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Abstract: The copper(II) complexes [CuL(H2O)2]·H2O (1) and [CuL(dea)] (2) [L = 2-(2-(1,3-
dioxo-1H-inden-2(3H)-ylidene)hydrazinyl)benzenesulfonate, dea = diethanolamine] were applied
as catalysts in the peroxidative (with tert-butyl-hydroperoxide or hydrogen peroxide) conversion
of cyclohexane to cyclohexanol and cyclohexanone, either in acetonitrile or in any of
the ionic liquids [bmim][NTf2] and [hmim][NTf2] [bmim = 1-butyl-3-methylimidazolium,
hmim = 1-hexyl-3-methylimidazolium, NTf2 = bis(trifluoromethanesulfonyl) imide]. Tert-butyl-
hydroperoxide led to better product yields, as compared to H2O2, with a selectivity directed towards
cyclohexanone. The ILs showed a better performance than the conventional solvent for the copper
complex 1. No catalytic activity was observed for 2 in the presence of an IL.

Keywords: catalysis; arylhydrazones; copper; ionic liquids; cyclohexane oxidation

1. Introduction

Due to their intrinsically low reactivity, the oxidation of saturated hydrocarbons under mild
reaction conditions is a great challenge in catalysis [1–7]. This is of particular significance to the
oxidation of cyclohexane to cyclohexanol and cyclohexanone, in view of the involvement of these
products for the production of nylon-6 and nylon-6,6 [8,9].

The conversion of alkanes into valuable products using green oxidants such as molecular oxygen,
tert-butyl hydroperoxide (TBHP) or hydrogen peroxide is attaining considerable attention, and a
variety of transition metals are being applied [1–21].

The usage of ionic liquids (ILs) as solvents in catalysis [22–25] and for cyclohexane oxidation in
particular is scarce. Some studies with manganese(III) porphyrins as catalysts in [bmim][PF6] (PF6

= hexafluorophosphate) mixed with dichlorometane or acetonitrile showed excellent yields (up to
88%) for the hydroxylation of cyclohexane, cyclooctane, adamantane and tetralin [26], as well as of
tetrahydronaphthalene [27]. Examples of transition metal catalysts for the oxidation of cyclohexane
include iron scorpionates [28–35], copper(II) terpyridine-based compounds [36], benzene–sulfonate
and benzene–carboxylate copper(II) polymers [37,38], and polynuclear copper(II)–arylhydrazone
complexes [39], and other metals, such as vanadium [40–46].
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Despite the potential applications of arylhydrazone and their metal complexes, mainly in
the oxidation of alkanes and alcohols [39–53], the use of such compounds in catalysis is still an
understudied area. In pursuit of our interest in the transition metal-catalysed peroxidative [by tert-butyl
hydroperoxide (TBHP) or H2O2] oxidation of hydrocarbons in ILs [36–39], we have tested a pair of
already known [51] copper(II) complexes, viz. [CuL(H2O)2]·H2O (1) and [CuL(dea)] (2), as catalysts for
cyclohexane conversion into cyclohexanol and cyclohexanone (Scheme 1), in acetonitrile or in any of
the ionic liquids [bmim][NTf2] or [hmim][NTf2] as solvents and under low-power (10 W) microwave
irradiation. The favorable effect of microwaves (MWs) in comparison with conventional heating has
been recognized in alkane oxidation [54].
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The application of ILs in alkane functionalization is still in its infancy, in spite of their attractiveness
as a green alternative to volatile organic solvents. Another eventual advantage in using IL is the
possibility of recycling [39], which is not the case for the use of conventional solvents. In this work,
the imidazolium-based ILs mentioned above are tested in order to try to fill this gap.

Thus, in this study, we intend to achieve to following aims: (i) to apply the known copper(II)
complexes based on 2-(2-(1,3-dioxo-1H-inden-2(3H)-ylidene)hydrazinyl)benzenesulfonate as catalysts
for the peroxidative oxidation of cyclohexane, in acetonitrile and in an IL; (ii) to compare the oxidation
performance of H2O2 and TBHP; and (iii) to recycle the IL + catalyst system after the reaction in order
to test its stability.

2. Results and Discussion

2.1. Conventional Medium

Tables 1 and 2 present the results for the peroxidative oxidation of cyclohexane in acetonitrile,
using 1 and 2 as catalysts, respectively, and also comprising the studies of the effect of the catalyst and
peroxide amounts, type of peroxide and reaction time.

