



Article

# Network Structured CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi Nanocomposite for Solar Water Splitting

Ben Peng 1, Mengyang Xia 2, Chao Li 2, Changshen Yue 1 and Peng Diao 2,\*

- <sup>1</sup> Central Research Institute of Building and Construction Co. LTD., Energy Convention and Environment Protection Co. LTD., State Key Laboratory of Iron & Steel industry Environmental Protection, Beijing 100088, China; pengben@cribc.com (B.P.); yuecs163@163.com (C.Y.)
- <sup>2</sup> Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China; buaamyxia@126.com (M.X.); nwpuvip@yeah.net (C.L.)
- \* Correspondence: pdiao@buaa.edu.cn; Tel.: +86-10-8233-9562

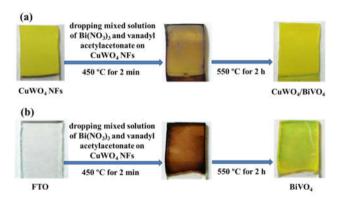
Received: 22 November 2018; Accepted: 13 December 2018; Published: 17 December 2018

**Abstract:** A network structured CuWO<sub>4</sub>/BiVO<sub>4</sub> nanocomposite with a high specific surface area was prepared from CuWO<sub>4</sub> nanoflake (NF) arrays via a method that combined drop-casting and thermal annealing. The obtained CuWO<sub>4</sub>/BiVO<sub>4</sub> exhibited high catalytic activity toward photoelectrochemical (PEC) water oxidation. When cobalt phosphate (Co-Pi) was coupled with CuWO<sub>4</sub>/BiVO<sub>4</sub>, the activity of the resulting CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi composite for the oxygen evolution reaction (OER) was further improved. The photocurrent density (*J*<sub>Ph</sub>) for OER on CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi is among the highest reported on a CuWO<sub>4</sub>-based photoanode in a neutral solution. The high activity for the PEC OER was attributed to the high specific surface area of the composite, the formation of a CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction that accelerated electron–hole separation, and the coupling of the Co-Pi co-catalyst with CuWO<sub>4</sub>/BiVO<sub>4</sub>, which improved the charge transfer rate across composite/solution interface.

**Keywords:** photoelectrochemical water splitting; oxygen evolution reaction; copper tungstate; bismuth vanadate; cobalt phosphate

#### 1. Introduction

Photoelectrochemical (PEC) water splitting is a promising way to capture solar energy and to store it in the chemical bonds of two products, H2 and O2 [1]. There are two half-cell reactions for PEC water splitting: a hydrogen evolution reaction (HER) and an oxygen evolution reaction (OER). Between them, the OER is the more sluggish reaction because it involves the removal of four electrons from two water molecules. In previous studies, N-type semiconductors, such as TiO<sub>2</sub> [2], ZnO [3,4], WO<sub>3</sub> [5–8], Fe<sub>2</sub>O<sub>3</sub> [6,9], Ag<sub>3</sub>PO<sub>4</sub> [10], BiVO<sub>4</sub> [11,12], and CuWO<sub>4</sub> [13,14], whose valence band edges are higher than the redox potential of the O<sub>2</sub>/H<sub>2</sub>O couple, have been employed as the photoanode materials for such PEC OER. CuWO4 has been regarded as a promising photoanode material [13-20] due to its appropriate bandgap energy (2.3-2.4 eV), positive valence band edge potential (at ca. 2.8 V vs. reversible hydrogen electrode (RHE)) [13], low toxicity, and, most importantly, high stability in neutral and acid solutions. However, as compared with the highly active n-type semiconductors, the activity of CuWO4 for PEC OER is still low because of its indirect bandgap and poor charge transport property [18], which results in the accumulation of photoinduced holes, thereby increasing the recombination. Therefore, increasing both the electronhole separation rate and the charge transfer rate across the CuWO4/solution interface are two possible ways of improving the activity of CuWO4 for PEC OER.

