



# **Compositing Two-Dimensional Materials with TiO<sub>2</sub> for Photocatalysis**

Yu Ren<sup>1,2</sup>, Yuze Dong<sup>1,2</sup>, Yaqing Feng<sup>1,2,\*</sup> and Jialiang Xu<sup>1,3,\*</sup>

- <sup>1</sup> School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; renyu9505@163.com (Y.R.); yuze441295@tju.edu.cn (Y.D.)
- <sup>2</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- <sup>3</sup> School of Materials Science and Engineering, Nankai University, Tongyan Road 38, Tianjin 300350, China
- \* Correspondence: yqfeng@tju.edu.cn (Y.F.); jialiang.xu@nankai.edu.cn (J.X.)

Received: 12 November 2018; Accepted: 23 November 2018; Published: 28 November 2018



**Abstract:** Energy shortage and environmental pollution problems boost in recent years. Photocatalytic technology is one of the most effective ways to produce clean energy—hydrogen and degrade pollutants under moderate conditions and thus attracts considerable attentions. TiO<sub>2</sub> is considered one of the best photocatalysts because of its well-behaved photo-corrosion resistance and catalytic activity. However, the traditional TiO<sub>2</sub> photocatalyst suffers from limitations of ineffective use of sunlight and rapid carrier recombination rate, which severely suppress its applications in photocatalysis. Surface modification and hybridization of TiO<sub>2</sub> has been developed as an effective method to improve its photocatalysis activity. Due to superior physical and chemical properties such as high surface area, suitable bandgap, structural stability and high charge mobility, two-dimensional (2D) material is an ideal modifier composited with TiO<sub>2</sub> to achieve enhanced photocatalysis process. In this review, we summarized the preparation methods of 2D material/TiO<sub>2</sub> hybrid and drilled down into the role of 2D materials in photocatalysis activities.

Keywords: photocatalysis; 2D materials; TiO<sub>2</sub>; composite

## 1. Introduction

With the massive consumption of fossil energy and serious environmental pollution problems, there is an urgent need for clean energy and more efficient ways to decompose pollutants. Photocatalysis is an advanced technology that uses photon energy to convert chemical reactions occurring under harsh conditions into reactions under mild conditions by appropriate photocatalyst, and thus emerged as recognizable fields such as hydrogen generation [1–4], sewage treatment [5–7], harmful gas removal [8,9], organic pollutant degradation [10–13] and carbon dioxide reduction [14–16].

Since the first report that  $TiO_2$  electrode was applied for hydrogen production by Fujishima and Honda in 1972 [17],  $TiO_2$  has attracted numerous attention in photocatalysis as a typical n-type semiconductor [18–21]. Being non-toxic, inexpensive, highly stable [22–24],  $TiO_2$  is widely investigated in photocatalytic fields. Hoffman proposed the following general mechanism (Table 1) for heterogeneous photocatalysis on  $TiO_2$  [25].

| Primary Process              |                                                                                                                                                                                                                    | Characteristic Times                                                                            |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| charge-carrier generation    | $TiO_2 + hv \rightarrow {h_{VB}}^+ + {e_{cb}}^-$                                                                                                                                                                   | (fs)                                                                                            |
| charge-carrier trapping      | $\begin{array}{l} {h_{VB}}^{+}+>\!\!Ti^{IV}OH\rightarrow\{>\!\!Ti^{IV}OH\}\bullet^{+}\\ {e_{cb}}^{-}+>\!\!Ti^{IV}OH\rightarrow\{>\!\!Ti^{III}OH\}\\ {e_{cb}}^{-}+>\!\!Ti^{IV}\rightarrow>\!\!Ti^{III} \end{array}$ | fast (10 ns)<br>shallow trap (100 ps) (dynamic equilibrium)<br>deep trap (10 ns) (irreversible) |
| charge-carrier recombination | $\begin{array}{l} {e_{cb}}^- + \{ > {\rm Ti}^{\rm IV} OH \} \bullet^+ \rightarrow > {\rm Ti}^{\rm IV} OH \\ {h_{VB}}^+ + \{ > {\rm Ti}^{\rm III} OH \} \rightarrow {\rm Ti}^{\rm IV} OH \end{array}$               | slow (100 ns)<br>fast (10 ns)                                                                   |
| interfacial charge transfer  | $\{>Ti^{IV}OH\}\bullet^+ + Red \rightarrow >Ti^{IV}OH + Red\bullet^+$                                                                                                                                              | slow (100 ns)                                                                                   |

 $e_{tr}^{-} + Ox \rightarrow Ti^{IV}OH + Ox \bullet^{-}$ 

Table 1. Mechanism for heterogeneous photocatalysis on TiO<sub>2</sub>.

