanorods. 

Reprinted with permission from [68]. Copyright American Chemical Society, 2013. 

Zhihong and co-workers demonstrated a large-scale synthesis of well-aligned g-C3N4 nanorods 

via the reactive thermolysis of mechanically activated molecular precursors, C3N6H6 and C3N3Cl3, 

under heat treatment [69]. These nanorods exhibit peculiar optical properties, evidenced by PL 

emission and UV-vis absorption. Uniform g-C3N4 nanorods were also synthesized via a template of 

monodispersed, chiral, mesostructured silica nanorods, which were easily prepared via ammonia-

catalyzed hydrolysis of tetraethyl orthosilicate with F127 and cetyltrimethylammonium bromide 

(CTAB) surfactants [70]. The one-dimensional, hexagonal mesostructure of the porous silica 

nanorods enabled carbon nitride condensation within the pores. The resulting g-C3N4 nanorods 

demonstrated a high photocatalytic activity in hydrogen evolution from water in the presence of 

triethanolamine and 1 wt % Pt as a co-catalyst compared to that obtained with a conventional g-C3N4 

[71]. Porous g-C3N4 nanorods were also prepared by direct calcination of hydrous melamine 

nanofibers, precipitated from an aqueous solution of melamine [72]. Porosity provided an enhanced 

interfacial area for catalysis. Oxygen atoms doped into the g-C3N4 matrix altered the band structure, 

resulting in more effective separation of electron/hole pairs and a corresponding excellent visible 

light photocatalytic activity for hydrogen evolution in the presence of triethanolamine as a hole 

quencher. A simple wet-chemical route was also reported for the preparation of nanofiber-like g-

C3N4 structures with an average diameter of several nm and 100 nm in length [73]. The g-C3N4 

nanofibers exhibited a high surface area, and low density of crystalline defects, with a slight blue shift 

of 0.13 eV compared to bulk g-C3N4, possibly due to more perfect packing, electronic coupling, and 

quantum confinement effects. The catalytic activity of g-C3N4 nanofibers for Rhodamine B 

photodegradation was much higher than that of bulk g-C3N4, with the nanofibers also exhibiting 

superior stability. An alternative approach to the synthesis of g-C3N4 nanotubes adopted the direct 

heating of melamine, packed into a compact configuration to favour tubular structures (Figure 10a–

d) [74]. This route was advantageous since it required no additional organic templates, facilitating 

commercial, low-cost and large-scale application. The resulting g-C3N4 showed intense fluorescence 

around 460 nm, and hence has potential application as a blue light fluorescence material. These g-

C3N4 nanotubes exhibited better visible light photocatalytic activity for MB degradation than either 

bulk g-C3N4 or a p25 TiO2 reference (the latter is unsurprising since pure titania is a UV band gap 

material). Muhammad and co-workers also prepared tubular g-C3N4 by pre-treating melamine with 

HNO3 before thermal processing [75]. The g-C3N4 nanotubes were again active for MB and methylene 

orange (MO) degradation under visible light, and were more stable than bulk g-C3N4; the superior 

activity attributed to the higher surface area (182 m2·g−1) of the tubes and improved light absorption 

(b)(a)
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and charge separation/transfer of electron–hole pairs. g-C3N4 nanotubes can also be obtained through 

rolling-up nanosheets via a simple water-induced morphological transformation [76], avoiding the 

use of organic solvents and hence promoting green chemical principles. 

 

Figure 10. (a–c) Synthetic strategy, and corresponding (d) TEM image of g-C3N4 nanotubes. 

Reproduced with permission from [74]. Copyright Royal Society of Chemistry, 2014. 

Ribbon-like g-C3N4 nanostructures have been prepared employing dicyandiamide (DCDA) and 

NaCl crystals as structure-directing agents [77], with a possible mechanism shown in Figure 11. These 

ribbon-like g-C3N4 nanostructures exhibit interesting optical and electronic properties, including a 

large blue shift in their absorption spectrum corresponding to an increased band gap from 2.7 eV to 

3.0 eV. The latter may reflect the incorporation of some Na+ ions within the nitride pores, and 

functionalization by cyano groups. The ribbon-like g-C3N4 emits blue light at around 440 nm under 

365 nm excitation, whereas bulk g-C3N4 exhibited a broad emission spanning 460–520 nm, i.e., yellow-

green light. Unfortunately, these ribbon-like g-C3N4 nanostructures have not yet been tested for as 

photocatalysts. 

 

Figure 11. Synthesis strategy (A) Ribbon-like g-C3N4 nanostructures (B) TEM image. Reproduced 

from with permission from [77]. Copyright Royal Society of Chemistry, 2014. 

0-dimensional g-C3N4: 0D materials such as quantum dots are of great interest in photocatalysis 

[78]. g-C3N4 quantum dots have been prepared from bulk g-C3N4 by thermochemical etching [74]. 

This tunable multi-step preparation involves thermal exfoliation of 3D bulk g-C3N4 into 2D 

nanosheets, followed by acid etching with concentrated H2SO4 and HNO3 to produce 1D 

nanoribbons. In this second step, some C–N bonds which connect the tri-s-triazine units are oxidized, 

resulting in the introduction of oxygenate functional groups, such as carboxylates, at edges and on 

the basal plane. Cleavage of the nanosheets along preferential orientations yields nanoribbons with 

diameters <10 nm and several tens of nm in length. In a final step, nanoribbons are converted to 0D 

quantum dots of 5–9 nm across by hydrothermal treatment (Figure 12) that are highly soluble in 

water, and stable in solution under ambient conditions for almost eight months. These quantum dots 

exhibited light ‘up-conversion’ when excited by long wavelength light, for example, irradiation with 

(d)

(A)
(B)
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705–862 nm light resulted in 350–600 nm emission, encompassing a large portion of the visible-light 

spectrum. This up-conversion was proposed to occur via a multiphoton process involving anti-Stokes 

photoluminescence. The ability of g-C3N4 quantum dots to convert NIR to visible light renders them 

a promising universal energy transfer component in a photocatalytic system, able to harness long 

wavelength solar energy. This was demonstrated for water splitting, in which quantum dots were 

added to promote photocatalytic H2 production by platinized bulk g-C3N4 and P25, with dramatic 

rate-enhancements (up to 52-fold) observed for the latter under visible light irradiation in the 

presence of a methanol sacrificial hole scavenger. Single layered g-C3N4 quantum dots were also 

prepared by Guoping and co-workers, although in this instance for two-photon fluorescence imaging 

of cellular nucleus [42]. They again adopted a multi-step synthesis involving acid treatment of bulk 

g-C3N4 to form a porous material and subsequently ultrathin nanosheets, with subsequent ammonia 

addition, hydrothermal treatment, and ultrasonication of the porous g-C3N4 nanosheets liberating 

aqueous suspensions of g-C3N4 quantum dots. 

 

Figure 12. (A) Synthesis, and (B) TEM images of g-C3N4 quantum dots. Reproduced from with 

permission from [74]. Copyright Royal Society of Chemistry, 2014. 

3D-dimensional g-C3N4: 3D nanomaterials unlock a vast and complex design space for 

constructing novel and efficient photocatalytic systems [79], such as hierarchical 3D nanoporous g-

C3N4 microspheres using a template-free solvothermal synthesis [80]. In this example, a two-step 

synthesis was adopted: (i) amorphous and nanoporous g-C3N4 microspheres were prepared from 

melamine and cyanuric chloride in acetonitrile; and (ii) subsequently subjected to thermal processing 

at 550 °C under argon to transform the amorphous microspheres into hierarchical g-C3N4 

microspheres (Figure 13). Surprisingly, the hierarchical g-C3N4 microspheres exhibited a red-shift 

relative to the bulk counterpart, and uncalcined microspheres, attributed to the high degree of 

condensation and packing between the layers within the microspheres. The photoluminescence 

emission intensity of hierarchical g-C3N4 microspheres was low compared to bulk and uncalcined g-

C3N4 microspheres indicating that calcination suppresses radiative charge recombination in the 

hierarchical structure. These porous g-C3N4 microspheres also exhibit a narrowed band gap (2.42 eV), 

lower electrical resistance and a higher photoresponse than the bulk material, facilitating visible-light 

harvesting and more efficient transport and separation of photo-induced charge carriers. Hierarchical 

g-C3N4 nanospheres, comprised of nanosheet assemblies, were also prepared by Jinshui and co-

workers, but employing high area silica nanospheres as sacrificial templates [81]. The silica template 

offered efficient cyanamide adsorption, and a framework for the formation of interconnected 2D g-

C3N4 nanosheets during self-polymerization on heating. The excellent thermal and mechanical 

stability of silica spheres enabled high temperature construction of the hierarchical g-C3N4 

nanospheres, and could subsequently be removed through etching by NH4HF2 solution, with the 

hierarchical g-C3N4 retaining a spherical morphology. These hierarchal nanospheres are constructed 

of flat nanosheets emanating from the center (sphere surface) and then interconnecting to form a 

mesoporous shell (Figure 14), this structure may favour both charge separation and mass transport 

(A) (B)
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in photocatalysis. The nanospheres had a wider band gap than bulk g-C3N4, possibly due to quantum 

size effects, but superior light harvesting across the optical spectrum, especially between 430–590 nm. 

This may arise from multiple reflections (and hence opportunities for absorption) of incident light 

within the hierarchical architectures, and/or presence of a high density of defective sites associated 

with exposure of low-coordination sites at the ‘sharp’ edges of the constituent nanosheets. 