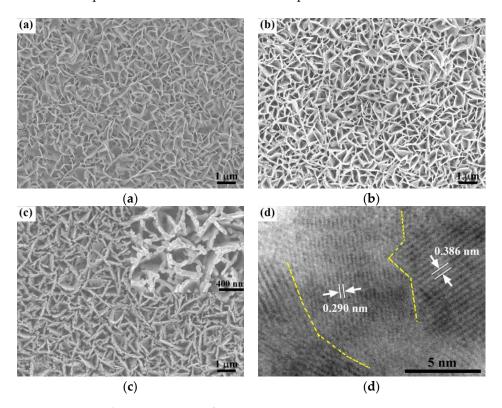

Catalysts **2018**, *8*, 663

Constructing a heterojunction by using two n-type semiconductors whose band edges match well with each other is an effective strategy to accelerate the electron–hole separation [6,21]. For example, it has been demonstrated that the composites of WO<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> [6], CuWO<sub>4</sub>/CdS [19] WO<sub>3</sub>/CuWO<sub>4</sub> [20], and WO<sub>3</sub>/BiVO<sub>4</sub> [21,22] have exhibited enhanced activity toward PEC OER due to the formation of heterojunctions. BiVO<sub>4</sub> is an n-type semiconductor with a band gap of ca. 2.3 eV, which is quite similar to that of CuWO<sub>4</sub>. The conduction and valence band edges of BiVO<sub>4</sub> are located at ca. 0 V and 2.3 V versus RHE, respectively, making BiVO<sub>4</sub> a good candidate to form a band-structure-matched heterojunction with other n-type semiconductors, such as WO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, and CuWO<sub>4</sub> [14,21–24]. The formation of WO<sub>3</sub>/BiVO<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub>/BiVO<sub>4</sub>, and CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunctions significantly promotes the electron–hole separation rate and benefits the improvement of the PEC OER efficiency. Coupling a semiconductor with an electrochemical OER co-catalyst is another way to enhance the activity of photoanode materials for water oxidation, because the cocatalyst can improve the charge transfer rate at the electrode/solution interface. Cobalt phosphate (Co-Pi) is an efficient cocatalyst that has been widely used to boost the performance of photoanode materials for PEC OER [3,5,6,11,12].

In this work, we prepared CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite nanoflakes (NFs) via a drop-casting and thermal annealing method, with CuWO<sub>4</sub> NFs as templates. A layer of Co-Pi was deposited onto the surface of CuWO<sub>4</sub>/BiVO<sub>4</sub> as a co-catalyst. We demonstrated that the obtained network-structured CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi nanocomposite exhibited a significantly improved activity for PEC OER. The high activity of the nanocomposite was ascribed to the high specific surface area, the electron–hole separation rate enhanced by the CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction, and the accelerated charge transfer rate at the semiconductor/solution interface due to the presence of Co-Pi.

#### 2. Results and Discussion

The network-structured CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs were prepared from CuWO<sub>4</sub> NFs via a method that combined drop-casting and thermal annealing. The WO<sub>3</sub> NFs grown on the fluorine-doped tin oxide (FTO) substrate were used as sacrificial templates to synthesis CuWO<sub>4</sub> NFs via a thermal solid phase reaction [13]. The resulting CuWO<sub>4</sub> NFs were used to fabricate a CuWO<sub>4</sub>/BiVO<sub>4</sub> composite, and the procedure is shown schematically in Scheme 1a. Briefly, Bi precursor solution was drop-cast on the surface of the FTO-supported CuWO<sub>4</sub> NFs, and the sample was annealed in air to obtain the CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs. Pure BiVO<sub>4</sub> films were also prepared using the same method, in which the mixed precursor solution was drop-cast on bare FTO substrates (Scheme 1b). The Co-Pi layer was deposited on the surface of CuWO<sub>4</sub>/BiVO<sub>4</sub> using a photo-assisted electrodeposition method described elsewhere [6].




**Scheme 1.** Schematic representation of the preparation of (a) the CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs and (b) the pure BiVO<sub>4</sub> film on the fluorine-doped tin oxide (FTO) substrate via a method that involved drop-casting and thermal annealing.

Figure 1a–c show the typical scanning electron microscopic (SEM) images of the WO3 NFs, CuWO4 NFs, and the CuWO4/BiVO4-composite NFs, respectively. The WO3 sample, synthesized by