Where >TiOH represents the primary hydrated surface functionality of TiO<sub>2</sub>,  $e_{cb}^{-}$  is a conduction band (CB) electron, etr<sup>-</sup> is a trapped conduction band electron,  $h_{VB}^{+}$  is a valence band (VB) hole, Red is an electron donor, Ox is an electron acceptor,  $\{>Ti^{IV}OH\}\bullet^+$  is the surface-trapped VB hole (i.e., surface-bound hydroxyl radical), and  $\{>Ti^{III}OH\}$  is the surface-trapped CB electron. Upon light irradiation, electrons transfer from VB to CB of TiO<sub>2</sub>, while both electrons and holes can be trapped by primary hydrated surface functionality of TiO<sub>2</sub>, achieving the separation of photo induced electrons and holes. At the same time, the recombination between electrons and holes exits, which competes with charge-carrier trapping process. The competition has thus a negative effect on later interfacial charge transfer. Deliberating on TiO<sub>2</sub> photocatalysis process, some drawbacks exit as following: (1) The wide bandgap of TiO<sub>2</sub> (3.2 eV) means that photons with adequate energy can only excite electrons in the VB to the CB of TiO<sub>2</sub>, which limits its effective use of sunlight (UV region,  $\lambda \leq 387$  nm); (2) The recombination of excited electrons and holes is inevitable while time for carrier recombination is much shorter than that for charge transfer. Therefore, the effective function of photoexcitation is suppressed greatly.

Considering the above two factors, the improvement of the photocatalytic efficiency of  $TiO_2$  can be obtained through two aspects: the improvement of solar light utilization efficiency and the suppression of recombination of electron and hole pairs. In this text, surface modification and hybridization of TiO<sub>2</sub> such as noble metal loading [26-29] and semiconductor heterojunction [30-32] are effective methods to enhance the photocatalytic performance. The Schottky barrier formed at the interface between the noble metal material and TiO<sub>2</sub> can effectively promote the separation of photogenerated carriers. Similarly, the heterojunction structure can form a matching energy level at the semiconductor interface to suppress the recombination of photogenerated carriers. However, the opportunities of improvements in photocatalysis performances offered by these attempts are narrow, and thus limited their commercial and efficient application. In the past decade, two-dimensional (2D) materials have attracted more and more attention because of the flexible preparation methods, low price and superior physical and chemical properties. In particular, their high surface area, suitable bandgap, structural stability and high charge mobility [33–36] endow these 2D materials with remarkable performances for applications in photocatalysis [37-41]. When combined with TiO<sub>2</sub>, not only the utilization of sunlight is improved, but also the matching between energy levels is formed to inhibit the recombination, and the large specific surface area provides support and active sites for the reaction. In this review, we summarize the recent advances of 2D material-TiO<sub>2</sub> composites, including synthesis methods, properties, and catalytic behaviors. Furthermore, the photocatalytic mechanism is deliberated in detail to elaborate the role of 2D materials in the photocatalytic processes.

## 2. 2D-Material Modified TiO<sub>2</sub>

Based on the mobile dimension of electronics, it can be divided into zero-dimensional (0D) materials, one-dimensional (1D) materials, two-dimensional (2D) material and three-dimensional (3D) materials [36], while 2D materials represent an emerging class of materials that possess sheet-like structures with the thickness of only single or a few atom layers [42]. Compared with the bulk structures, the ultrathin 2D structure exhibits superior properties such as modification of energy level

very slow (ms)

and larger adjustable surface area. The excellent properties of 2D materials make them widely used in many aspects [43–45]. When composited with  $TiO_2$ , the synergistic effect of the two can significantly improve the photocatalytic activity and thus 2D materials is ideal for  $TiO_2$  photocatalysis.

#### 2.1. Graphene Modified TiO<sub>2</sub>

Since the first isolation by Geim and Novoselov in 2004, graphene has attracted significant attention [46–49]. Graphene is a 2D honeycomb construction consisting of carbon atoms. The thickness of graphene is only 0.335 nm, which is the thickness of a carbon atom layer. In the sp<sup>2</sup> hybrid distribution form, each carbon atom contributes an unbonded  $\pi$  electron, which can delocalize freely throughout the carbon atom 'net' to form an extended  $\pi$  bond. This construction endows graphene excellent properties such as high charge mobility (200,000 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>), high thermal conductivity (5000 W m<sup>-1</sup> K<sup>-1</sup>), and large surface area [35], which is ideal for applications in sensors [50], energy conversion and storage [37], polymer composites [51], drug delivery systems [52], and environmental science [53]. When composited with TiO<sub>2</sub>, graphene can accept photoinduced electrons from TiO<sub>2</sub> and thus greatly enhances the efficiency of carriers' separation [54–58].