 

Figure 13. (a) Synthetic strategy, (b) TEM image, and (c) room-temperature photoluminescence 

spectra of porous g-C3N4 microspheres. Reprinted with permission from [80]. Copyright Elsevier, 

2015. 

 

Figure 14. (a) Synthetic strategy, and (b,c) Scanning electron microscopy and TEM images of 

hierarchical g-C3N4 microspheres. Reproduced with permission from [81]. Copyright John Wiley & 

Sons Inc., 2014. 

(a)

(b) (c)

(a)

(b) (c)



Catalysts 2018, 8, 74 12 of 47 

 

Hollow g-C3N4: Hollow nanostructures are another promising morphology for energy storage 

and conversion applications, with significant research efforts devoted to the design and synthesis of 

hollow nanostructures with high complexity through manipulating their geometry, chemical 

composition, building blocks, and interior architecture to, e.g., enhance their electrochemical 

performance [82,83]. Hollow g-C3N4 nanospheres have been synthesized using silica nanoparticles as 

templates [83,84]. Careful control over the shell thickness of such polymeric g-C3N4 hollow 

nanospheres prevents deformation of the core–shell arrangement (Figure 15), even after 400 °C 

processing. Although a blue shift in the band gap accompanying their synthesis is undesirable, and 

attributed to either quantum effects or enhanced H-type interlayer packing, further chemical 

methods, such as extending the pi system by anchoring aromatic motifs, exist to improve visible light 

absorption, for example, through co-polymerization; such chemical modification and extended p-

conjugation can red-shift optical absorption, and improve charge separation in the shell, without 

damaging the hollow polymeric architectures [85]. This strategy has been adopted to tune the 

semiconductor properties of the shell in the hollow g-C3N4 nanospheres to enhance photocatalytic 

activity for hydrogen evolution under visible light. A simple, molecular cooperative assembly of low 

cost triazine molecules into hollow g-C3N4 is also reported by Young-Si et al. [86], with this precursor 

enabling simultaneous optimization of the textural and photophysical properties of g-C3N4. 

 

Figure 15. Synthetic strategy for fabricating hollow g-C3N4 nanospheres. Reprinted with permission 

from [84]. Copyright Springer Nature, 2012. 

Mesoporous g-C3N4: Mesoporous photocatalysts have attracted attention for their 

(comparatively) high quantum efficiency associated with high surface areas, superior molecular mass 

transport in-pore [87], and opportunities for enhanced light harvesting through the internal scattering 

of incident light. An atomically thin mesoporous mesh of g-C3N4 nanosheets was recently prepared 

by solvothermal synthesis (Figure 16) which exhibits outstanding photocatalytic activity for H2 

production [88]. 
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Figure 16. (a) SEM images, (b) cartoon of photocatalytic H2 from water splitting, and (c) TEM image 

of atomically thin, mesoporous g-C3N4 nanosheets. Reprinted with permission from [88]. Copyright 

American Chemical Society, 2016. 

5. Photocatalytic Applications of g-C3N4 Nanostructures 

g-C3N4 nanostructures have proven excellent catalysts in diverse applications [39,85,89,90] 

including hydrogen production from water splitting [88,91], CO2 reduction to fuels and chemicals 

[92], environmental remediation [39], fuel cells [93], and organic synthesis [89]. Here we focus on 

photocatalytic applications. 

5.1. Solar Fuel Generation 

Solar fuels production from CO2 and water via artificial photosynthesis is one of the promising 

strategies to deliver H2, syngas and hydrocarbons as sustainable energy and chemical feedstocks [19]. 

g-C3N4 offers the promise of metal-free and scalable photocatalysts for visible light use.  

5.1.1. H2 Evolution 

Hydrogen is one of the most promising alternative energy sources to fossil fuels; however, the 

large energy barrier to water splitting still presents a challenge to practical photocatalytic systems 

[35]: 

2H2O (l) → 2H2 (g) + O2 (g), ΔG = +474 kJ/mol  

Advanced materials are hence sought that are amenable to harnessing sunlight for either direct 

photochemical, or photoelectrochemical water splitting. For photocatalytic water splitting, the 

conduction band (CB) energy must be sufficiently negative (relative to normal hydrogen electrode 

(NHE)) such that photoexcited electrons are sufficiently energetic to reduce water [94,95]: 

2H2O → 2H2 + O2 (1) 

H2O ↔ H+ + OH− (2) 

2H2O + 2e− → H2 + 2OH−  (3) 

2H2O → O2 + 4H+ + 4e−  (4) 

b
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The redox potential for the overall reaction at pH = 7, EH = −1.23 V (NHE), with the corresponding 

half-reactions of −0.41 V (Equation (4)) and 0.82 V, giving an overall ΔG0 = +237 kJ·mol−1. 

Most single component photocatalysts exhibit poor activity for visible light-driven H2 

production. However, the combination of g-C3N4 with a metal co-catalyst and hole scavenger can 

afford high visible-light photoactivity. Shubin and co-workers [64] prepared g-C3N4 nanosheets by 

thermal exfoliation which demonstrated a superior hydrogen production from a 

water/triethanolamine solution relative to the bulk nitride; nanosheets with a thickness as low as 2 

nm were optimal, achieving rate-enhancements of 5.5- and 3-fold under UV-vis and visible light 

irradiation respectively. Single atomic layer g-C3N4 nanosheets prepared by a chemical exfoliation 

[96] also display better photogenerated charge transport and separation than bulk g-C3N4, 

presumably due to the improved H2 evolution. Atomically thin, mesoporous g-C3N4 nanomesh 

prepared by solvothermal routes exhibits an exceptional photocatalytic activity for H2 evolution [88] 

of 8510 μmol·h−1·g−1 (with an apparent quantum efficiency of 5.1% at 420 nm), far higher than the 1560 

μmol·h−1·g−1 achieved over non-porous 2D g-C3N4 nanostructures or 350 μmol·h−1·g−1 observed for 

bulk g-C3N4 (apparent quantum efficiency 3.75% at 420 nm); the porous g-C3N4 nanomesh possessed 

a high surface area and better alignment of conduction and valence band edges. g-C3N4 nanorods 

also show high photocatalytic activity for hydrogen production from water in the presence of 

triethanolamine (TEOA) and a 1 wt % Pt co-catalyst [68] wherein the platinum nanoparticles 

uniformly decorate the g-C3N4 nanorods. Such materials are also superior to mesoporous analogues 

[70]. TEOA is the most common hole scavenger for g-C3N4 photocatalysts wherein it confers superior 

activity to methanol (a 14-fold rate enhancement); although the origin of this difference remains 

poorly understood, Jones and co-workers speculated that the nitrogen lone pair is responsible for the 

enhanced activity [62]. P25 also exhibited superior activity for photocatalytic hydrogen production 

when TEOA was employed as a hole scavenger (versus methanol), albeit to a lesser extent than for 

carbon nitride. g-C3N4 nanotubes synthesized through a rolling-up mechanism by water-induced 

morphological transformation also display superior visible-light H2 production bulk g-C3N4 or g-

C3N4 nanosheets [76]. g-C3N4 quantum dots [77] prepared from bulk g-C3N4 by thermochemical 

etching were three times more active than bulk g-C3N4 under visible irradiation when promoted by 

1 wt % Pt and using 10% triethanolamine as a sacrificial agent, possibly due to up-conversion of NIR 

to visible light and concomitant increased light harvesting. Tuning of the electronic band structure of 

g-C3N4 quantum dots [97] to optimize their visible or NIR light response, further enhances 

photocatalytic H2 evolution. P-doped g-C3N4 nanosheets also exhibit promising visible-light 

photocatalytic H2 productivity of 1596 mmol·h−1·g−1 (apparent quantum efficiency of 3.56% at 420 nm) 

superior to other metal-free g-C3N4 nanosheet photocatalysts [98]. The excellent photocatalytic 

activity originates from P-doped macroporous analogues arises from empty mid-gap states (−0.16 V 

vs. NHE) which extend light harvesting up to 557 nm. Macropores also increased the surface area to 

123 m2·g−1, and shortened the charge-to-surface migration length to only 5–8 nm. 

Hierarchically 3D nanoporous g-C3N4 microspheres [80] have also been exploited for water 

splitting in aqueous solution with 15 triethanolamine and 3 wt % Pt as a co-catalyst under visible 

light. These g-C3N4 microspheres showed H2 productivity 2.5 times higher than that of bulk g-C3N4, 

and good stability over five consecutive recycles. Hierarchical g-C3N4 nanospheres [81] comprised of 

nanosheets with 3 wt % Pt co-catalyst showed significant improvements in H2 production, with an 

apparent quantum yield of 9.6% at 420 nm, far superior to that for individual g-C3N4 nanosheets of 

3.75%. Monodispersed, hollow g-C3N4 nanospheres are also reported to exhibit high photoactivity 

for water splitting, and a high apparent quantum yield of 7.5% [84]. H2 evolution over these hollow 

g-C3N4 spheres was significantly enhanced by addition of a MoS2 co-catalyst, with the formation of 

the MoS2/g-C3N4 heterojunctions (Figure 17) improving light-harvesting, and fast charge separation 

[99]. 
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Figure 17. (a) Synthetic strategy and (b,c) TEM images and (d) Energy dispersive X-ray spectroscopy 

(EDX) elemental maps of MoS2@hollow g-C3N4. Reprinted with permission from [99], copyright 

Elsevier, 2016. 

g-C3N4 has also been coupled with semiconductors and metal nanoparticles that exhibit visible 

light surface plasmon resonances to extend their spectral range. Such heterojunction materials offer 

enhanced separation of photoexcited charge carriers, and hence suppressed recombination and 

energy loss through fluorescence [39,91]. Noble metal-promoted g-C3N4 offers improved UV and 

visible light harvesting, fast molecular diffusion, and a high density of photoactive sites [100–102]. 