Catalysts 2018, 8, 663 3 of 9

hydrothermal growth, has a network structure, which was composed of the perpendicularly aligned WO<sub>3</sub> NFs (Figure 1a). These WO<sub>3</sub> NFs were used as sacrificial templates to synthesize CuWO<sub>4</sub>, and Cu(NO<sub>3</sub>)<sub>2</sub> solution was drop casted onto the surface of WO<sub>3</sub> NFs. During annealing, Cu(NO<sub>3</sub>)<sub>2</sub> decomposed and produced CuO, which reacted with WO3 to form CuWO4. After annealing at 550 °C for 2 h, the WO₃ NFs were completely converted into CuWO₄ NFs [13]. As shown in Figure 1b, the obtained CuWO4 retained the microstructure of the WO3 NF templates. The size and thickness of the CuWO<sub>4</sub> NFs was ca. 0.5~2 μm and 20~50 nm, respectively. The NF structure of CuWO<sub>4</sub> provides a large specific surface area, which not only benefits the dispersion of the bismuth precursor (Bi(NO<sub>3</sub>)<sub>3</sub>) solution on the surface of CuWO<sub>4</sub>, but also contributes to the formation of a large area CuWO4/BiVO4 heterojunction. Figure 1c clearly demonstrates that, after the drop-casting of the Bi (NO<sub>3</sub>)<sub>3</sub> precursor solution and the follow-up thermal annealing at 550 °C for 2 h, the resulting CuWO4/BiVO4 composite still kept the NF network structure. The high-magnification SEM image (the inset of Figure 1c) shows that, compared with pure CuWO<sub>4</sub> NFs (see Figure 1b), the composite NFs became thicker and their surfaces became rougher, both suggesting the successful deposition of BiVO<sub>4</sub> onto the surface of the CuWO<sub>4</sub> NFs. In fact, the obtained CuWO<sub>4</sub>/BiVO<sub>4</sub> nanocomposite can be regarded as a film that possesses a network structure composed of numerous intersected NFs.



**Figure 1.** SEM images of the (a) WO<sub>3</sub> NFs; (b) CuWO<sub>4</sub> NFs, and (c) CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs; (d) high-resolution TEM image of the CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs.

High-resolution tunneling electron microscope (TEM) was employed to characterize the crystal structure of the composite NFs, and the result is presented in Figure 1d. The fringe with interplanar spacing of 0.290 nm and 0.386 nm can be clearly identified, which corresponded to the (040) plane of monoclinic BiVO<sub>4</sub> and the (110) lattice plane of triclinic CuWO<sub>4</sub>, respectively. Moreover, the crystal boundaries between CuWO<sub>4</sub> and BiVO<sub>4</sub> can also be seen in Figure 1d, confirming the formation of a CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction. X-ray diffraction (XRD) was also used to characterize the crystal structure of the CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs, and the results are shown in Figure 2. The XRD spectrum of the composite NFs shows significantly enhanced diffraction intensity at 2θ of 19.0 and 28.9 degrees, where there happen to be the two most intense diffraction peaks (011) and (121) of monoclinic BiVO<sub>4</sub>. This result provides strong evidence that the enhanced XRD intensity of the composite was due to the diffraction contribution of BiVO<sub>4</sub>. Therefore, we can conclude that the

Catalysts 2018, 8, 663 4 of 9

CuWO<sub>4</sub>/BiVO<sub>4</sub> composite was successfully prepared by the drop-casting and thermal annealing method.

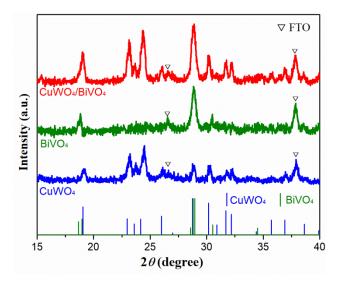
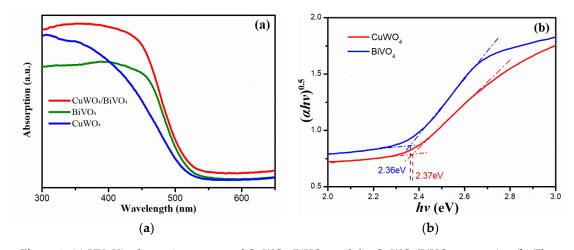
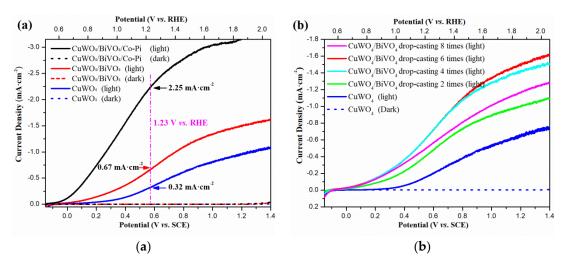




Figure 2. XRD patterns of CuWO<sub>4</sub>, BiVO<sub>4</sub>, and the CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs.