#### 2.1.1. The Synthesis of Graphene/TiO<sub>2</sub> Composites

Graphite oxide and graphene oxide (GO) intermediates are widely used in the process of combining graphene with other materials [59]. The most widely used technique is chemical reduction of GO as shown in Figure 1, which is usually conducted by Hummers' method [60]. Graphite is added to a strongly oxidizing solution such as  $HNO_3$ ,  $KMnO_4$ , and  $H_2SO_4$  to prepare graphite oxide and the oxygen-containing groups are introduced into the surface or edge of the graphite during the process. The sheets of graphite oxide were exfoliated to obtain GO. The presence of oxygen-containing groups allows GO to provide more surface modification active sites and larger specific surface areas for synthetic graphene-based composites. GO can be converted to reduced graphene oxide (RGO) by chemical reduction to remove these oxygen-containing group. During this process, the number of oxygen-containing groups on the GO decreases drastically, and the conjugated structure of the graphene base will be effectively restored. The presence of oxygen functionalities in GO allows interactions with the cations and provides reactive sites for the nucleation and growth of nanoparticles, which results in the rapid growth of various graphene-based composites. The preparation methods for graphene/TiO<sub>2</sub> composites are divided into ex-situ hybridization and in-situ growth, the difference between which is the process of TiO<sub>2</sub> formation.

- *Ex-situ hybridization*. The common procedure for ex-situ hybridization is to mix GO and modified TiO<sub>2</sub> with physical process such as ultrasound sonication and heat treatments. Rahmatollah et al. [62] reported a facile one-step solvothermal method to synthesize the TiO<sub>2</sub>-graphene composite sheets by dissolving different mass ratios of GO and TiO<sub>2</sub> nanoparticles in anhydrous ethanol solution. Ultrasound irradiation was used to disperse the GO. Finally, a six-fold enhancement was observed in the photocurrent response compared to the improved photoelectrochemical performance (3%) with the pure TiO<sub>2</sub>. Florina et al. [63] prepared graphene/TiO<sub>2</sub>-Ag based composites as electrode materials. Similarly, GO suspensions were mixed with prepared TiO<sub>2</sub>-Ag nanoparticles in NaOH solution. The suspensions were sonicated, dried and subjected to thermal treatment. However, the control of modification between the TiO<sub>2</sub> and graphene may lead to a decreased interaction between these two parts [64].
- In-situ growth. The in-situ growth method is widely used to prepare graphene-based composite
  materials, and the method can effectively avoid clustering of nanoparticles on the surface of
  graphene. According to different preparation process, it might be divided into reduction method,
  electrochemical deposition method, hydrothermal method and sol-gel method.
  - *Reduction method*. Usually, in a reduction method, GO and TiO<sub>2</sub> metal salts are mixed as precursors. By controlling the hydrolysis of the precursor, TiO<sub>2</sub> crystal nucleus grows on GO,

while GO is reduced to obtain graphene-based  $TiO_2$  composite materials [65]. In addition to the chemical reduction method, other commonly used reduction methods are photocatalytic reduction [66] and microwave-assisted chemical reduction [67].

- *Electrochemical deposition method.* In an electrochemical deposition method, graphene or reduced graphene is used as a working electrode in a dielectric solution containing a metal precursor or its compound [68].
- Hydrothermal/solvothermal method. A hydrothermal/solvothermal method is commonly used for preparing inorganic nanomaterials. It is generally carried out in a dispersion of GO. Under high temperature and high pressure, GO and titanium salt precursor are reduced simultaneously [69,70].
- *Sol-gel method.* The sol-gel method takes titanium alkoxide or titanium chloride as precursors, and it can be uniformly bonded with oxygen group on graphene, polycondensed to form a gel. Then TiO<sub>2</sub> nanoparticles are formed through calcining [71,72]. The sol-gel method can obtain loaded nanoparticles with higher uniformity of dispersion.



**Figure 1.** Preparation of graphene by chemical reduction of graphene oxide synthesized by Hummers' method. Reprinted with permission from [61]. Copyright 2011, Wiley-VCH.

2.1.2. The Role of Graphene in TiO<sub>2</sub> Photocatalysis

Due to the large bandgap, the photocatalysis process of pure  $TiO_2$  can only be activated under UV light. Thus, the hybridization of graphene and  $TiO_2$  is essential to ensure a broad light stimulation process. In graphene/ $TiO_2$  system, electrons flow from  $TiO_2$  to graphene through interface because of the higher Fermi level of  $TiO_2$ . Then graphene gains excess negative charges while  $TiO_2$  has positive charges, leading to a space charge layer at the interface which is regarded as Schottky junction. The Schottky junction can serve as an electron trap to efficiently capture the photoinduced electrons [73] and thus enhance the photocatalysis activity. Meanwhile, the Schottky barrier also acts as the main obstruction for the electron transport from the graphene to  $TiO_2$ . Under visible light, electrons on Fermi level of graphene are irradiated and the Schottky barrier has to overcome to ensure the injection of electrons to conduct band of  $TiO_2$ . In the UV light irradiation process, graphene plays a role as electron acceptor and thus promotes the separation of electron-hole pairs [54] (Figure 2).

