

Supplementary Materials

Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts

Shih-Yuan Chen ^{1,*} Masayasu Nishi ¹, Takehisa Mochizuki ¹, Hideyuki Takagi ¹, Akira Takatsuki ¹, Wuttichai Roschat ^{2,3}, Makoto Toba ¹ and Yuji Yoshimura ⁴

- ¹ Research Institute of Energy Frontier (RIEF), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; m.nishi@aist.go.jp (M.N.); t.mochizuki@aist.go.jp (T.M.); hide-takagi@aist.go.jp (H.T.); akira-takatsuki@aist.go.jp (A.T.); m.toba@aist.go.jp (M.T.)
- ² Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, 680 Nittayo Rd., Mueang District, Sakon Nakhon 47000, Thailand; roschat1@gmail.com
- ³ Center of Excellence on Alternative Energy, Research and Development Institute, Sakon Nakhon Rajabhat University, 680 Nittayo Rd., Mueang District, Sakon Nakhon 47000, Thailand
- ⁴ Materials for Energy Research Unit, National Metal and Materials Technology Center (MTEC), Pahonyothin Rd. Klong 1, Klong Luang Pathumtani 12120, Thailand; y.yoshimura@aist.go.jp
- * Correspondence: sy-chen@aist.go.jp; Tel: +81-29-861-2680; Fax: +81-29-861-4532

Scheme S1. Possible reaction pathways for the HDS of DMDBT on the Co- or Ni-incorporated MoS₂-like slabs via (a) σ adsorption and (b) π adsorption.

Figure S1. GC-FID patterns of the model diesel oil A' and the low-grade feedstock, which is a mixture of Jatropha bio-oil (ca. 10 wt%) and model diesel oil A' (ca. 90 wt%).

Figure S2. GC-FID patterns of LGO and the low-grade feedstock, which is mixture of Jatropha bio-oil (ca. 10 wt%) and LGO (ca. 90 wt%).

Model diesel oils ^a	Sulfur ^ь (ppm) ^ь	Nitrogen ^c (ppm) ^b	Oxygen ^d (wt%) ^c
А	3500	0	0
В	3500	0	1.5
С	3500	3500	0
D	3500	3500	1.5

Table S1. The model diesel oils A-D with sulfur-, nitrogen- and oxygen-containing compounds.

^a The model diesel oil comprises 70 wt% of *n*-hexadecane and 30 wt% of tetralin; ^b Dibenzothiophene (50 wt%) and 4,6-dimethyldibenzothiophene (50%) as sulfur-containing model compounds; ^c Quinoline as nitrogen-containing model compound.

Massa		Hydrotreating Activity (mmol g·cat ⁻¹ h ⁻¹) ^a	Conversions (mol%)				
Sulfide Catalysts	Feedstocks		DBT	DMDBT	Tetralin	Quinoline	Stearic Acid
CoMo/γ- Al2O3ª	А	1.1	98	98	28	-	
	В	1.0	84	93	14	-	> 99
	С	0.49	77	2.4	2.1	76	
	D	0.30	73	0.7	1.5	75	~ 98
NiMo/y- Al2O3 ^b	А	1.1	97	94	47	-	
	В	1.0	95	88	41	-	> 99
	С	0.58	93	1.9	2.7	77	
	D	0.51	90	1.1	2.2	75	> 99

Table S2. The activity of mesoporous sulfide catalysts in the upgrading of model diesel oils A-D at 330 °C and 5 MPa of H_2 for 1 h.

^a The hydrotreating activity is calculated by dividing the molar faction of oil desulfurized by the catalyst amount at the first 1 min of the reaction.

Mesoporous Sulfide Catalysts	Feedstocks	DDS of DBT ^a (%)	DDS of DMDBT ^a (%)	cis- decalin ^ь (%)	DDN° (%)	C ₁₇ d (%)
CoMo/γ-Al ₂ O ₃ a	А	52	3.7	57	-	-
	В	42	6.6	60	-	50
	С	64	49	50	4.0	-
	D	44	23	55	5.7	46
NiMo/γ-Al2O3b	А	26	17	39	-	-
	В	29	20	39	-	67
	С	73	32	37	3.0	-
	D	61	27	40	3.9	50

Table S3. The selectivity of mesoporous sulfide catalysts in the upgrading of model diesel oils A-D at 330 $^{\circ}$ C and 5 MPa of H₂ for 1 h.

^a The molar faction of biphenyl divided by the molar faction of DBT desulfurized. The molar faction of 3,3'dimethylbiphenyl divided by the molar faction of DMDBT desulfurized; ^b The molar faction of *cis*-decalin divided by the molar faction of tetralin hydrogenated; ^c The molar faction of propylbenzene divided by the molar faction of quinoline denitrogenated; ^d The molar faction of heptadecane divided by the molar faction of stearic acid deoxygenated.