The product yield of the microwave assisted the peroxidative oxidation of cyclohexane depends
on the catalyst amount, on the time of reaction, and on the type of oxidant, as expected. For example,
the yield of cyclohexanol + cyclohexanone increases when TBHP is used instead of H2O2 (Table 1,
e.g., compare entries 7 and 15), and the tested catalyst amounts (10−4 and 10−5 mol·L−1) when using
TBHP also increases with the decrease of the amount of catalyst 1, probably due to a more extensive
overoxidation when using the higher catalyst amount. Upon increasing the reaction time, the yield
of product also increases at least up to a maximum of 2 h reaction time. For this reaction time of 2 h
and using 1 × 10−5 mol·L−1 of catalyst 1, 29.6% yield of total product was obtained using TBHP as
oxidant (Table 1, entry 15).

When using H2O2 as oxidant, a higher selectivity towards the alcohol is observed, while with
TBHP, the amount of this product is lower than that of the ketone (Table 1, entries 9–12), and eventually
no alcohol is detected (Table 1, entries 13–16).

It was also observed that with TBHP and a concentration of catalyst 1 of 1 × 10−5 mol·L−1,
TONs above 6 × 103 are attained, reaching 136 × 102 in 2 h (Table 1, entry 15). A TOF value above
120 × 102 h−1 is achieved at the shorter reaction time of 30 min (Table 1, entry 13).
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Table 1. Oxidation of cyclohexane to cyclohexanol and cyclohexanone catalysed by 1 a.

Entry Oxidant
Catalyst Amount

(mol L−1)
Time (min)

Yield % (after PPh3) b

Total TON d Total TOF e

(h−1) [Alc]/[Keto] f

Cyclo-Hexanone Cyclo-Hexanol Total c

1

H2O2 1 × 10−4

30 0.8 4.2 5.0 230 460 5.3
2 60 3.8 5.0 8.9 409 409 1.3
3 120 4.4 5.2 9.6 442 221 1.2
4 180 4.7 8.1 12.8 589 196 1.7

5

H2O2 1 × 10−5

30 2.3 3.2 5.4 248 × 10 497 × 10 1.4
6 60 2.2 4.5 6.7 308 × 10 308 × 10 2.0
7 120 4.4 4.7 9.1 419 × 10 209 × 10 1.1
8 180 3.7 4.7 8.4 386 × 10 129 × 10 1.3

9

TBHP 1 × 10−4

30 4.7 1.7 6.4 294 588 0.4
10 60 8.4 2.2 10.6 488 488 0.3
11 120 13.0 2.3 15.3 704 352 0.2
12 180 21.7 2.8 24.6 113 × 10 377 0.1

13

TBHP 1 × 10−5

30 13.5 0.0 13.5 621 × 10 124 × 102 0.0
14 60 20.2 0.0 20.2 929 × 10 929 × 10 0.0
15 120 29.6 0.0 29.6 136 × 102 681 × 10 0.0
16 180 17.3 0.0 17.3 796 × 10 265 × 10 0.0

17 g H2O2 1 × 10−5 120 trace 0.0 0.0 - - -
18 g TBHP 1 × 10−5 120 trace 0.0 0.0 - - -
19 h TBHP 4 × 10−4 120 1.6 3.8 5.4 49 24 2.4

a Reaction conditions, unless stated otherwise: [cyclohexane]0 = 0.46 mol L−1, [oxidant]0 = 0.92 mol L−1, additive (H2SO4) = 0.019 mol L−1, CH3CN (3 mL), 50 ◦C. b Based on GC (Gas
Chromatography) analysis, after treatment with PPh3. c Values correspond to total yields (moles of products/100 moles of cyclohexane). d TON = Total turnover number (moles of
product/mol of catalyst). e TOF (h-1) = turnover frequency (TON/time). f Ratio between the concentrations of cyclohexanol (Alc) and cyclohexanone (Keto). g Blank test (no metal catalyst).
h Cu(NO3)2 as catalyst [55].
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Table 2. Oxidation of cyclohexane to cyclohexanol and cyclohexanone catalysed by 2 a.