Different interface interactions have been extensively studied [55,56]. Compared with 0D-2D Degussa P25 (TiO<sub>2</sub>)/graphene and 1D-2D TiO<sub>2</sub> nanotube/graphene composites, the 2D-2D TiO<sub>2</sub> nanosheet/graphene hybrid demonstrates higher photocatalytic activity toward the degradation of rhodamine B and 2,4-dichlorophenol under the UV irradiation [56]. The intimate and uniform contact between the two sheets-like nanomaterials allowed for the rapid injection of photogenerated electrons from the excited TiO<sub>2</sub> into graphene across the 2D-2D interface while achieving effective electron-hole

pair separation and promoted radical's generation. In another example of RGO–TiO<sub>2</sub> hybrid, by having a narrower bandgap, the photo-response range of RGO–TiO<sub>2</sub> nanocomposites clearly extended from UV (~390 nm) to visible light (~480 nm), which offered a better utilization of visible light [55]. Raman spectra and other characterization revealed that the narrow bandgap was attributed to the Ti–O–C bond between the two components, and thus caught an intimate interaction between TiO<sub>2</sub> nanoparticles and RGO sheets. What's more, the up-conversion photoluminescence (UCPL) effect of RGO assists the light absorption, and enabled the efficient utilization of both UV light and visible light (Figure 3). It is worth to note that the surface area of RGO– $TiO_2$  was smaller than that of pure  $TiO_2$  (P25), which revealed that the enhanced photocatalytic activity of RGO-TiO<sub>2</sub> was relevant to the improved conductivity and bandgap structure other than their surface area. RGO nanosheet can play a role in both charge transfer and active sites after doping with heteroatoms.  $TiO_2$ /nitrogen (N) doped reduced graphene oxide (TiO<sub>2</sub>/NRGO) nanocomposites was applied to photoreduction of  $CO_2$  with H<sub>2</sub>O vapor in the gas-phase under the irradiation of a Xe lamp (the wavelength range of 250–400 nm) [57]. Compared with TiO<sub>2</sub>, TiO<sub>2</sub>/NRGO composites exhibited a narrower bandgap due to chemical bonding between TiO<sub>2</sub> and the specific sites of N-doped graphene. In the photoreduction of carbon dioxide, the function of nitrogen atoms varied in different chemical environments. The pyridinic-N and pyrrolic-N worked as active sites for CO<sub>2</sub> capture and activation while quaternary-N worked as an electron-mobility activation region for the effective transfer of photogenerated electrons from the CB of the  $TiO_2$  [57] (Figure 4). The results reveal that the doped atoms can act as basic sites for anchoring target molecular, adjusting the electronic properties and local surface reactivity of graphene.



**Figure 2.** Photocatalytic mechanisms of graphene-TiO<sub>2</sub> composite under (**a**) visible light (**b**) UV light. Reprinted with permission from [54]. Copyright 2013, Elsevier.



**Figure 3.** (a) Schematic of up-conversion photoluminescence (UCPL) mechanism for reduced graphene oxide (RGO)–TiO<sub>2</sub> nanocomposite under visible light ( $h\nu \sim 2.6 \text{ eV}$ ) irradiation; (**b**,**c**) Schematics of proposed mechanism of Rh. B photodegradation. Reprinted with permission from [55]. Copyright 2017, Springer.



**Figure 4.** Reaction mechanisms for photoreduction of  $CO_2$  with  $H_2O$  over  $TiO_2/NRGO$ -300 samples. Reprinted with permission from [57]. Copyright 2017, Elsevier. NRGO: nitrogen doped reduced graphene oxide.

Except for dimension factor and bonding interaction between graphene and TiO<sub>2</sub>, a linkage is introduced to graphene/TiO<sub>2</sub> system to achieve better interfacial contact as well. A N-doping Graphene-TiO<sub>2</sub> composite nano-capsule for gaseous HCHO degradation was reported [58]. It indicated that wrapping with dopamine on the surface of TiO<sub>2</sub> enhanced interfacial contact between TiO<sub>2</sub> and melamine-doped graphene (MG) sheets, thus promoting the separation and mobility of photoinduced electrons and holes in TiO<sub>2</sub>@MG-D. The dopamine acted as bridge between TiO<sub>2</sub> and MG, creating numerous migration channels for charges and restraining the recombination of electrons and holes (Figure 5). The introduction of linkage can effectively improve the weak interfacial contact and overcome the long distance of electron transport between the graphene and TiO<sub>2</sub>, leading to raised separation and mobility of photoinduced electrons and holes and thus higher photocatalytic activity.



**Figure 5.** Schematic illustrations for dopamine bridged Melamine-Graphene/TiO<sub>2</sub> nanocapsule and photocatalytic degradation process of HCHO. Reprinted with permission from [58]. Copyright 2018, Elsevier.

Despite of electron accepter and electron storage, graphene can also act as a transport bridge between photocatalysts. For example, in the 2D ternary BiVO<sub>4</sub>/graphene oxide (GO)/TiO<sub>2</sub> system, both the BiVO<sub>4</sub> and the TiO<sub>2</sub> were connected to GO forming a p-n heterogeneous structure. The CB of BiVO<sub>4</sub> was more negative than that of GO and the CB of GO was more negative than that of TiO<sub>2</sub>; thus, the electrons generated from the CB of BiVO<sub>4</sub> can transfer to the GO and then the electron further moved to the conduction band of TiO<sub>2</sub> (Figure 6). Therefore, the GO can enhance the effective separation of the photo-generated electron-hole pairs due to its superior electrical conductivity. Meanwhile, the large surface area of the GO is also beneficial for dye attachment [74].