TiO2/g-C3N4 heterojunctions have been fabricated by a two-step hydrothermal-calcination route from 

melamine, followed by an in-situ solid-state reaction [103]. The resulting TiO2/g-C3N4 

heterostructures possess a narrow band gap and good photoactivity (556 μmol−1·g−1) for H2 evolution 

under visible-light irradiation compared to pure g-C3N4 (108 μmol·h−1·g−1) or TiO2 (130 μmol·h−1·g−1. 

Core@shell heterojunction nanocomposites have additional advantages due to a high interfacial 

contact area between the shell and core components [104]. For example, CdS@g-C3N4 core/shell 

nanowires [104] with different g-C3N4 contents were prepared by a combined solvothermal and 

chemisorption method (Figure 18) in which g-C3N4 uniformly adsorbs over CdS nanowires resulting 

in enhanced improved photocatalytic H2 production of 4152 μmol·h–1·g–1 for 2 wt % g-C3N4. A one-

step self-assembly route was recently developed to fabricate core–shell architecture comprising 

carbon spheres decorated by g-C3N4. These composites showed extended light absorption and high 

mechanical stability, with enhanced conductivity for charge transport [105], delivering hydrogen 

evolution rates of 129 mol·h−1, and 8-fold improvement over pristine g-C3N4 (16 mol·h−1). Other g-

C3N4 nanocomposites were investigated with a range of materials and morphologies [39,82,91,106–

128], to access different charge transfer mechanisms between g-C3N4 and the other components. 

These include a g-C3N4-based type II heterojunction [103], g-C3N4-based p-n heterojunction [91,129], 

g-C3N4-based Z-scheme heterojunction [113,130], g-C3N4/metal heterojunction [100,102], and a g-

C3N4/carbon heterojunction [131]. The design of g-C3N4 heterojunction photocatalysts is an attractive 

strategy to tune the electronic structure and redox potentials for visible-light absorption 

photocatalytic H2 generation. Table 1 compares the performance of different g-C3N4 photocatalysts.
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Table 1. Photocatalytic H2 production over g-C3N4 nanostructured catalysts. 

Entry Photocatalyst 
Co-Catalyst 

(Loading) 
Experimental Details 

H2 

Productivity 

/μmol·g−1·h−1 

Reference 

Material 

/μmol·g−1·h−1 

Enhancement Relative to 

Conventional g-C3N4 

Apparent Quantum 

Efficiency/% 
Reference 

1 
g-C3N4 nanosheets (thermal 

exfoliation) 
Pt (6 wt %) 

10 vol% TEOA 

300 W Xe (λ ≥ 400 nm) 
170 

bulk g-C3N4 

31.48 
5.4  [61] 

2 
g-C3N4 nanosheets (liquid 

exfoliation) 
Pt (3 wt %) 

10 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
93 μmol bulk g-C3N4 10  [64] 

3 
g-C3N4 nanosheets (thermal 

treatment) 
Pt (0.5 wt %) 

15 vol% TEOA 

300 W Xe (λ > 420 nm) 
1400 

g-C3N4 

450 
3 

2.6 

(420 nm) 
[132] 

4 g-C3N4 nanosheets Pt (1 wt %) 

10 vol% TEOA 

full sunlight and λ > 400 

nm 

1395 
bulk g-C3N4 

250 
5.6  [133] 

5 Single layer g-C3N4 Pt (3 wt %) 
10 vol% TEOA 

500 W Xe (λ > 420 nm) 
230 

bulk g-C3N4 

90 
2.5  [96] 

6 Urea derived g-C3N4 Pt (3 wt %) 
~10 vol% TEOA 

300 W Xe (λ ≥ 395 nm) 
3327.5 

DCDA derived g-

C3N4 

thiourea derived 

g-C3N4 

7 

10 

26.5 

(400 nm) 
[134] 

7 Nano Spherical-g-C3N4 Pt (3 wt %) 
10 wt % TEOA 

300 W Xe (λ > 420 nm) 
14,350 

Pt/bulk g-C3N4 

318 
45 

9.6 

(420 nm) 
[81] 

8 g-C3N4 nanostructure Pt (3 wt %) 
15 wt % TEOA 

300 W Xe (λ > 420 nm) 
689 

bulk g-C3N4 

8 
8.6  [135] 

9 Porous g-C3N4 microspheres Pt (3 wt %) 
15 wt % TEOA 

300 W Xe (λ > 420 nm) 
180   

bulk g-C3N4 

7.8 
2.3 

1.62 

(420 nm) 
[80] 

10 
Silica templated mesoporous 

g-C3N4 
Pt (3 wt %) 

10 vol% TEOA 

λ > 420 nm 

237.4 (μmol−1 

m−2) 

g-C3N4 

9.16 (μmol·h−1·m−2) 
25.8  [136] 

11 
macroscopic 3D porous g-

C3N4 monolith 
Pt (3 wt %) 

10 vol% TEOA 

300 W Xe (λ > 420 nm) 
29 

g-C3N4 

10.2 
2.8  [137] 

12 hollow g-C3N4 nanospheres Pt (3 wt %) 
10 wt % TEOA 

300 W Xe 
15,000  

pure g-C3N4 

5000 
3  [85] 

13 Iodine doped-g-C3N4 Pt (3 wt %) 
10 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
890 

bulk g-C3N4 

98.8 
9  [138] 

14 P doped-g-C3N4 Pt (3 wt %) 
10 wt % TEOA 

300 W Xe 
2082 

pure g-C3N4 

226.3 
9.2  [139] 

15 
O-doping supramolecular 

porous g-C3N4 
Pt (3 wt %) 

10 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
1204 

bulk g-C3N4 

3D porous g-C3N4 

 

6.1 

3.1 

7.8 

(420 nm) 
[140] 
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16 K-g-C3N4 Pt (0.5 wt %) 
10 vol% TEOA 

300 W Xe (λ > 400 nm) 
1028 

pure g-C3N4 

73.4 
14  [141] 

17 AuPd/g-C3N4 Au and Pd 
10 vol% TEOA 

300 W Xe (λ ≥ 400 nm) 
326 

Au/g-C3N4 

Pd/g-C3N4 

3.5 

1.6 
 [142] 

18 Hydrogenated g-C3N4 Pt (3 wt %) 

10 vol% TEOA 

350 W mercury arc lamp 

(λ > 420 nm) 

900 
bulk g-C3N4 

132.3 
6.8  [143] 

19 Surface alkalization of g-C3N4 Pt (1 wt %) 
20 vol% aq. methanol 

300 W Xe 
2230 

urea derived g-

C3N4 

159.3 

14 
6.67 

(400 nm) 
[144] 

20 
dye sensitized g-C3N4 

nanosheets 
Pt 

5 vol% TEOA 

300 W Xe (λ > 420 nm) 
6525 

Pt/g-C3N4 

466 
14 

33.4 

(460 nm) 
[145] 

21 
2-Aminobenzonitrile-mp-g-

C3N4 
Pt (3 wt %) 

10 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
229 

mp-g-C3N4 

127 
1.8  [146] 

22 PPy-g-C3N4 Pt (3 wt %) 
No sacrificial reagent 

350 W Xe (λ > 400 nm) 
154 Pt-g-C3N4 49.3  [147] 

23 Cu2O@g-C3N4 core@shell  
10 vol% TEOA 

300 W Xe 
202.28 

Cu2O 

35.08 
5.7  [148] 

24 CdS/g-C3N4 core/shell Pt (0.6 wt %) 

0.35 M Na2S and 0.25 M 

Na2SO3 

300 W Xe (λ ≥ 420 nm) 

4152 
pure CdS 

2001 
2.1 

4.3 

(420 nm) 
[104] 

25 
Core–shell Ni/NiO-decorated 

g-C3N4 
Ni/NiO 

10 vol% TEOA 

300 W Xe 
10 

pure g-C3N4 

1.01 
10  [149] 

26 MoS2/g-C3N4 N/A 
10 vol% TEOA 

300 W Xe (λ > 400 nm) 
252 

pure g-C3N4 

31.5 
8  [150] 

27 CdS QD/g-C3N4 Pt (0.5 wt %) 

0.1 M L-ascorbic acid (pH 

= 4) 

300 W Xe (λ > 420 nm) 

4494 
pure g-C3N4 

299 
15  [151] 

28 CdS nanorods/g-C3N4 NiS 
10 vol% triethanolamine 

300 W Xe (λ ≥ 420 nm) 
2563 

pure g-C3N4 

1582 
1.6  [152] 

29 CaIn2S4/g-C3N4 Pt (1 wt %) 

0.5 M Na2S and 0.5 M 

Na2SO3 

300 W Xe 

102 
CaIn2S4 

34 
3  [153] 

30 BiPO4/P-g-C3N4 N/A 
Na2S (0.1 M) 

300 W Xe (λ ≥ 420 nm) 
1110 

P-g-C3N4 

676 
1.6  [154] 

31 AgQCs/g-C3N4 Pt (1 wt %) 
25 vol% methanol 

simulator AM 1.5 G 
5.59 

pure g-C3N4 

3.29 
1.7  [155] 