Entry Oxidant
Catalyst Amount

(mol L−1) Time (min)
Yield (%) (after PPh3) b

Total TON d Total TOF e

(h−1) [Alc]/[Keto] f

Cyclo-Hexanone Cyclo-Hexanol Total c

1

H2O2 1 × 10−4

30 1.1 0.3 1.4 64 128 0.3
2 60 1.0 0.5 1.5 69 69 0.5
3 120 1.4 0.9 2.3 106 53 0.6
4 180 2.0 0.8 2.8 129 43 0.4

5

H2O2 1 × 10−5

30 1.2 0.3 1.5 690 138 × 10 0.3
6 60 3.5 1.7 5.2 239 × 10 239 × 10 0.5
7 120 3.9 2.2 6.1 281 × 10 140 × 10 0.6
8 180 5.4 3.5 8.9 409 × 10 137 × 10 0.6

9

TBHP 1 × 10−4

30 17.4 0.0 17.4 800 160 × 10 0.0
10 60 18.4 0.0 18.4 846 846 0.0
11 120 20.0 0.0 20.0 920 460 0.0
12 180 24.5 0.0 24.5 113 × 10 376 0.0

13

TBHP 1 × 10−5

30 7.7 0.0 7.7 354 × 10 708 × 10 0.0
14 60 15.2 0.0 15.2 699 × 10 699 × 10 0.0
15 120 15.4 0.0 15.4 708 × 10 354 × 10 0.0
16 180 11.1 0.0 11.1 511 × 10 170 × 10 0.0

17 g H2O2 1 × 10−5 120 trace 0.0 0.0 - - -
18 g TBHP 1 × 10−5 120 trace 0.0 0.0 - - -

a Reaction conditions, unless stated otherwise: [cyclohexane]0 = 0.46 mol L−1, [oxidant]0 = 0.92 mol L−1, additive (H2SO4) = 0.019 mol L−1, CH3CN (3 mL), 50 ◦C. b Based on GC analysis,
after treatment with PPh3. c Values correspond to total yields (moles of products/100 moles of cyclohexane). d TON = Total turnover number (moles of product/mol of catalyst). e TOF
(h-1) = turnover frequency (TON/time). f Ratio between the concentrations of cyclohexanol (Alc) and cyclohexanone (Keto). g Blank test (no metal catalyst).
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In comparison to 1, the catalytic activity of 2 is lower (Table 2). However, the yields of the product
almost always increase with time and for both types of oxidant. In addition, catalyst 2 is 100% selective
for the ketone versus the alcohol by using TBHP as oxidant (Table 2, entries 9–16). The maximum TON
value achieved with 2 using TBHP and the lowest tested concentration of the catalyst, 708 × 10 in
2 h (Table 2, entry 15), is nearly half that achieved with 1 under the same experimental conditions
(136 × 102, Table 1, entry 15).

The catalytic performances of 1 are comparable in terms of yield with those obtained with aqua
complexes of iron with arylhydrazone-β-diketone ligands, at room temperature, but using the higher
catalyst loading of ca.1 × 10−3 mol·L−1, the 1:7.5 substrate/oxidant ratio and 6 h reaction, achieving
TON values not higher than 290 [52]. With catalyst 1, a maximum TON value of 13 × 103 was attained
using 1 × 10−5 mol·L−1 of catalyst 1 and only the 1:2 substrate/oxidant ratio. Similar yields were
achieved with copper complexes [55], but for 6 h reaction and the substrate/oxidant ratio of 1:10.

2.2. Unconventional Medium (Ionic Liquid)

In view of the better catalytic performance of 1 relative to 2, the former catalyst, at the lowest
concentration of 1 × 10−5 mol·L−1, was used for the peroxidative oxidation of cyclohexane and
using the ionic liquid [bmim][NTf2] or [hmim][NTf2] as solvent. Hydrogen peroxide was kept as the
oxidant as it is inexpensive and environmentally friendly. No acidic additive was used. Higher yields
of product were achieved in [bmim][NTf2], reaching 13.9% in 3 h (Table 3, entry 4; compare with
Table 1, entry 8). After such a time of reaction, the cyclohexanol/cyclohexanone ratio is similar to that
obtained with acetonitrile as solvent, but the TON value is now higher (639 × 10 against 386 × 10;
compare Table 3, entry 4 and entry 8 in Table 1). That ratio reaches a maximum of 2.4 upon 2 h reaction,
with cyclohexanol being here the major product; the alcohol yield then decreases with a longer reaction
time, while the ketone yield increases (Table 3; compare entries 3 and 4).

Table 3. Oxidation of cyclohexane to cyclohexanol and cyclohexanone catalysed by 1 a in an IL.