**Figure 6.** Photodegradation mechanism of BiVO<sub>4</sub>/TiO<sub>2</sub>/GO photocatalyst. Reprinted with permission from [74]. Copyright 2017, Elsevier.

#### 2.2. Graphdiyne Modified TiO<sub>2</sub>

Graphdiyne (GD) is a new carbon allotrope in which the benzene rings are conjugated by 1,3-diyne bonds to form a 2D planar network structure and features both sp and sp<sup>2</sup> carbon atoms. Since the successful synthesis by Li et al. [75], GD has evoked significant interest in various scientific fields because of unique mechanical, chemical and electrical properties [38,42,76–80]. GD shows potential for photocatalysis with its large surface area as well as high charge mobility. GD features an intrinsic bandgap and exhibits semiconducting property with a measured conductivity of  $2.516 \times 10^{-4} \text{ S} \cdot \text{m}^{-1}$ and was predicted to be the most stable structure among various diacetylenic non-natural carbon allotropes [81]. It also provides highly active sites for catalysis. Furthermore, GD with diacetylene linkage can be chemically bonded with TiO<sub>2</sub> [82–85]. Therefore, the TiO<sub>2</sub>-graphdiyne composites can greatly improve the photocatalytic activity, and thus their application in photocatalysis has been explored recently [83,84,86].

#### 2.2.1. The Synthesis of GD/TiO<sub>2</sub> Composites

The general preparation of GD film is through a coupling reaction in which hexaethynylbenzene (HEB) acts as precursor and copper foil serves as catalysis. Meanwhile, the copper foil provides a large planar substrate for the directional polymerization growth of the GD film (Figure 7). Despite of film, GD with different morphologies such as nanotube arrays, nanowires, nanowalls and nanosheets have been also prepared for diverse applications [87,88].



Figure 7. Preparation of graphdiyne (GD) film.

Ex-situ hydrothermal method is commonly used in preparation of GD/TiO<sub>2</sub> composites [83,84,86]. In general, the GD and TiO<sub>2</sub> are prepared separately. Then the pre-prepared GD and TiO<sub>2</sub> are mixed in  $H_2O/CH_3OH$  solvent. After stirring to obtain a homogeneous suspension, the suspension is placed in Teflon sealed autoclave and heated to combine the TiO<sub>2</sub> and GD. Being rinsed and dried, the GD/TiO<sub>2</sub> composites are obtained.

## 2.2.2. The Role of GD in TiO<sub>2</sub> Photocatalysis

Wang et al. [84] were the first to combine GD with  $TiO_2$  for the enhancement of  $TiO_2$  photocatalysis. The resultant GD-P25 composites exhibited higher visible light photocatalytic activity than those of the bare P25, P25-CNT (titania-carbon nanotube), and P25-GR (graphene) materials. By changing the weight percent of GD in the hybrid, the photocatalytic activity of P25-GD can be adjusted. It was speculated that the formation of chemical bonds between P25 and GD can effectively decrease the bandgap of P25 and extended its absorbable light range [84]. Namely, electrons in VB of TiO<sub>2</sub> can easily migrate to impurity band which is attributed to the insertion of carbon p-orbitals into the TiO<sub>2</sub> bandgap, and then transfer to CB of TiO<sub>2</sub> thus enhancing the photo-response activity. In order to further explore the role of GD, Yang et al. [83] investigated the chemical structures and electronic properties of TiO<sub>2</sub>-GD and TiO<sub>2</sub>-GR composites employing first-principles density functional theory (DFT) calculations. The results revealed that for the TiO<sub>2</sub> (001)-GR composite, O and atop C atoms could form C–O  $\sigma$  bond, which acted as a charge transfer bridge at the interface between  $\text{TiO}_2$ and GR. Besides the C–O  $\sigma$  bond, another Ti-C  $\pi$  bond is also formed in TiO<sub>2</sub> (001)-GD composite, which makes GD combine with TiO<sub>2</sub> tightly and therefore enhances the charge transfer. In addition, calculated Mulliken charge for the surface of TiO<sub>2</sub> (001)-GD and TiO<sub>2</sub> (001)-GR suggested a stronger electrons' capture ability of former (Figure 8). The calculated results were in accordance with theoretical prediction that  $TiO_2$  (001)-GD composites showed the highest photocatalysis performance among 2D carbon-based TiO<sub>2</sub> composites, confirming that GD could become a promising competitor in the field of photocatalysis. After that, Dong et al. prepared GD-hybridized nitrogen-doped TiO<sub>2</sub> nanosheets with exposed (001) facets (GD-NTNS) [86]. The doped N and incorporated GD efficiently narrowed the bandgap compared with pure  $TiO_2$  and widened response range towards light from UV light to 420 nm visible light. The activity of the GD-NTNS photocatalyst presented the most superior performance compared with bare TiO<sub>2</sub> nanosheets (TNS) and nitrogen-doped TiO<sub>2</sub> nanosheets (NTNS) and GR-NTNS.