32 Al2O3/g-C3N4 Pt (1 wt %) 
25 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
52.10 

pure g-C3N4 

20.75 
2.5  [156] 

33 MoS2/mp-g-C3N4 Pt 10 vol% lactic acid 1030 Pt/mp-g-C3N4 4.3 2.7 [157] 
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300 W Xe (λ ≥ 420 nm) 239.5 (420 nm) 

34 carbon black/g-C3N4 Pt (3 wt %) 
25 vol% methanol 

λ > 420 nm 
689 

pure g-C3N4 

215 
3.2  [158] 

35 graphene/g-C3N4 Pt (1.5 wt %) 
25 vol% methanol 

350 W Xe (λ > 400 nm) 
451 

g-C3N4 

150 
3  [107] 

36 carbon black/NiS/g-C3N4 NiS 
15 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
992 

g-C3N4/NiS 

396 
2.5  [159] 

37 N,S-TiO2/g-C3N4 N/A 
10 vol% methanol 

125 W Hg lamp 
317 

g-C3N4 

125 
2.5  [160] 

38 N-CeOx/g-C3N4 Pt (1 wt %) 
10 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
292.5 

g-C3N4 

134.5 
2  [161] 

39 
g-C3N4 (2D)/CdS (1D)/rGO 

(2D) 
Pt (1 wt %) 

10 vol% TEOA 

300 W Xe (λ ≥ 420 nm) 
4800 

pure g-C3N4 

g-C3N4/rGO 

g-C3N4/CdS 

44 

11 

2.5 

 [122] 

40 Au/(P3HT)/Pt/g-C3N4 Au and Pt 
10 vol% TEOA 

300 W Xe (λ > 420 nm) 
320  

g-C3N4/Au; 

73 and 

g-C3N4/Pt; 82  

4  [162] 
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Figure 18. (a,b) TEM and (c) HR TEM image of core–shell CdS@g-C3N4 heterojunction nanocomposite. 

Reprinted with permission from [104]. Copyright 2013 American Chemical Society. 

5.1.2. CO2 Reduction 

Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious 

concerns about the continued reliance on the use of fossil fuels for both energy and chemicals 

production [3,163], to which the photocatalytic reduction of CO2 to light oxygenates and 

hydrocarbons could provide a sustainable solution. CO2 reduction involves multi-electron transfer 

and hence the reaction kinetics for, e.g., formic acid, carbon monoxide, formaldehyde, methanol and 

methane production are intrinsically slower than for H2 production. CO2 photoreduction begins with 

molecular adsorption at the catalyst surface, wherein the anion radical is generated by the transfer of 

electrons photoexcited across the semiconductor band gap following light absorption. In the case of 

aqueous phase CO2 reduction, charge-compensation occurs through concomitant water splitting and 

the transfer of photoexcited holes in the valence band onto hydrogen atoms, with the resulting 

protons migrating to the CO2 anion. The reduction potentials for CO2 photoreduction with water to 

various products are described below (relative to NHE at pH = 7) [11,164]: 

CO2 + e− →  CO2
•− 𝐸0 =  −1.90 eV  (5) 

CO2 + H+ +  2e− →  HCO2
•− 𝐸0  =  −0.49 eV  (6) 

CO2 + 2H+ +  2e− →  CO + H2O 𝐸0  =  −0.53 eV  (7) 

CO2 + 4H+ +  4e− →  HCHO + H2O 𝐸0  =  −0.48 eV  (8) 

CO2 + 6H+ +  6e− →  CH3OH + H2O 𝐸0  =  −0.38 eV  (9) 

CO2 + 8H+ +  8e− →  CH4 + 2H2O 𝐸0  =  −0.24 eV  (10) 
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CO2 + 10H+ + 10e− →  C2H4 + 4H2O 𝐸0 =  −0.22 eV  (11) 

CO2 + 12H+ + 12e− →  C2H5OH + 3H2O 𝐸0  =  −0.33 eV  (12) 

Key factors influencing CO2 photocatalytic reduction include band energy matching, efficient 

charge-carrier separation, kinetic of e- and hole transfer to CO2 and the reductant, and the basicity of 

the photocatalyst and hence strength and coverage of CO2 adsorption [164]. In recent years, the g-

C3N4 nanostructured materials have been studied for CO2 photoreduction [92,165], due to their 

excellent stability, sufficiently negative CB energy and narrow band gap. Many strategies are 

reported to promote g-C3N4 with condensed matter and molecular sensitizers [166,167], such as 

doping with metals [168,169] and non-metal [170–172], heterojunction construction [173–176] and Z-

scheme composites employing co-catalysts [165–167,173,175]. Pengfei et al. reported ultrathin C3N4 

nanosheets for enhanced photocatalytic CO2 reduction [177] in which surface functionalization and 

textural modification by NH3-mediated thermal exfoliation enhanced light harvesting, charge-carrier 

redox potentials, and the surface area for CO2 adsorption (to 0.2 mmol·g−1), resulting in CH4 and 

CH3OH productivities of 1.39 and 1.87 μmol·h−1·g−1 respectively, a five-fold increase over bulk g-C3N4. 

Jiaguo and co-workers [168] demonstrated that Pt promotion significantly influenced both the 

activity and selectivity of g-C3N4 for CO2 photoreduction to CH4, CH3OH, and HCHO; Pt 

nanoparticles improved charge separation across the metal/semiconductor interface, and lowered the 

overpotential for CO2 reduction. Qingqing et al. reported Pd nanoicosahedrons with twin defects 

promoted CO2 reduction into CO and CH4 over C3N4 nanosheets [126]. CO2 conversion reached 

61.4%, with an average CO productivity of 4.3 μmol·g−1·h−1 and average CH4 productivity of 0.45 

μmol·g−1·h−1, indicating the presence of highly reactive sites for CO2 adsorption and activation.  

Hierarchical, porous O-doped g-C3N4 nanotubes prepared via successive thermal oxidation 

exfoliation and condensation of bulk g-C3N4 also show promise for photocatalytic CO2 reduction 

under visible light [171]. As-prepared O-doped g-C3N4 nanotubes comprise interconnected, multi-

walled nanotubes with uniform diameters of 20–30 nm, which evolve methanol at 0.88 μmol·g−1·h−1, 

five times faster than bulk g-C3N4 (0.17 μmol·g−1·h−1). Heterojunction composites of g-C3N4/ZnO 

synthesized by a one-step calcination route [165] are also superior to bulk g-C3N4 (2.5-fold 

enhancement), ascribed to a direct Z-scheme mechanism reflecting efficient ZnO → g-C3N4 electron 

transfer occurring the interface. Zhongxing et al. reported that CeO2-modified C3N4 photocatalysts 

produced by a simple hydrothermal route were effective for the selective photocatalytic reduction of 

CO2 to CH4 [178], with a CH4 productivity of 4.79 mmol·g−1·h−1, about 3.44 times that of g-C3N4. Wang 

et al. prepared a 2D-2D MnO2/g-C3N4 heterojunction photocatalyst by an in-situ redox reaction 

between KMnO4 and MnSO4 adsorbed at the surface of g-C3N4 [179] for photocatalytic CO2 reduction 

to CO (9.6 mmol·g−1), in which band matching facilitated efficient separation of photogenerated 

charge-carriers. Photocatalytic CO2 reduction reaction is also reported over a direct Z-scheme g-

C3N4/SnS2 catalyst [180] which yielded both CH3OH (2.3 μmol·g−1) and CH4 (0.64 μmol·g−1), with 

electrons in SnS2 combining with holes in g-C3N4. Another Z-scheme mechanism is invoked for a 

MoO3/g-C3N4 composite [181]. Ryo and co-workers adopted a different approach, attaching 

Ru(bipy)complexes to g-C3N4 nanostructures; these displayed improved activity for CO2 

photoreduction to formic acid, with a high apparent quantum yield of 5.7% at 400 nm under visible 

light (Figure 19). Anchoring of polyoxometalate clusters to C3N4 also creates active photocatalysts for 

CO2 reduction [179]. Here, noble-metal-free Co4 polyoxometallates were used to achieve a staggered 

band alignment, with the Co4@g-C3N4 hybrid photocatalysts achieving 107 μmol·g−1·h−1 and 94% 

selectivity for CO production under visible light (λ ≥ 420 nm); cumulative CO production reached 

896·μmol·g−1 after 10 h irradiation, far exceeding that for unpromoted g-C3N4. 
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Figure 19. CO2 reduction using a Ru complex/C3N4 hybrid photocatalyst, and structures of the Ru 

complexes. CB = conduction band, VB = valence band. Reproduced with permission from [166]. 

Copyright John Wiley & Sons Inc., 2015. 

A multicomponent heterostructure, termed an intercorrelated superhybrid, comprising AgBr 

supported on g-C3N4 decorated in turn on N-doped graphene (prepared by wet-chemical synthesis) 

has also shown excellent activity for the photocatalytic reduction of CO2 to methanol and ethanol 

(Figure 20) [174]. Oluwatobi et al. reported g-C3N4/(Cu/TiO2) [182] nanocomposites prepared by 

pyrolysis and impregnation for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV-

vis irradiation wherein maximum productivities of CH3OH and HCOOH under visible light were 

2574 and 5069 mmol·g−1 respectively. Enhanced photoactivity was attributed to the location of the 

metal within the composite and consequent distribution of photoexcited electrons. Hailong et al. also 

studied g-C3N4/Ag-TiO2 hybrid photocatalysts [183], wherein CO and CH4 were preferentially 

formed, with a maximum CO2 conversion of 47 μmol·g−1, and product yields of 28 μmol·g−1 CH4 

formation and 19 μmol·g−1 CO. Enhanced activity was proposed to arise from the transfer of 

photoexcited electrons across the g-C3N4/TiO2 heterojunction, and subsequently from TiO2 → Ag 

nanoparticles due to the lower Fermi level; this spatial separation of charge greatly suppressed the 
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electron–hole recombination, with electrons accumulating on the Ag nanoparticles on the TiO2 

surface. 