Light absorption is one of the crucial factors influencing the photo-to-chemical conversion efficiency of a photoelectrode material for water splitting. We measured the light absorption property of the CuWO4/BiVO4-composite NFs by using UV–Vis diffuse reflectance spectroscopy, and the results are shown in Figure 3a. The pure CuWO4 and BiVO4 films exhibited an onset absorption wavelength at ca. 525 nm and 530 nm, corresponding to the band edge absorption of CuWO4 and BiVO4, respectively. The band gap energies for CuWO4 and BiVO4, which were obtained from Tauc plots (see Figure 3b), were 2.37 eV and 2.36 eV, respectively. These values were in good agreement with those reported in literature [11–18] and are much smaller than that of WO3 [6,25], ensuring that both CuWO4 and BiVO4 absorb more light than WO3. The quite similar bandgap energy between CuWO4 and BiVO4 implies that the formation of the CuWO4/BiVO4 heterojunction cannot extend the light absorption range. This is also confirmed in UV–Vis absorption spectra of the CuWO4/BiVO4 composite. As shown in Figure 3a, after the formation of the CuWO4/BiVO4 heterojunction, the composite still showed an onset absorption wavelength of ca. 530 nm, which is the same as that of BiVO4.




**Figure 3.** (a) UV–Vis absorption spectra of CuWO<sub>4</sub>, BiVO<sub>4</sub>, and the CuWO<sub>4</sub>/BiVO<sub>4</sub> composite; (b) The corresponding Tauc plots of CuWO<sub>4</sub> and BiVO<sub>4</sub>.

The PEC OER performances of the CuWO<sub>4</sub>, CuWO<sub>4</sub>/BiVO<sub>4</sub>, and CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi composites were evaluated using linear sweep voltammetry (LSV) in the dark and under 100

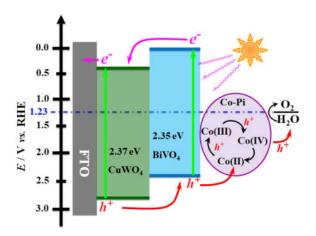
Catalysts **2018**, *8*, 663 5 of 9

mW·cm² illumination. Figure 4a shows the LSV of the above photoanodes in a sodium phosphate buffer (pH = 7) solution in the dark and under irradiation. Without illumination, no oxidation current could be observed on all the photoanodes within the entire potential sweep region, suggesting that they were all electrochemically inert for water oxidation in the dark. However, when illuminated, each photoanode showed an oxidation photocurrent density ( $J_{ph}$ ), which had been proven to originate from the PEC OER [13–19]. The CuWO<sub>4</sub>/BiVO<sub>4</sub> composite showed a much larger  $J_{ph}$  than the CuWO<sub>4</sub> NFs in the potential range from 0 V to 1.4 V versus RHE. As shown in Figure 4a, the OER onset potential of CuWO<sub>4</sub>/BiVO<sub>4</sub> was 0.66 V versus RHE, which was negatively shifted ca. 0.1 V compared with CuWO<sub>4</sub>. The  $J_{ph}$  value on CuWO<sub>4</sub> NFs at 1.23 V versus RHE is ca. 0.33 mA·cm<sup>-2</sup>, which was in good agreement with the one reported previously [13]. However, after the formation of the CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction,  $J_{ph}$  on the composite at the same potential was increased to 0.67 mA·cm<sup>-2</sup>, which was ca. 2 times higher than that on the CuWO<sub>4</sub> NF photoanode.



**Figure 4.** (a) Linear sweep voltammograms of the CuWO<sub>4</sub>, CuWO<sub>4</sub>/BiVO<sub>4</sub>, and CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi-composite photoanodes in 1.0 M of Na<sub>2</sub>SO<sub>4</sub> with 0.1 M of sodium phosphate buffer (pH = 7) in the dark and under illumination (100 mW·cm<sup>2</sup>); (b) Variation of the photocurrent density as a function of the drop-casting times of the Bi precursor solution on CuWO<sub>4</sub>. The pure CuWO<sub>4</sub> sample in (b) experienced the same preparation procedure as the CuWO<sub>4</sub>/BiVO<sub>4</sub> composite (drop-casting 6 times) except that no Bi precursor existed in the drop-casting solution.

We also investigated the influence of the deposition amount of BiVO<sub>4</sub> on CuWO<sub>4</sub>, and the results are shown in Figure 4b. To elucidate the effect of the preparation procedure (drop-casting, drying and annealing) on the activity of CuWO<sub>4</sub>, Figure 4b presents the LSV curves of pure CuWO<sub>4</sub> that experienced the same preparation steps as the CuWO<sub>4</sub>/BiVO<sub>4</sub> composite (drop-casting 6 times) except that no Bi precursor (Bi (NO<sub>3</sub>)<sub>3</sub>) existed in the drop-casting solution. By comparing the photocurrent density of the pure CuWO<sub>4</sub> in Figure 4a and b, we found that the aforementioned preparation procedure decreased the activity of CuWO<sub>4</sub>. However, the presence of BiVO<sub>4</sub> not only compensated for the negative effect of the preparation procedure on the activity of CuWO<sub>4</sub>, but also led to a significantly improved photocurrent density on the resulting CuWO<sub>4</sub>/BiVO<sub>4</sub> composite. This result provided further evidence that the formation of the CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction was crucial for the enhancement of the activity toward the PEC OER.