**Figure 8.** Plots of electron density difference at the composites interfaces: (a)  $TiO_2$  (001)-GD; (b)  $TiO_2$  (001)-GR; (c) Mulliken charge of GD or GR (graphene) surface in the composites. Reprinted with permission from [83]. Copyright 2013, American Chemical Society.

The mechanisms of photocatalysis enhancement by introducing GD remain to be understood. In general, with a lower Fermi level than the conduction band minimum of  $TiO_2$ , GD can be regarded as an electron pool which accept electrons excited from  $TiO_2$  [84,89,90] (Figure 9). As a result, it prompts the charge carriers' separation and prevents electron-hole recombination. Moreover, GD can generate an impurity band and thus broaden the visible light absorption in  $TiO_2$ -GD composites [91–93].



Figure 9. Schematic illustration for the possible mechanism of the visible light-driven photocatalytic degradation for the GD-NTNS composites. Reprinted with permission from [86]. Copyright 2018, Springer.

## 2.3. $C_3N_4$ Modified TiO<sub>2</sub>

Graphitic carbon nitride (g- $C_3N_4$ ) is a 2D polymer material which shows broad application prospects in many fields, given the simple synthesis, rich source, along with unique electronic structure, good thermal stability and chemical stability. Its graphene-like structure is composed of triazine ( $C_3N_3$ ) or tri-s-striazine ( $C_6N_7$ ) allotropes units (Figure 10). The tri-s-striazine unit structure is more stable and thus draws in extensive studies [34]. Since the first report of g- $C_3N_4$  for water decomposition, g- $C_3N_4$ has attracted wide attention in photocatalyst [40]. The bandgap of g- $C_3N_4$  (2.6–2.7 eV) is moderate and the substantial nitrogen sites and ordered units structure endue g- $C_3N_4$  an ideal material to composite with TiO<sub>2</sub>.



Figure 10. Triazine (a) and tri-s-striazine (b) allotropes units of  $g-C_3N_4$ ; (c) The synthesis of  $g-C_3N_4$ .

2.3.1. The Synthesis of  $g-C_3N_4/TiO_2$  Composites

In general, the synthesis of  $g-C_3N_4/\text{TiO}_2$  composites can be also divided into ex-situ method and in-situ method.

- In the ex-situ way, both g-C<sub>3</sub>N<sub>4</sub> and TiO<sub>2</sub> materials are pre-prepared, which can be integrated through physical process such as ball milling [94], solvent evaporation [95,96], etc. Though physical process is easy to operate under moderate conditions, some flaws also exist such as ununiformly dispersing and unstable structure.
- The in-situ method uses one of the materials as a substrate and then the other material grows on the surface of the substrate. For  $g-C_3N_4/\text{TiO}_2$  composites, both materials can be regarded as substrates.

- When used as substrates, g-C<sub>3</sub>N<sub>4</sub> is pre-prepared by calcinations of precursors. Solvothermal/hydrothermal method is most common for the next step. After mixing g-C<sub>3</sub>N<sub>4</sub> and titanates in a certain solvent, the solution is well dispersed and sealed in the Teflon-lined autoclave, followed by a solvothermal/hydrothermal treatment [97–99]. Furthermore, Atomic Layer Deposition (ALD) was applied to form thin TiO<sub>2</sub> films on g-C<sub>3</sub>N<sub>4</sub> substrates. ALD involves the surface of a substrate exposed alternately to alternating precursor flow. Then the precursor molecule reacts with the surface in a self-limiting way, which guarantees that the reaction stops as all the reactive sites on the substrate reacted with the precursors. It is an effective way to control the thickness and homogeneity of deposited layer [100].
- When TiO<sub>2</sub> was used as substrates, calcination is widely used for the convenience and easy operation. In this process, the solid mixture of TiO<sub>2</sub> and pure urea or melamine or dicyandiamide powder are calcinated under fixed temperature to obtain g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> composites. Before calcination, the two components should be evenly dispersed by sonication [101], stirring [102], or grounding [103]. Recently, Tan et al. [104] reported another facile one-step way to prepare nanostructured g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> composite. As seen in Figure 11, melamine was at the bottom of the crucible while P25 was on the top of a cylinder put in the crucible. After a 4-h vapor deposition process, nanostructured g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> composite was obtained.



**Figure 11.** Vapor deposition process in the preparation of g-C3N4/TiO<sub>2</sub> composite. Reprinted with permission from [104]. Copyright 2018, Elsevier.