 

Figure 20. (a) Synthetic strategy, and (b,c) photocatalytic performance for CO2 reduction of 

intercorrelated superhybrid g-C3N4 nanocomposites under visible light and corresponding apparent 

quantum efficiencies. Reproduced with permission from [174]. Copyright John Wiley & Sons Inc., 

2015. 

Table 2 compares the performance of different g-C3N4 photocatalysts for photocatalytic CO2 

reduction. 

(a)

(b) (c)
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Table 2. Photocatalytic CO2 reduction over g-C3N4 nanostructured catalysts. 

Entry Photocatalyst Experimental Details 
Productivity 

/μmol·g−1·h−1 

Reference Material 

/μmol·g−1·h−1 

Enhancement 

Relative to 

Conventional g-C3N4 

Apparent 

Quantum 

Efficiency/% 

Reference 

1 g-C3N4 nanosheets 
300 W Xe (l > 420 nm), 15 °C and 25 kPa CO2, 

catalyst in 80 mL of H2O 
CH4: 0.94 Bulk g-C3N4: 0.30 3.1  [184] 

2 g-C3N4 nanosheets 

300 W Xe (400 nm), 200 mW/cm2. 

20 mg catalyst in 0.1 mL H2O, CO2 bubbled to 0.06 

MPa 

CH4: 1.2 

CH3OH: 0.2 

Bulk g-C3N4 

CH4: 0.28 

CH3OH: 0.24 

CH4: 4.3  [185] 

3 
Ultrathin g-C3N4 

nanosheets 

300 W Xe, 

100 mg catalyst, 0.084 g NaHCO3 + H2SO4 to 

release CO2 

CH4: 1.39 and CH3OH: 

1.87 

Bulk g-C3N4 

CH4: 0.14 and 

CH3OH: 0.35 

CH3OH: 5.34  [177] 

4 
Thiourea and urea 

derived g-C3N4 

300 W Xe/420 nm, 

40 mg catalyst 

Urea derived g-C3N4 

CO: 0.56, CH3CHO: 0.44, 

CH4: 0.04 

thiourea derived g-C3N4 

CO: 0.36, CH3CHO: 0.26, 

CH4 = 0.025 

N/A N/A  [186] 

5 
Melamine and urea 

derived g-C3N4 

300 W Xe (420 nm), 0.2 g and 1.0 M NaOH 

solution (100 mL) 

Urea derived g-C3N4 

CH3OH: 6.28, C2H5OH: 

4.51, O2: 21.33 

melamine derived g-C3N4 

CH3OH: TRACE, 

C2H5OH: 3.64, O2: 10.29 

N/A N/A 

Urea derived g-

C3N4: 0.18, 

melamine 

derived g-C3N4: 

0.08 

[172] 

6 

Thiourea, urea and 

DCDA derived g-

C3N4 

300–795 nm KG1 filter, 40 mW cm2 illumination, 

0.5 mg catalyst per mL in CH3CN/TEOA/H2O 

(3:1:1), t = 2 h, [Co(bpy)n]2+ as a co-catalyst 

Urea derived g-C3N4 

CO: 460, H2: 138 μmol 

thiourea derived g-C3N4 

CO: 22, H2: 86 μmol 

DCDA derived g-C3N4 

CO: 92, H2: 94 μmol 

N/A N/A  [167] 

7 Sulfur-doped g-C3N4 

300 W simulated solar Xe and 200 mL Pyrex 

reactor, 100 mg 1 wt % Pt co-catalyst, 0.12 g 

NaHCO3 and 0.25 mL 4 M HCl solution 

CH3OH: 0.37 
Bulk g-C3N4 

CH3OH: 0.27 
1.37  [170] 

8 Pd/g-C3N4 300 W Xe/UV420 cut-off filter 
CO: 0.5, CH4: 0.05, 

CH3OH: 1 μmol·g−1 

Bulk g-C3N4 

CO: 4, CH4: 0.15, 

CH3OH: 2.5 μmol·g−1 

  [187] 

9 Pt-loaded g-C3N4 
15 W energy-saving daylight bulb, flow rate of 

CO2 fixed at 5 mL·min−1 
CH4: 1.3 

Bulk g-C3N4 

CH4: 0.25 
5.2  [188] 
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10 Pt-g-C3N4 

200 mL Pyrex reactor, 300 W simulated solar Xe, 

100 mg catalyst, 

NaHCO3 (0.12 g) and HCl aq. solution  

(0.25 mL, 4 M) 

CH4: 0.25, CH3OH: 0.25, 

HCHO: 0.125 

Bulk g-C3N4 

CH4: 0.07, CH3OH: 

0.11, HCHO: 0.06 

CH4: 3.57  [168] 

11 
Amine-functionalized 

g-C3N4 

300 W Xe, Pyrex 200 mL, 100 mg catalyst, 0.084 g 

NaHCO3 + 0.3 mL of 2 M H2SO4 

CH4: 0.34 

CH3OH: 0.28 

Bulk g-C3N4 

CH3OH: 0.26 

CH4: trace 

CH4: 1.3  [189] 

12 
SnO2-coupled B and P 

co-doped g-C3N4 

300 W Xe (420 nm), 

0.2 g catalyst in 3 mL water/100 mL NaOH 

purged with CO2 

CH4: 30 
Bulk g-C3N4 

CH4: 3.5 
8.57 2.02 (420 nm) [190] 

13 g-C3N4-Ru complex 

400 W Hg lamp (400 nm) 

11 mL reactor containing 4 mL 20 vol% TEA in 

acetonitrile and 8 mg catalyst purged with CO2 

HCOOH: 4.6 
Bulk g-C3N4 

HCOOH: trace 
N/A  [191] 

14 Ag3PO4/g-C3N4 
500 W Xe/420 nm, stainless-steel reactor 132 mL, 

10 mg in 4 mL H2O, 0.4 MPa CO2 at 80 °C 

CO: 44, CH3OH: 9, CH4: 

0.2, C2H5OH: 0.1 

Bulk g-C3N4 

CO: 4, CH3OH: 0.35, 

CH4: 0.09, C2H5OH: 

0.01 

CO: 11  [175] 

15 
AgX/g-C3N4 (X = Cl 

and Br) 

15 W energy-saving daylight lamp, 

100 mg catalyst, CO2 flow of 5 mL/min 
CH4: 1.282 

Bulk g-C3N4 

CH4: 0.388 
3.3  [192] 

16 B4C/g-C3N4 
300 W Xe (UV/IR filter), 100 mL photoreactor, 6 

mg catalyst, CO2 
CH4: 0.84 

Bulk g-C3N4 

CH4: 0.14 
6  [193] 

17 BiOI/g-C3N4 
300 W Xe (400 nm), 0.10 g catalyst, CO2 bubbled 

through water. 

CO: 3.58, O2: 1.96, H2: 0.4, 

CH4: 0.2 

Bulk g-C3N4 

CO: 0.2, O2: 0.56, H2: 

0.92 

CO: 17.9  [194] 

18 g-C3N4/C 
500 W Xe lamp, 0.1 g catalyst, CO2 + H2O mixture 

flow 20 mL min−1, 30 °C and 110 KPa CO2 

CO: 2.5 

CH4: 1.4 

Bulk g-C3N4 

CO: 1.1 

CH4: 0.72 

CO: 2.27  [195] 

19 CeO2/g-C3N4 
300 W Xe, reactor volume 500 mL, 

50 mg catalyst, CO2 bubbled through water 

2 wt % 

CO: 11.8 and CH4: 9.08 

3 wt % 

CO: 10.16 and CH4: 13.88 

Bulk g-C3N4 

CO: 6.78 

CH4: 0.2 

CH4: 69.4  [196] 

20 Graphene/g-C3N4 
15 W energy saving daylight bulb, CO2 5 mL 

min−1 
CH4: 0.59 μmol·h−1 

Bulk g-C3N4 

CH4: 0.25 μmol·h−1 
2.36  [197] 

21 g-C3N4/NaNbO3 

300 W Xe, reaction volume 230 mL, 

50 mg catalyst, reactor purged with CO2, then 2 

mL H2O injected 

CH4: 6.4 
Bulk g-C3N4 

CH4: 0.8 
8  [173] 

22 g-C3N4/N-TiO2 
300 W Xe lamp, reaction system vol 780 mL, 0.1 g 

catalyst, flow rate of CO2 15 mL min−1 
CO: 14.73 μmol 

Bulk g-C3N4 

CO: 4.20 μmol; 

P25: 3.19 μmol 

3.5  [198] 
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23 rGO/g-C3N4 
15 W energy-saving daylight lamp, CO2 at a flow 

rate of 5 mL/min, 100 mg catalyst 
CH4: 14 

Bulk g-C3N4 

CH4: 2.5 
5.6 0.56 (420 nm) [199] 

24 
g-C3N4 and a Ru(II) 

complex 

400 W high-pressure Hg lamp, 8 mg catalyst, 

DMA (containing 20 vol% TEOA) 4.0 mL 

CO: 2.9 μmol·h−1, 

HCOOH: 1.5 μmol·h−1; 