Entry Oxidant
Time
(min)

Yield (%) (after PPh3) b Total
TON d

Total TOF e

(h−1) [Alc]/[Keto] f

Cyclohexanone Cyclohexanol Total c

[bmim][NTf2]

1

H2O2

30 3.6 5.2 8.8 405 × 10 810 × 10 1.4
2 60 4.4 5.9 10.3 474 × 10 474 × 10 1.3
3 120 3.5 8.5 12.0 552 × 10 276 × 10 2.4
4 180 6.1 7.8 13.9 639 × 10 213 × 10 1.3

[hmim][NTf2]

5

H2O2

30 0.0 0.0 0.0 0 0 n.d.
6 60 0.0 0.0 0.0 0 0 n.d.
7 120 0.11 0.10 0.21 97 49 0.9
8 180 0.18 0.16 0.34 156 52 0.9

a Reaction conditions, unless stated otherwise: [cyclohexane]0 = 0.46 mol L−1, [H2O2]0 = 0.92 mol L−1, [cat] = 1 ×
10−5 mol L−1, IL (2 mL), 50 ◦C. b Based on GC analysis, after treatment with PPh3. c Values correspond to total
yields (moles of products/100 moles of cyclohexane). d TON = Total turnover number (moles of product/mol of
catalyst). e TOF (h-1) = turnover frequency (TON/time). f Ratio between the concentrations of cyclohexanol (Alc)
and cyclohexanone (Keto).

By using [hmim][NTf2] as solvent, a very low yield of 0.34% was obtained after 3 h (Table 3,
entry 8), much lower than those observed for [bmim][NTf2] and even acetonitrile (13.9%, Table 3,
entry 4; 8.4%, Table 1, entry 8). This difference in yield may eventually be due to the higher viscosity
of [hmim][NTf2] relative to [bmim][NTf2] (26.2 mPa·s for the former and 20.4 mPa·s for the latter,
at 323.15 K) [56].

The performance of catalyst 1 after recycling is presented in Table 4, which clearly indicates a
severe loss of activity.
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Table 4. Recycling of the system 1 + [bmim][NTf2] a.

Entry
Yield (%) (after PPh3) b Activity

(%)
Total

TON d
Total TOF

(h−1) e [Alc]/[Keto] f

Cyclohexanone Cyclohexanol Total c

1 6.1 7.8 13.9 100 639 × 10 213 × 10 1.3
2 0.3 0.8 1.1 8 638 213 2.7
3 0.5 0.3 0.8 6 464 155 0.6
a Reaction conditions, unless stated otherwise: [cyclohexane]0 = 0.58 mol L−1, [H2O2]0 = 1.15 mol L−1, [cat] = 1 ×
10−5 mol L−1, IL (2 mL), 50 ◦C, reaction time = 180 min. b Based on GC analysis, after treatment with PPh3. c Values
correspond to total yields (moles of products/100 moles of cyclohexane). d TON = Total turnover number (moles
of product/mol of catalyst). e TOF (h-1) = turnover frequency (TON/time). f Ratio between the concentrations of
cyclohexanol (Alc) and cyclohexanone (Keto).

For homogeneous catalysis, the main industrial process exhibits yields of 4–10% of KA (ketone +
alcohol) oil (cyclohexanol + cyclohexanone) with a maximum 85% selectivity at 150 ◦C [57]. The present
study shows a visible improvement, both in yield and in using milder conditions. Other homogeneous
Cu(II) complexes of arylhydrazone published previously led to overall yields up to 34% and TONs
up to 42 [58]. For Cu(II) complexes of pyrazole the obtained yields were up to 58% and TONs up to
108 × 10 in 30 min reaction time at 100 ◦C [59]. In our study, our TONs are higher.

The peroxidative oxidation of cyclohexane catalyzed by polynuclear copper(II) complexes of
arylhydrazone with H2O2, was also carried out in [bmim][BF4], in which a yield of 29.5% was achieved,
at 90 min reaction and the same temperature as used here, but with 10−3 mol·L−1 of catalyst [39],
which is two orders of magnitude higher than that used in our work.