#### 2.3.2. The Role of $g-C_3N_4$ in Photocatalysis

With a moderate bandgap of ~2.7 eV, g-C<sub>3</sub>N<sub>4</sub> shows ability of photocatalyst under visible light, in contrast to TiO<sub>2</sub>, which owns a large bandgap of 3.2 eV (Figure 12). However, because of the rapid recombination of photogenerated electron-hole pairs, the synergistic effect between g-C<sub>3</sub>N<sub>4</sub> and TiO<sub>2</sub> plays important roles. In a photocatalyst system of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> composites, the CB electrons of g-C<sub>3</sub>N<sub>4</sub> transfer to the CB of TiO<sub>2</sub> and the VB holes of TiO<sub>2</sub> transfer to the VB of g-C<sub>3</sub>N<sub>4</sub>, which is a typical Type II system [41]. The electron/hole conduction mechanism can effectively separate electrons and holes, and thus enhances the separation efficiency and inhibit the recombination.



Figure 12. Bandgaps of TiO<sub>2</sub>, monolayer g-C<sub>3</sub>N<sub>4</sub> and bulk g-C<sub>3</sub>N<sub>4</sub>.

The structure plays a vital role in enhancing photocatalysis efficiency.  $g-C_3N_4$  nanosheets (NS)-TiO<sub>2</sub> mesocrystals (TMC) composites was prepared by in-situ process [105]. Compared with bulk  $g-C_3N_4$ /TMC composites, the H<sub>2</sub> evolution rate of  $g-C_3N_4$  (NS)/TMC was about six times higher, which was possibly due to a larger surface area of  $g-C_3N_4$  (NS)/TMC (57.4 m<sup>2</sup>g<sup>-1</sup>) than that of bulk  $g-C_3N_4$ /TMC (34.3 m<sup>2</sup>g<sup>-1</sup>). What's more, the  $g-C_3N_4$  nanosheets owned a lower surface defect density, given the surface defects normally is seen as recombination centers for photoinduced electrons and holes. However, surface area is not the unparalleled factor of promoted efficiency of photocatalyst, taking the fact that the surface area of  $g-C_3N_4$  NS (31 wt%)/TMC (57.4 m<sup>2</sup>g<sup>-1</sup>) and  $g-C_3N_4$  NS (31 wt%)/P25 (52.3 m<sup>2</sup>g<sup>-1</sup>) was nearly the same, as the H<sub>2</sub> evolution rate of  $g-C_3N_4$  (NS)/TMC was about 7 times higher. Further research indicated that the tight interface between  $g-C_3N_4$  NS and TMC facilitated the charge transfer, which is a flexible way to promote solar energy utilization of  $g-C_3N_4$ /TiO<sub>2</sub> photocatalyst.

Other structures like core-shell was lucubrated to create high photocatalytic activity towards many dyes [106]. After in-situ calcination and growth of cyanamide on the surface of TiO<sub>2</sub>, a multiple direction contact structure of TiO<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> hollow core@shell heterojunction photocatalyst (HTCN-1) was synthesized. The g- $C_3N_4$  nanosheets grew on the surface of TiO<sub>2</sub> caused closer contact between  $TiO_2$  and g-C<sub>3</sub>N<sub>4</sub> and a larger interfacial area, as confirmed by XPS analysis [106]. Compared with another core-shell type  $TiO_2@g-C_3N_4$  (C-T) with unidirectional contact structures [107], HTCN-1 possessed higher efficiency in the charge separation and enhanced charge transfer. It demonstrated that multiple direction contact resulted in a large interfacial area, which would provide sufficient channels for efficient and rapid charge transfer (Figure 13) [106]. In another core-shell structure of  $g-C_3N_4/TiO_2$  hybrid, Ag was introduced as interlayers to participate in electrical conduction and bridge the gap between  $g-C_3N_4$  and  $TiO_2$ , facilitating the separation of photoexcited charge and reducing the recombination of the photogenerated electron hole (Figure 14) [108]. The surface area of the samples didn't change much upon the introduction of Ag (228.4  $m^2g^{-1}$  and 210.3  $m^2g^{-1}$ for Ag/TiO<sub>2</sub> microspheres and nonsilver containing TiO<sub>2</sub>, respectively). It was worth noting that low content of  $g-C_3N_4$  (2%) in  $g-C_3N_4/Ag/TiO_2$  microspheres had a larger surface area but lower photocatalytic activity than the g-C<sub>3</sub>N<sub>4</sub> (4%)/Ag/TiO<sub>2</sub> microsphere sample [108]. The possible reason was that high content of  $g-C_3N_4$  can generate more electron-hole pairs, leading to a higher photocatalytic activity. However, the  $g-C_3N_4$  (6%)/Ag/TiO<sub>2</sub> microsphere sample showed decreased photocatalytic activity due to reduced surface area, which limited the contact between the catalyst and pollutant and thus lowered the photocatalytic reaction. It reflects that proper surface area is needed to provide both active sites and reaction sites.