H2: 0.13 μmol·h−1 

Bulk g-C3N4 

Only trace 
N/A  [200] 

25 
Ru complex/mp g-

C3N4 

450 W Xe lamp, 8.0 mg catalyst, acetonitrile and 

triethanolamine (4:1 v/v) 4 mL mix in 11 mL Pyrex 

test tube 

CO: 0.6, H2: 0.25, 

HCOOH: 4 μmol·h−1 

Bulk g-C3N4 

HCOOH: trace 
N/A  [201] 

26 SnO2/g-C3N4 
500 W Xe, 20 mg catalyst, 4 mL water injected into 

the bottom of the reactor, 0.3 MPa CO2, 80 °C 
CO: 19, CH4: 2, CH3OH: 3 

Bulk g-C3N4 

CO: 2.4, CH4: trace, 

CH3OH: 2.8, P25: CO: 

3.5, CH3OH: 1 

CO: 7.9  [202] 

27 Brookite TiO2/g-C3N4 

300 W Xe, 60 mg catalyst, CO2 produced from 

reaction of NaHCO3 (1.50 g) and H2SO4 solution 

(5.0 mL, 4 M) 

CO: 0.84, CH4: 5.21 
Bulk g-C3N4 

CO: 7.10, CH4: 1.84 
CH4: 2.83  [203] 

28 TiO2/g-C3N4 

8 W Hg lamp (λ = 254 nm; intensity = 0.5 

mW/cm2), vol of SS reactor 355 cm3, 0.1 g catalyst, 

140 kPa CO2 

CO: 2.8, CH4: 8.5, H2:41 

Bulk g-C3N4 

CO: 0.93, CH4: 4.75, H2: 

16.25 

CO: 3  [204] 

29 g-C3N4/WO3 
LED (λ = 435 nm) at 3.0 mW cm2, 3 mg catalyst in 

5 mL ion-exchanged water. 

CH3OH: 1.1 μmol, 

0.5 wt % Au and Ag 

2.5 and 1.5 μmol, resp. 

Bulk g-C3N4 

CH3OH: 0.6 μmol 
1.83  [205] 

30 g-C3N4/ZnO 

300 W Xe lamp, 200 mL Pyrex reactor, 

100 mg catalyst CO2 and H2O vapor produced by 

NaHCO3 (0.12 g) and HCl (0.25 mL, 4 M) 

CH3OH: 0.6 

Bulk g-C3N4: 

CH3OH: 0.26 

Pure ZnO: 

CH3OH: 0.37 

2.3  [165] 

31 ZnO/g-C3N4 

500 W Xe/420 nm, steel reactor 132 mL, 

10 mg catalyst in 4 mL H2O, 0.4 MPa CO2  

and 80 °C 

CO: 29, CH3CHO: 9, CH4: 

3.5, C2H5OH: 1.5 

Bulk g-C3N4 

CO: 4.5, CH3CHO: 4.3, 

CH4: 0.5, C2H5OH: 

trace 

P25 

CO: 4.5, CH3CHO: 3, 

CH4: 2, C2H5OH: trace 

CO: 6.4  [206] 

32 Co-porphyrin/g-C3N4 

300 W Xe (UV/IR cut-off filter), 1 mL of TEOA and 

4 mL of MeCN were mixed and injected into the 

cell, 80 kPa CO2 

CO: 17 
Bulk g-C3N4 

CO: 1.4 
12.14 0.80 (420 nm) [207] 

33 Co-(bpy)3Cl2/g-C3N4 

300 W Xe lamp with a 420 nm cut-off, 

50 mg catalyst, MeCN (4 mL), TEOA (2 mL), CO2 

(1 bar), 60 °C 

CO: 37 

H2: 6 
 N/A  [176] 

34 g-C3N4/Bi2WO6 
300 W Xe/420 nm cut-off filter, reactor 500 mL, 0.1 

g catalyst, CO2 and H2O vapour mixer 
CO: 5.19 

pure g-C3N4 

CO: 0.23 
22  [208] 
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Bi2WO6 

CO: 0.81 

35 g-C3N4/Bi4O5I2 

300 W Xe lamp with 400 nm cut-off filter, 0.10 g 

catalyst, Pyrex glass 350 mL, 5 mL H2SO4 (4 M) 

with NaHCO3 to achieve 1 bar CO2, 15 °C 

CO: 45.6 
Bulk g-C3N4 

CO: 5.8 
7.86  [209] 

36 
Core–shell LaPO4/g-

C3N4 nanowires 

300 W Xe lamp, reactor volume 500 mL, 30 mg 

catalyst, CO2 and water vapor 
CO: 14.43 0.41 10  [210] 

37 CdIn2S4/mp g-C3N4 

300 W Xe lamp with 420 nm cut-off filter, 0.1 g 

catalyst in 100 mL water containing 0.1 M NaOH, 

ultrapure CO2 was continuously bubbled through 

CH3OH: 42.7 
pure CdIn2S4 

CH3OH: 23.1 
1.84 0.14 (420 nm) [211] 

38 

Mesoporous 

phosphorylated g-

C3N4 

300 W Xe lamp, Pyrex glass 350 mL, 

0.2 g catalyst, 5 mL of 4 M H2SO4 with NaHCO3 

(1.0 g) to give 1 bar CO2 10 °C 

CO: 20, CH4: 40, H2: 3, O2: 

10 

CO: 4.5, CH4: 4, H2: 0.5, 

O2: 1.75 
CH4: 10 0.85 (420 nm) [212] 

39 Pt-g-C3N4/KNbO3 
300 W Xe lamp with 420 nm cut-off filter, 0.1 g 

catalyst, CO2, 2 mL of H2O 
CH4: 2.37 CH4: 0.62 3.8  [213] 

40 g-C3N4/BiOBr/Au 

300 W Xe lamp (λ = 380 nm), 350 mL Pyrex glass, 

0.1 g catalyst, 5 mL H2SO4 (4 M) + 1.3 g NaHCO3 

to give 1 bar CO2 

CO: 6.67 

CH4: 0.92 
N/A N/A  [214] 

41 g-C3N4/Ag-TiO2 
300 W Xe, 50 mg catalyst, CO2 flow rate of  

3 mL·min−1, 45 °C 
CH4: 9.33 and CO: 6.33 N/A N/A  [183] 
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5.2. Environmental Remediation 

Many large-scale processes operated by the petrochemical, textile and food industries discharge 

polluted water into the aquatic environment [215]. Organic dyes are often used in textile, printing, 

and photographic industries, and a sizable fraction of these are lost during the dying process into 

effluent wastewater streams. Even low concentrations of such dyes pose serious risks to human and 

animal health, and their bio- or chemical degradation is challenging [216,217], hence the development 

advanced oxidation processes (AOPs) to treat contaminated drinking ground and surface waters, and 

wastewaters containing toxic or non-biodegradable compounds are sought [218,219]. Semiconductor 

photocatalysis offer an effective and economic approach to the treatment of recalcitrant organic 

compounds at low concentrations in wastewater [220–223]. Photoexcited holes are the key active 

species in such photocatalytic environmental remediation, being powerful oxidants in their own 

right, or reacting with water to produce hydroxyl radicals (•OH) which are themselves powerful 

oxidants with an oxidation potential of 2.8 eV (NHE). Reactively-formed •OH can rapidly attack 

adsorbed pollutants at the surface of photocatalysts or in solution, to achieve their mineralization as 

CO2 and water. Mechanisms for the photocatalytic oxidation of organic pollutants in water are widely 

discussed in the literature [4,221,222]. Briefly: 

SC + h𝜈 → SC∗(eCB
− + hVB

+ )  (13) 

hVB
+ + H2O → OH• + H+  (14) 

O2 +  eCB
−  → O2

•−  (15) 

O2
•− + H+  → HO2

•   (16) 

HO2
• + HO2

•  → H2O2 + O2  (17) 

O2
•− + HO2

•  → O2 + HO2
−  (18) 

HO2
− + H+  → H2O2  (19) 

H2O2 + h𝜈 → 2 OH•   (20) 

H2O2 + O2
•−  → OH• + OH− + O2  (21) 

H2O2 + eCB
−  → OH• + OH−  (22) 

Organic Compound + OH•  → degradation products  (23) 

Organic Compound + SC(h+) → degradation products  (24) 

Organic Compound + SC(e−) → degradation products  (25) 

A variety of active radicals, including O2•−, •OH, HO2•, in addition to H2O2 have been invoked 

as the oxidants responsible for mineralization, with •OH the most likely candidate Equation (23). 