Figure 4b clearly demonstrates that, as the drop-casting times were increased, the photocurrent density of the CuWO<sub>4</sub>/BiVO<sub>4</sub> composite first increased and then decreased, with the sample prepared by drop-casting 6 times exhibiting the highest activity. We believed that the thickness of the outer BiVO<sub>4</sub> layer was the key factor controlling the activity of the CuWO<sub>4</sub>/BiVO<sub>4</sub> composite. As is self-evident, more drop-casting times inevitably resulted in thicker BiVO<sub>4</sub> layer, which improved the light absorption ability of the BiVO<sub>4</sub> layer but impaired the light absorption ability of the CuWO<sub>4</sub> layer. Therefore, there must be an optimal thickness of BiVO<sub>4</sub> that balances the two

Catalysts 2018, 8, 663 6 of 9

opposite effects. We believe that the CuWO<sub>4</sub>/BiVO<sub>4</sub> sample prepared by drop-casting 6 times had the optimal BiVO<sub>4</sub> thickness, and as a result, it exhibited the highest activity toward the PEC OER.

It has been reported that Co-Pi and cobalt borate (Co-Bi) could be well coupled with BiVO<sub>4</sub> as a co-catalyst, and  $J_{\rm ph}$  on the resulting BiVO<sub>4</sub>/Co-Pi (or Co-Bi) at 1.23 V versus RHE was increased to over 2.5–3 times the value on BiVO<sub>4</sub> [11,12]. This work inspired us to combine the CuWO<sub>4</sub>/BiVO<sub>4</sub> composite with Co-Pi, as in our study, the BiVO<sub>4</sub> was the outermost layer that could be used to deposit Co-Pi. Figure 4a clearly shows that coupling CuWO<sub>4</sub>/BiVO<sub>4</sub> with Co-Pi led to a significant improvement of  $J_{\rm ph}$ , and the value of  $J_{\rm ph}$  at 1.23 V versus RHE was 2.25 mA·cm<sup>-2</sup>, which is among the highest reported on CuWO<sub>4</sub> [13–20] and CuWO<sub>4</sub>/BiVO<sub>4</sub> photoanodes [14,24].

Figure 5 shows the schematic representation of the energy band structure of the CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi composite and the corresponding charge transfer mechanism during illumination. We believe there were three main reasons for the high activity of the composite for the PER OER. First, the nano-network structure of the composite provided a large specific surface area that ensured a high probability of light–semiconductor interaction and a large composite/solution interface, both benefitting the improvement of the activity for the OER. Second, both the conduction and valence band edges of BiVO<sub>4</sub> are higher than those of CuWO<sub>4</sub>, making a well-matched energy band structure for the CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction. The heterojunction led to a more efficient separation of the photoinduced electron–hole pairs, as the photoinduced holes were driven to the surface of BiVO<sub>4</sub> and the electrons were injected into CuWO<sub>4</sub> and then driven into FTO under applied potential. Third, the holes that moved to the surface of BiVO<sub>4</sub> could be captured by Co-Pi and resulted in the generation of a high valence state of the Co species, such as Co (IV) [26,27], which were highly active toward the oxidized water.



**Figure 5.** Schematic representation of the energy band structure of the CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction and charge transfer mechanism during illumination.

#### 3. Materials and Methods

## 3.1. Materials

Cupric nitrate trihydrate (Cu (NO) $_3\cdot3H_2O$ ) was purchased from Sinopharm Chemical Reagent Co., Ltd (Beijing, China). Tungsten powder, tungstic acid (H $_2WO_4$ ), hydrogen peroxide (H $_2O_2$ ), absolute ethyl alcohol, isopropanol, potassium hydroxide (KOH), urea, acetonitrile, oxalic acid, hydrochloric acid (HCl), and acetic acid (C $_2H_4O_2$ ) were purchased from Beijing Chemical Works (Beijing, China). All the chemicals were of analytical grade and used without further purification. All the aqueous solutions were prepared using deionized water (>18 M $\Omega$ ). Fluorine-doped tin oxide (FTO) substrates (8  $\Omega\cdot$ sq $^-1$ , transparency 80%) were purchased from Asahi Glass, Tokyo, Japan.