Regarding the effect of the IL as the reaction medium, we note that the interaction of the
scorpionate iron(II) catalyst [FeCl2(Tpm)] (Tpm = hydrotris(pyrazol-1-yl)methane) with the IL
1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]) was investigated using theoretical
DFT calculations [28]. They indicate the coordination of the dicyanamide anion to form the neutral
associate [bmim][FeCl2{N(CN)2}(Tpm)], which accounts for the effective retention of the catalyst
by the IL, without appreciable loss upon recycling. In the current case of the copper(II) complexes
[CuL(H2O)2]·H2O (1) and [CuL(dea)] (2), the interaction of the copper sites with the NTf2

- anion of
the IL is expected to be weaker for steric reasons in view of the bulkiness of this anion, which does
not allow the prevention of catalyst leaching. This can account, at least in part, for the ineffective
catalyst recycling, as it is shown in Figure 1. The possible formation of inactive copper compounds
(e.g., copper oxido species) can also contribute to such behaviour.
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3. Experimental Section

3.1. Materials and Equipment

All chemicals were obtained from commercial sources and used as received. All the catalytic
work was performed in a Microwave Synthesis Reactor (Anton Paar, Graz, Austria) at 50 ◦C.
Chromatographic analyses were undertaken by using a Fisons Instruments GC 8000 (Fisons
Instruments SpA, Rodano, Italy) series gas chromatograph with a DB-624 (J&W) capillary column
(Agilent, Santa Clara, CA, USA) (flame ionization detector) (temperature of injector: 230 ◦C) and the
Jasco-Borwin v.1.50 software (ChromatographyForum, Ashford, UK) (temperature range 100–180 ◦C).
The internal standard method was used to quantify the organic products (see below for details).

3.2. Synthesis of the Catalysts

The synthesis and characterization of both copper(II) catalysts (Scheme 2) were reported
earlier [51] and are therefore not discussed here.
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3.3. Oxidation of Cyclohexane and Products Analysis

Cyclohexane oxidations were carried out in a microwave (MW) reactor. Typically, 3 mL of
acetonitrile was used (in the experiments with this solvent), to which the solid catalyst was added,
and the solution was stirred to ensure the total dissolution of the catalyst. Then, the substrate
(cyclohexane) was added to the reaction mixture (initial cyclohexane concentration in the reaction
solution of 0.46 mol L−1), followed by the acid additive (concentrated H2SO4, 5 µL, 0.094 mmol) and
the reaction started upon the addition of the oxidant (aq. 30% or 50% H2O2 or aq. 70% TBHP) in
one portion (initial concentration in the reaction solution of 0.92 mol L−1). Other acidic additives
were tested, such as HNO3, but no product was detected. The reaction was subjected to microwave
irradiation (10 W) for variable periods of time and at a temperature of 50 ◦C (for comparison with
other works, which have also used this temperature).

In the experiments with the ionic liquid ([bmim][NTf2] or [hmim][NTf2]), 2 mL of IL was used
instead of NCMe, and the same reaction conditions mentioned above were applied, except for the fact
that, in this case, no acidic additive was used and only aq. H2O2 was applied as oxidant. After the
reaction with IL, 0.500 mL of distilled water was added and the mixture stirred to ensure the extraction
of the products to the aqueous phase. A further amount of distilled water was added after the analysis,
but no additional product was extracted.

The products were identified by GC, by the comparison of the retention times with those of
commercial products. Cyclopentanone (0.05 mL) was used as an internal standard. The amount of formed
product was estimated by comparing the retention times and peak areas of the reaction species with the
ones of commercially available products. An example of yield calculation is presented in Supplementary
Materials. PPh3 was added to the samples, to ensure that all the cyclohexylhydroperoxide present in the
mixture was converted to cyclohexanol [60–62]. Upon each PPh3 addition, a little effervescence occurred.
When no more effervescence was observed, the addition of PPh3 was stopped.
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4. Conclusions

In the present work, it was observed that catalyst 1 is more active than 2, in accordance
with its lower coordination number and the presence of two labile water ligands. Moreover,
tert-butyl-hydroperoxide, a stronger oxidant than H2O2, gives rise to higher product yields, and with a
higher selectivity towards cyclohexanone instead of cyclohexanol. With [bmim][NTf2], good results
were achieved, but only with catalyst 1, even with a small catalyst amount and with the weaker oxidant
H2O2. By increasing the cation chain length (use of [hmim][NTf2]), the product yield sharply decreases.
Although the higher viscosity of the latter IL may have an effect, further studies with ILs with cations
with different sizes must be undertaken to understand the effect of the IL size.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/8/12/636/s1,
Figure S1. Example of GC chromatogram; Figure S2. Calibration line for cyclohexanone; Table S1. Species areas.
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