Direct oxidation of carboxylic acids by photoexcited holes to generate CO2 Equation (24) has also 

been evidenced, termed the ‘photo-Kolbe reaction’. Reductive pathways involving photoexcited 

electrons Equation (25) are considered unimportant in dye degradation; however, thermodynamic 

requirements for semiconductor photocatalysts dictate that the VB and CB should be positioned such 

that the oxidation potential of hydroxyl radicals 𝐸(H2O OH•⁄ )
0 = +2.8 eV (NHE)  and reduction 

potential of superoxide radicals 𝐸(O2 O2
•−⁄ )

0 = −0.3 eV (NHE) lie well within the band gap. In other 

words, the redox potential of photoexcited holes must be sufficiently positive to generate •OH 

radicals, and that of photoexcited electrons sufficiently negative to generate O2•−.  
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Considerable efforts have been devoted to developing photocatalysts for water purification 

under solar irradiation. g-C3N4 based nanostructures are potential photocatalysts for the degradation 

of various pollutants [39,42], with photophysical properties of the parent nitride modified through 

doping with heteroatoms, heterojunction formation with other materials, and textural improvements 

to enhance surface area and porosity. For example, ultrathin g-C3N4 nanosheets derived from bulk g-

C3N4 by exfoliation in methanol exhibit enhanced photocatalytic performance for methylene blue 

(MB) degradation [65]. g-C3N4 nanotubes show superior photoactivity under visible light for MB 

degradation than bulk g-C3N4 or P25 [74]. Tahir and co-workers also employed tubular g-C3N4 for 

MB and methyl orange (MO) photocatalytic degradation under visible light, observing better stability 

and activity than bulk g-C3N4, attributed to the high surface area (182 m2·g−1) and improved light 

absorption and charge separation/transfer [75]. 1D g-C3N4 nanorods with different aspect ratios have 

been screened for MB degradation under visible light (λ > 420 nm) and simulated solar irradiation (λ 

> 290 nm) [68]. The resulting photocatalytic activity and photocurrent response of g-C3N4 nanorods 

under visible light were 1.5–2.0 times that of g-C3N4 nanoplates. A simple chemical route was 

reported for preparing nanofiber-like g-C3N4 structures which showed promising activity for 

Rhodamine B (RhB) photodegradation [73]. 

g-C3N4 doping is a common strategy to broaden spectral utilization and band alignment to drive 

separate photogenerated charge carriers. Doping by metals such as Cu and Fe [224–226], non-metals 

such as B, C, O, or S [224,227–231], and co-doping [232–234] have all been employed for 

environmental depollution applications. For example, S and O co-doped g-C3N4 prepared by 

melamine polymerization and subsequent H2O2 activation prior to trithiocyanuric acid functionalization 

(Figure 21a) enhanced the photocatalytic degradation of RhB (Figure 21b) 6-fold relative to the parent g-

C3N4 nanosheet [235]. Doping resulted in a strongly delocalized HOMO and LUMO that increased the 

number of active sites and improved the separation of photogenerated electrons and holes. 

 

Figure 21. (a) Synthetic strategy, and (b) photocatalytic activity of S and O co-doped g-C3N4 for RhB 

degradation. Reproduced with permission from [235]. Copyright Royal Society of Chemistry, 2017. 

Plasmonic photocatalysts have also been exploited for environmental remediation, for example, 

7–15 nm Au and Pt nanoparticles photodeposited on g-C3N4 are promising for the photocatalytic 

degradation of tetracycline chloride as a representative antibiotic whose uncontrolled release is of 

concern [236]. The Au surface plasmon resonance broadens the optical adsorption range, while Pt 

acts as a sink for photoexcited electrons. The combination of noble metals and g-C3N4 enables tunable 

heterojunctions with improved charge transport than traditional nanocomposites [237–243], and such 

multicomponent heterostructures are a promising solution to environmental depollution [39,40,42], 

for example g-C3N4/Ag3PO4 systems for MO degradation [242,243]. Ag3PO4@g-C3N4 core–shell 

photocatalysts have also been applied to MB degradation under visible light, achieving 97% 

conversion in 30 min compared with only 79% for a physical mixture of the Ag3PO4 and g-C3N4 

components, and 69% for pure Ag3PO4. The g-C3N4 shell may protect Ag3PO4 from dissolution in the 

composite, conferring superior stability. Core–shell g-C3N4@TiO2 photocatalysts synthesized by a sol–

gel and in situ re-assembly route and subsequently applied to phenol removal under visible light 

(a)
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were seven times more photoactive than bulk g-C3N4. Increasing the g-C3N4 shell thickness from 0 to 

1 nm increased the photodegradation rate constant from 0.0018 to 0.0386 h−1; however, thicker shells 

slowed charge transport to the external photocatalyst surface, lowering activity. Z-scheme N-doped 

ZnO/g-C3N4 hybrid core–shell nanostructures (Figure 22Aa,b) were successfully prepared via a facile, 

low-cost, and eco-friendly ultrasonic dispersion method [244]. The g-C3N4 shell thickness was tuned 

by varying the g-C3N4 loading. Direct contact between the N-doped ZnO core and g-C3N4 shell 

introduced a new energy level into the N-doped ZnO band gap, effectively narrowing the band gap. 

Consequently, these hybrid core–shell nanostructures showed greatly enhanced visible light 

photocatalysis for RhB degradation compared to pure N-doped ZnO surface or g-C3N4 components 

(Figure 22Ac) [240]. A facile, reproducible, and template-free synthesis has also been demonstrated 

to prepare magnetically separable g-C3N4−Fe3O4 nanocomposites (Figure 22Ba) [37]. Monodispersed 

Fe3O4 nanoparticles with 8 nm diameter were uniformly deposited over g-C3N4 sheets (Figure 22Bb) 

and exhibited enhanced charge separation and photocatalytic activity for RhB degradation under 

visible light irradiation (Figure 22Bc). These g-C3N4−Fe3O4 nanocomposites showed good stability 

with negligible loss in photocatalytic activity even after six recycles, and facilitated magnetic catalyst 

recovery (Figure 22Bd). Xiao et al. demonstrated that the excellent stability of g-C3N4 towards 

photocatalytic oxidation in the presence of organic pollutants reflects strong competition of the latter 

for •OH radicals under practical working conditions, resulting in preferential decomposition of the 

pollutants rather than the carbon nitride [245]. 

 

Figure 22. (A) (a,b) TEM images of N-ZnO-g-C3N4 core–shell nanoplates, and associated (c) Z-scheme 

mechanism. Reproduced from with permission from [244]. Copyright 2014 Royal Society of 

Chemistry. (B) (a) Synthetic strategy, (b) TEM image, and (c) photodegradation mechanism for g-

C3N4−Fe3O4 nanocomposite, and (d) magnetic separation of photocatalyst post-reaction. Reprinted 

with permission from [37]. Copyright 2013 American Chemical Society. 

Several multicomponent nanocomposites based on g-C3N4 nanosheets such as Au@g-C3N4–

PANI [246], Au-NYF/g-C3N4 [105], g-C3N4/CNTs/Al2O3 [247], AgCl/Ag3PO4/g-C3N4 [248], and 

g‑C3N4/Zn0.11Sn0.12Cd0.88S1.12 [249] are also reported; the performance of different g-C3N4 photocatalysts 

for the photodegradation of representative aqueous pollutants is summarized in Table 3. 
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Table 3. Photocatalytic degradation of aqueous pollutants over g-C3N4 nanostructured catalysts. 

Entry Photocatalyst  Organic Molecule  Experimental Details 
Removal 

Efficiency/% 

Reference 

Material 

Efficiency/% 

Enhancement 

Relative to 

Conventional g-

C3N4 

Reference 

1 
g-C3N4@TiO2 core–shell 

structure 
Phenol  

5 mg·L−1 phenol with 25 mg catalyst. 

500 W Xe lamp with 420 nm cut-off 

filter, 23 mW/cm2.  

30 4.2 7.2 [250] 

2 
Ag-decorated S-doped 

g-C3N4 
Bisphenol A (BPA) 

50 mL of 10 mg·L−1 of BPA, catalyst 

loading of 0.60 g·L−1. Light source, 

155 W Xe arc lamp with the solar 

region of 280–630 nm. 

95 31.66 3 [233] 

3 
Ultrathin urea-derived  

g-C3N4 nanosheets 
p-Nitrophenol (PNP) 

100 mg catalyst, aqueous PNP (10 mg 

L−1, 100 mL). 300 W Xe lamp 

equipped with an IR cut filter and a 

400 nm cut filter. 

95 60 1.58 [251] 

4 Mesoporous g-C3N4/TiO2 

Decomposition of 

dinitro butyl phenol 

(DNBP) 

25 mg catalyst added to DNBP 

aqueous solution (20 mg·L−1) with 500 

W xenon lamp with λ < 420 nm using 

cut-off filter.  

98.5 65 1.5 [252] 

5 C3N4-nanosheets Methylene blue (MB) 

10 mg catalyst in 50 mL of 10 mg·L−1 

MB solution. 150 W Xe lamp as the 

simulated sunlight source. 

98 7.9 12.4 [253] 

6 
Z-scheme graphitic-

C3N4/Bi2MoO6 
Methylene blue 

30 mL of 10 mg·L−1 MB solution, 0.03 

g catalyst. 50 W LED light with of 410 

nm emission.  

90 18.75 4.8 [254] 

7 Sm2O3/S-doped g-C3N4 Methylene blue 

100 mL of MB solution (8 mg·L−1), 300 

W halogen lamp with UV-stop 

feature. 

93 27 3.5 [255] 

8 
Porous CeO2/sulfur-doped g-

C3N4 
Methylene blue 

0.06–0.12 g catalyst in 6–14 mg L−1 

MB, visible light (λ > 400 nm) 300 W 

Halogen lamp with UV stop.  

91.4 25 3.65 [256] 

9 ZnS/g-C3N4 Methylene blue 

200 mL MB (6 mg·L−1), 30 mg catalyst 

under visible light source, 100 W 

halogen lamp.  

90 34.6 2.6 [257] 
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10 

Mesoporous Carbon Nitride 

Decorated with Cu 

Particles 

Methyl orange (MO)  

0.07 g catalyst in 100 mL of MO (11 

mg L−1) solution under visible-light, 

300 W halogen lamp with UV-stop 

feature. 