#### 3.2. Preparation of Network-Structured CuWO4/BiVO4 and CuWO4/BiVO4/Co-Pi Nanocomposites

Catalysts **2018**, *8*, 663

The WO3 NFs were first prepared on the FTO substrate via a nanoseed-assisted hydrothermal method [13], and then, they were used as sacrificial templates to synthesize CuWO4 NFs via a thermal solid phase reaction between WO3 NFs and CuO [13]. Then, the obtained CuWO4 NFs were used as supports to synthesize the network-structured CuWO4/BiVO4 nanocomposite. In detail, Bi (NO3)3·5H2O and vanadyl acetylacetonate were dissolved in a mixed solvent of glacial acetic acid and acetylacetone (20:1, volume ratio) to get a final concentration of 10 mM and 9.3 mM, respectively. Then, 20 µl of the mixed solution was drop-cast onto the FTO-supported CuWO4 NFs, and the sample was put into a 400 °C oven for 2 min to dry the drop-casting solution. This step was repeated for the required times to modulate the amount of bismuth precursor. Then, the dried samples were annealed in air at 550 °C for 2 h to obtain the CuWO4/BiVO4 composite. Pure BiVO4 films were also prepared using the same method in which the mixed precursor solution was drop-casted on bare FTO substrates. The Co-Pi layer was deposited onto the surface of CuWO4/BiVO4 using a photo-assisted electrodeposition method described in our previous work [6].

#### 3.3. Characterization

The morphology of the WO<sub>3</sub>, CuWO<sub>4</sub>, and CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs were characterized by a Hitachi S-4800 field emission scanning electron microscope operating (Tokyo, Japan) at an accelerating voltage of 10 kV. High-resolution transmission electron microscopic images were obtained on a field emission JEM-2010F microscope (JEOL Ltd., Tokyo, Japan) with an accelerating voltage of 200 kV. The X-ray diffraction (XRD) pattern of the CuWO<sub>4</sub>, BiVO<sub>4</sub>, and CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs were collected by an X-ray diffractometer (Rigaku, rint2000 advance theta-2theta powder diffractometer, Tokyo, Japan) with Cu Kα radiation. UV–Vis diffuse reflection spectra were recorded on a UV–Vis-NIR spectrophotometer (Shimadzu 3600, Kyoto, Japan).

### 3.4. Photoelectrochemical Measurements

Photoelectrochemical measurements were conducted on a CHI660D workstation (CH Instruments Co., Austin, TX, USA), while a 300 W xenon lamp served as the light source. The light intensity illuminated on the surface of all the photoelectrodes was calibrated to  $100 \text{ mW}\cdot\text{cm}^{-2}$ . All the electrochemical measurements were performed in a three-electrode photoelectrochemical cell in 1.0 M of Na<sub>2</sub>SO<sub>4</sub> with 0.1 M of sodium phosphate buffer (pH = 7), and Pt and saturated calomel electrode (SCE) serving as counter and reference electrodes, respectively. All the potentials in this work were reported with reference to SCE and RHE.

#### 4. Conclusions

In summary, we successfully prepared the CuWO<sub>4</sub>/BiVO<sub>4</sub> film by using CuWO<sub>4</sub> NFs as templates via a simple method that combined drop-casting and thermal annealing. The obtained CuWO<sub>4</sub>/BiVO<sub>4</sub> film had a network structure that was composed of intersected CuWO<sub>4</sub>/BiVO<sub>4</sub>-composite NFs. The CuWO<sub>4</sub>/BiVO<sub>4</sub> showed significantly improve activity for PER OER as compared with CuWO<sub>4</sub>. We further improved the activity by coupling co-catalyst Co-Pi with CuWO<sub>4</sub>/BiVO<sub>4</sub>. A photocurrent density of 2.25 mA·cm<sup>-2</sup> was obtained on the CuWO<sub>4</sub>/BiVO<sub>4</sub>/Co-Pi composite, and this value was among the highest reported on CuWO<sub>4</sub>-based photoanodes in a neutral solution. The high activity for the PEC OER was attributed to the following three reasons: (1) The high specific surface area of the composite greatly increased the light absorption probability and the electrode/solution interface; (2) the CuWO<sub>4</sub>/BiVO<sub>4</sub> heterojunction accelerated the separation of the photoinduced electron–hole pairs; and (3) the presence of the Co-Pi co-catalyst significantly improved the charge transfer across the composite/solution interface. Although CuWO<sub>4</sub> is still no match for the highly efficient photoanode materials right now, this work demonstrates both the potential of CuWO<sub>4</sub> as a photoanode for OER and the strategy to improve its performance.