100 28 3.57 [258] 

11 Plasmonic Ag–AgBr/g-C3N4 Methyl orange  

MO solution (100 mL, 10 mg L−1), 50 

mg catalyst, 300 W Xe lamp with 400 

nm cut-off filter.  

90 14.3 6.3 [259] 

12 
ZnFe2O4 nanoparticles 

on g-C3N4 sheets 
Methyl orange  

100 mL of 10 mg·L−1 MO solution, 25 

mg catalyst. 500 W Xe lamp with cold 

filter. 

98 15.31 6.4 [260] 

13 
AgNPs/g-C3N4 

nanosheets 
Methyl orange  

50 mL 0.02 mmol/L MO solution, 25 

mg catalyst. 300 W Xe lamp with a 

visible light reflector (350 nm < l < 780 

nm) and a 420 nm longwave-pass 

cut-off filter (l > 420 nm). 

95.2 13.8 7 [261] 

14 
BiOCl/C3N4 hybrid 

nanocomposite 
Methyl orange  

15 mL of 10 mg L−1 MO solution, 10 

mg catalyst. 300 W Xe lamp equipped 

with 420 nm cut-off filter.  

84.28 14 6 [262] 

15 
g-C3N4/GO 

aerogel 
Methyl orange  

50 mL of 20 mg L−1 MO solution. 300 

W Xe lamp with a cut off filter (λ > 

420 nm).  

91.1 33 2.76 [263] 

16 
g-C3N4 nanocrystals decorated 

Ag3PO4 hybrids 
Methyl orange  

80 mL MO, 80 mg catalyst. 500 W 

halogen lamp equipped with cut-off 

filters (420 nm < λ < 800 nm).  

92 44 2 [264] 

17 
g-C3N4-NS/CuCr2O4 

nanocomposites 
Rhodamine B (RhB) 

250 mL of 2.5 × 10−5 M RhB solution, 

0.1 g of catalyst. 50 W LED lamp. 
98.9 30 3.3 [265] 

18 Porous Mn doped g-C3N4 Rhodamine B 

100 mL of 10 mg·L−1 RhB solution, 50 

mg catalyst. 300 W Xe lamp equipped 

with ultraviolet cut-off filter (>400 

nm). 

88.9 18 4.9 [266] 

19 
Mesoporous carbon nitride 

(mpg-C3N4/SnCoS4) 
Rhodamine B 

100 mL of 20 mg·L−1 RhB solution, 20 

mg catalyst. 300 W Xe lamp equipped 

with an UV cut-off filter (λ ≥ 420 nm).  

70 13 5.4 [267] 



Catalysts 2018, 8, 74 32 of 47 

 

20 
Iron oxyhydroxide/ultrathin 

g-C3N4 nanosheets 
Rhodamine B 

50 mL of 10 mg·L−1 RhB solution, 50 

mg catalyst. 500 W Xe lamp equipped 

with a cut-off filter (λ ≥ 420 nm).  

98 5.5 17.8 [268] 

21 
Two-dimensional  

g-C3N4/Bi2WO6 
Rhodamine B 

100 mL of 10 mg L−1 RhB solution, 

100 mg catalyst. 300 W Xe lamp with 

UV cut-off filter.  

80 23.5 3.4 [269] 

22 Ultrathin g-C3N4 nanosheets Rhodamine B 

100 mL of 20 mg L−1 RhB solution, 

100 mg catalyst. 300 W Xe lamp (>420 

nm). 

99 16.2 6.1 [270] 

23 
Z-scheme  

g-C3N4/TiO2 nanotube 
Rhodamine B 

20 mL of 5 mg·L−1 RhB solution, 2 cm 

× 2 cm catalyst film. 300 W Xe lamp 

with UV cut-off filter. 

67 47.85 1.4 [271] 

24 WO3@g-C3N4 Rhodamine B 

50 mL of 10 mg L−1 RhB solution, 10 

mg catalyst. Xe lamp with 400 nm 

cut-off filter, 100 mW cm−2. 

90 25.7 3.5 [272] 

25 
Mesoporous graphitic carbon 

nitride modified PbBiO2Br 
Rhodamine B 

100 mL of 10 mg·L−1 RhB solution, 30 

mg catalyst. 300 W Xe lamp with UV 

cut-off filter (>400 nm). 

98 N/A N/A [273] 

26 
g-C3N4/CuS p-n 

heterojunctions 
Rhodamine B 

30 mL of 10 mg L−1 RhB solution, 10 

mg catalyst. 300 W Xe lamp with 420 

nm cut-off filter. 

93 27 3.5 [274] 

27 g-C3N4/kaolinite composites Rhodamine B 

100 mL of 10 ppm RhB solution, 200 

mg catalyst. 500 W Xenon lamp with 

400 nm cut-off filter.  

90 21.8 4.1 [275] 

28 
Hexagonal boron nitride (h-

BN) decorated g-C3N4  
Rhodamine B 

100 mL of 20 mg L−1 RhB solution, 50 

mg catalyst. 300 W Xe lamp with 420 

nm cut-off filter. 

99.5 13.63 7.3 [276] 

29 ZnO/g-C3N4 Rhodamine B 

50 mL of 10 mg L−1 RhB solution, 50 

mg catalyst. 500 W Xe lamp equipped 

with 420 nm cut-off filter. 

51.3 24.43 2.1 [277] 

30 
Ag/AgO loaded g-C3N4 

microspheres 
Acid Violet-7 (AV-7)  

100 mL of 20 mg·L−1 AV-7 solution, 

100 mg catalyst. 12 × 100 W 

fluorescent lamps (mainly visible 

light, with only 3% UV). 

98 48 2 [278] 
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31 
g-C3N4/TiO2/kaolinite 

composite 

Ciprofloxacin (CIP) 

antibiotic 

100 mL of 10 ppm CIP solution, 200 

mg catalyst. Xe lamp (90 mW/cm2) 

with 400 nm cut-off filter. 

92 14.48 6.4 [279] 

32 Z-scheme CdS/Fe3O4/g-C3N4 Ciprofloxacin  

100 mL of 20 mg L−1 CIP, 50 mg 

photocatalyst. 300 W Xe lamp with 

UV filter (λ > 420 nm).  

92 3.53 26 [280] 

33 Carbon-Doped g-C3N4 Tetracycline (TC) 

80 mL of 10−4 M TC, 40 mg catalyst. 

Sunlight (07/10/2015, Trivandrum, 

India, between 11 pm and 1 pm, 

78,000–80,000 lux). 

95 50 1.9 [231] 

34 

Phosphorous-doped ultrathin 

graphitic carbon nitride 

nanosheets 

Tetracycline  

100 mL of 10 mg·L−1 TC solution, 100 

mg catalyst. 300 W Xe lamp equipped 

with UV cut-off filter (>420 nm).  

96.95 71.78 1.35 [281] 

35 Hierarchical WO3/g-C3N4 
Tetracycline 

hydrochloride (TC-HCl) 

100 mL of 25 mg·L−1 TC-HCL 

solution, 50 mg catalyst. 300 W Xe 

lamp with 420 nm cut-off filter.  

82 48 1.7 [282] 

36 Co3O4 modified g-C3N4 
Diclofenac sodium 

(DCF) 

100 mL of 10 mg·L−1 DCF solution, 50 

mg catalyst. 300 W Xe lamp with 420 

nm cut-off filter.  

100 17 5.9 [283] 

37 

silver and carbon 

quantum dots co-loaded with 

ultrathin g-C3N4 

Naproxen NPX 

50 mL of 4 mg·L−1 NPX solution, 50 

mg catalyst. 350 W Xe lamp with 420 

nm and 290 nm light for visible and 

simulated sunlight sources.  

87.5 8.75 10 [284] 

38 g-C3N4 
Decabromodiphenyl 

ether (BDE209) 

20 mL of 1 × 10−3 mol/L BDE209 

solution, 20 mg catalyst. 300 W Xe 

lamp for UV-visible irradiation (>360 

nm). 

65 N/A N/A [285] 

39 
Metal-free sulfur doped  

g-C3N4 
UO22+ removal 

200 mL of 0.12 mM UO22+ solution, 

100 mg catalyst. 350 W Xe lamp with 

a 420 nm cut-off filter.  

95 71 1.3 [286] 
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6. Conclusions 

g-C3N4 nanostructures offer tunable textural, electronic and optical properties that are amenable 

to tailoring for solar energy harvesting and subsequent photocatalytic transformations for energy and 

environmental applications. Diverse synthetic methods are available to prepare pure g-C3N4 

nanostructures of different dimensionality and porosity, and to integrate these within multi-

functional nanocomposites with enhanced solar spectral utilization, apparent quantum yields, charge 

separation and transport, and ultimately photocatalytic activity and stability. The sustainable 

production of H2 as an energy vector from water splitting is perhaps the most promising application, 

although issues remain regarding the use of sacrificial reagents and a lack of interdisciplinary efforts 

to improve photoreactor design. Photocatalytic reduction of CO2 is at a more preliminary stage, with 

improvements in both activity, and the ability to select specific products for either energy (e.g., CO, 

CH4, methanol, and formic acid) or chemicals (e.g., >C2 olefins or alkanes) pre-requisites to bench 

scale demonstrations. Wastewater treatment using g-C3N4-based photocatalysts appears promising; 

however, a lack of standardization in either reactor design or experimental protocols hampers 

quantitative comparisons due to issues such as decoupling adsorption versus reaction, and 

photocatalysis from direct photochemical activation of chromophores. 
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