**Author Contributions:** B.P. performed the tests, analyzed the data, and prepared the draft manuscript; M.X. worked on preparation and characterization; C.L. analyzed the data; C.Y. administered the project; and P.D. conceived of the paper and reviewed and edited the final manuscript.

Catalysts 2018, 8, 663 8 of 9

**Funding:** This research was funded by the National Natural Science Foundation of China (NSFC 51672017, 51872015, and 51604310), the Beijing Natural Science Foundation (2142020 and 2151001), and the Open Foundation of State Key Laboratory of Environmental Protection for Iron and Steel Industry (2016YZC03).

Conflicts of Interest: The authors declare no conflicts of interest.

#### References

- 1. Gratzel, M. Photoelectrochemical cells. *Nature* **2001**, *414*, 338–344, doi:10.1038/35104607.
- 2. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. *Nature* **1972**, *238*, 37–38, doi:10.1038/238037a0.
- 3. Steinmiller, E.M.P.; Choi, K.-S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. *Proc. Natl. Acad. Sci. USA* **2009**, *106*, 20633–20636, doi:10.1073/pnas.0910203106.
- 4. Mishra, Y.K.; Adelung, R. ZnO tetrapod materials for functional applications. *Mater. Today* **2018**, *21*, 631–651, doi:10.1016/j.mattod.2017.11.003.
- 5. Jin, T.; Diao, P.; Xu, D.; Wu, Q. High-aspect-ratio WO₃ nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation. *Electrochim. Acta* **2013**, *114*, 271–277, doi:10.1016/j.electacta.2013.09.172.
- 6. Jin, T.; Diao, P.; Wu, Q.; Xu, D.; Hu, D.; Xie, Y.; Zhang, M. WO<sub>3</sub> nanoneedles/α-Fe<sub>2</sub>O<sub>3</sub>/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting. *Appl. Catal. B Environ.* **2014**, *148*–*149*, 304–310, doi:10.1016/j.apcatb.2013.10.052.
- 7. Hu, D.; Diao, P.; Xu, D.; Wu, Q. Gold/WO<sub>3</sub> nanocomposite photoanodes for plasmonic solar water splitting. *Nano Res.* **2016**, *9*, 1735–1751, doi:10.1007/s12274-016-1067-0.
- 8. Jin, T.; Xu, D.; Diao, P.; He, W.-p.; Wang, H.-w.; Liao, S.-z. Tailored preparation of WO<sub>3</sub> nano-grassblades on FTO substrate for photoelectrochemical water splitting. *CrystEngComm* **2016**, *18*, 6798–6808, doi:10.1039/C6CE01186A.
- 9. Wu, Q.; Xu, D.; Xue, N.; Liu, T.; Xiang, M.; Diao, P. Photo-catalyzed surface hydrolysis of iridium(iii) ions on semiconductors: A facile method for the preparation of semiconductor/IrOx composite photoanodes toward oxygen evolution reaction. *Phys. Chem. Chem. Phys.* **2017**, *19*, 145–154, doi:10.1039/C6CP06821A.
- 10. Wu, Q.; Diao, P.; Sun, J.; Xu, D.; Jin, T.; Xiang, M. Draining the photoinduced electrons away from an anode: The preparation of Ag/Ag<sub>3</sub>PO<sub>4</sub> composite nanoplate photoanodes for highly efficient water splitting. *J. Mater. Chem. A* **2015**, *3*, 18991–18999, doi:10.1039/C5TA05155J.
- 11. Ding, C.; Shi, J.; Wang, D.; Wang, Z.; Wang, N.; Liu, G.; Xiong, F.; Li, C. Visible light driven overall water splitting using cocatalyst/BiVO<sub>4</sub> photoanode with minimized bias. *Phys. Chem. Chem. Phys.* **2013**, *15*, 4589–4595, doi:10.1039/c3cp50295c.
- 12. Abdi, F.F.; van de Krol, R. Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO<sub>4</sub> Photoanodes. *J. Phys. Chem. C* **2012**, *116*, 9398–9404, doi:10.1021/jp3007552.
- 13. Hu, D.; Diao, P.; Xu, D.; Xia, M.; Gu, Y.; Wu, Q.; Li, C.; Yang, S. Copper(ii) tungstate nanoflake array films: Sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting. *Nanoscale* **2016**, *8*, 5892–5901, doi:10.1039/C5NR09210H.
- 14. Ye, W.; Chen, F.; Zhao, F.; Han, N.; Li, Y. CuWO<sub>4</sub> Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation. *ACS Appl. Mater. Interfaces* **2016**, *8*, 9211–9217, doi:10.1021/acsami.6b03176.
- 15. Hill, J.C.; Choi, K.-S. Synthesis and characterization of high surface area CuWO<sub>4</sub> and Bi<sub>2</sub>WO<sub>6</sub> electrodes for use as photoanodes for solar water oxidation. *J. Mater. Chem. A* **2013**, *1*, 5006–5014, doi:10.1039/c3ta10245a.
- 16. Pyper, K.J.; Yourey, J.E.; Bartlett, B.M. Reactivity of CuWO<sub>4</sub> in Photoelectrochemical Water Oxidation Is Dictated by a Midgap Electronic State. *J. Phys. Chem. C* **2013**, *117*, 24726–24732, doi:10.1021/jp408434v.

Catalysts **2018**, *8*, 663

17. Yourey, J.E.; Bartlett, B.M. Electrochemical deposition and photoelectrochemistry of CuWO<sub>4</sub>, a promising photoanode for water oxidation. *J. Mater. Chem.* **2011**, 21, 7651–7660, doi:10.1039/c1jm11259g.

- 18. Yourey, J.E.; Pyper, K.J.; Kurtz, J.B.; Bartlett, B.M. Chemical Stability of CuWO<sub>4</sub> for Photoelectrochemical Water Oxidation. *J. Phys. Chem. C* **2013**, 117, 8708–8718, doi:10.1021/jp402048b.
- 19. Zhou, M.; Liu, Z.; Li, X.; Liu, Z. Promising Three-Dimensional Flowerlike CuWO<sub>4</sub> Photoanode Modified with CdS and FeOOH for Efficient Photoelectrochemical Water Splitting. *Ind. Eng. Chem. Res.* **2018**, *57*, 6210–6217, doi:10.1021/acs.iecr.8b00358.
- 20. Nam, K.M.; Cheon, E.A.; Shin, W.J.; Bard, A.J. Improved Photoelectrochemical Water Oxidation by the WO<sub>3</sub>/CuWO<sub>4</sub> Composite with a Manganese Phosphate Electrocatalyst. *Langmuir* **2015**, *31*, 10897–10903, doi:10.1021/acs.langmuir.5b01780.
- 21. Hong, S.J.; Lee, S.; Jang, J.S.; Lee, J.S. Heterojunction BiVO<sub>4</sub>/WO<sub>3</sub> electrodes for enhanced photoactivity of water oxidation. *Energy Environ. Sci.* **2011**, 4, 1781–1787, doi:10.1039/C0EE00743A.
- 22. Su, J.; Guo, L.; Bao, N.; Grimes, C.A. Nanostructured WO<sub>3</sub>/BiVO<sub>4</sub> Heterojunction Films for Efficient Photoelectrochemical Water Splitting. *Nano Lett.* **2011**, *11*, 1928–1933, doi:10.1021/nl2000743.
- 23. Xia, L.; Bai, J.; Li, J.; Zeng, Q.; Li, L.; Zhou, B. High-performance BiVO<sub>4</sub> photoanodes cocatalyzed with an ultrathin  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> layer for photoelectrochemical application. *Appl. Catal. B Environ.* **2017**, 204, 127–133, doi:10.1016/j.apcatb.2016.11.015.
- 24. Pilli, S.K.; Deutsch, T.G.; Furtak, T.E.; Brown, L.D.; Turner, J.A.; Herring, A.M. BiVO<sub>(4)</sub>/CuWO<sub>(4)</sub> heterojunction photoanodes for efficient solar driven water oxidation. *Phys. Chem. Chem. Phys.* **2013**, *15*, 3273–3278, doi:10.1039/c2cp44577h.
- 25. Zheng, F.; Guo, M.; Zhang, M. Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates. *CrystEngComm* **2013**, *15*, 277–284, doi:10.1039/C2CE25996F.
- 26. Kanan, M.W.; Yano, J.; Surendranath, Y.; Dinca, M.; Yachandra, V.K.; Nocera, D.G. Structure and Valency of a Cobalt–Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy. *J. Am. Chem. Soc.* **2010**, *132*, 13692–13701, doi:10.1021/ja1023767.
- 27. Symes, M.D.; Surendranath, Y.; Lutterman, D.A.; Nocera, D.G. Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt-Based Oxygen-Evolving Catalyst. *J. Am. Chem. Soc.* **2011**, *133*, 5174–5177, doi:10.1021/ja110908v.



© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).