The doping of g-C<sub>3</sub>N<sub>4</sub> is another viable way to realize structure modification process. Sulfur was introduced to g-C<sub>3</sub>N<sub>4</sub> nanostructures, and their photocatalytic performance was studied for decomposition of MO dye under visible light. The degradation efficiency over g-C<sub>3</sub>N<sub>4</sub>-TiO<sub>2</sub> composites (CNT) reached 61% within 90 min, while S-C<sub>3</sub>N<sub>4</sub>-TiO<sub>2</sub> composites (SCNT) reached nearly 100% within the same period [109]. SEM image showed a more transparent and thinner layer of S-C<sub>3</sub>N<sub>4</sub> compared with g-C<sub>3</sub>N<sub>4</sub> when composited with TiO<sub>2</sub>, leading to an enhanced visible light absorption capability. On the other hand, unique bar-like structure of SCNT provided a pathway for carriers and isolate photon absorption with carriers' collection in perpendicular directions. Meanwhile, TiO<sub>2</sub> nanoparticles were more evenly dispersed on and inside S-C<sub>3</sub>N<sub>4</sub> layer and TiO<sub>2</sub> particle [109]. Calculations revealed that the modified electronic structure with elevation of CB and VB values owing to doped sulfur, contributed to a higher driving force from CB of S-C<sub>3</sub>N<sub>4</sub> to CB of TiO<sub>2</sub> and thus promoted the separation efficiency of electron-hole pairs (Figure 15). The doping of sulfur alternated both the structure and level distribution of C<sub>3</sub>N<sub>4</sub>, causing excellent separation efficiency of electron-hole pair when contacted with TiO<sub>2</sub>.



**Figure 13.** Structure of HTCN-1 (**a**) and C-T (**b**). Reprinted with permission from [106]. Copyright 2018, Elsevier.



**Figure 14.** Photocatalytic mechanism scheme of  $g-C_3N_4/Ag/TiO_2$  microspheres under visible light irradiation (>420 nm). Reprinted with permission from [108]. Copyright 2014, American Chemical Society.



**Figure 15.** Mechanism of fast charge transfer at the interface between (**a**)  $C_3N_4$ -TiO<sub>2</sub> and (**b**) S-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>. Reprinted with permission from [109]. Copyright 2017, Elsevier.

#### 2.4. MoS<sub>2</sub> Modified TiO<sub>2</sub>

2D layered transition metal chalcogenides (TMCs) nanostructures spark a research boom due to its unique physical and chemical properties compared with other 2D materials. The usual formula of TMCs is MX<sub>2</sub>, while M is transition metal and X is chalcogenide element, namely, S, Se, or Te. Because of the typical 2D structure with high surface-to-volume ratio and missing coordination at edge (Figure 16), TMCs exhibits high chemical sensitivity [36]. Considering its versatile physicochemical properties, TMCs can be applied in catalyst [41], energy storage [39], and biology [110]. Some TMCs such as WS<sub>2</sub> [111], TiS<sub>2</sub> [112] are also used in TiO<sub>2</sub> photocatalysis. Among TMCs, MoS<sub>2</sub> show extraordinary potential as semiconductors owing to its thickness dependent bandgap and natural abundance. When bulk MoS<sub>2</sub> are stripped into a single layer or several layers of nanosheets, the indirect bandgap (1.3 eV) can be converted to a direct bandgap (1.8 eV) [113] and show excellent performance in photocatalysis after compositing with TiO<sub>2</sub> [114]. Besides, its high surface-to-volume ratio makes up for the limitation of the low theoretical specific capacity of TiO<sub>2</sub>. The synergy between MoS<sub>2</sub> and TiO<sub>2</sub> endows the TiO<sub>2</sub>/MoS<sub>2</sub> composite superior performance compared to their single material.



**Figure 16.** Structure (**a**) and solution-based preparation (**b**) of 2D layered transition metal chalcogenides (TMCs) nanosheets based on top-down and bottom-up approaches. Reprinted with permission from [36]. Copyright 2018, American Chemical Society.

## 2.4.1. The Synthesis of MoS<sub>2</sub>/TiO<sub>2</sub> Composites

Similar to the synthesis methods of graphene/ $TiO_2$  composite, the synthesis of  $MoS_2/TiO_2$  composites is also divided into ex-situ methods and in-situ methods. For the in-situ method,  $TiO_2$  and  $MoS_2$  are synthesized separately, then the two are combined by various methods,

such as hydrothermal/solvothermal assembly [115,116], mechanical method [117], drop-casting [118], or sol–gel [119], which can be also applied for in-situ methods [120,121]. The ex-situ method is simple and inexpensive, but the two compounds have poor dispersion and show weak interactions. Despite the same process as ex-situ method, there are chemical vapor deposition [122] and co-reduction precipitation [123] in in-situ process. Among them, the hydrothermal method is simple, easy to operate, and has good controllability, and thus is most commonly used in the preparation of  $MoS_2/TiO_2$  composite materials. The in-situ reduction method uses one of the materials as a substrate and then coats or loads the other material. This involves the molybdenum disulfide as substrate or  $TiO_2$  as a substrate. The following paragraphs will discuss the two kinds of composites.

- *MoS*<sub>2</sub> *as substrate.* In this process, MoS<sub>2</sub> are pre-prepared as substrate for the in-situ growth of TiO<sub>2</sub>. Hydrothermal method is widely used in which tetrabutyl titanate serves as titanate source [124,125]. Recently, another approach has been developed to synthesize MoS<sub>2</sub>@TiO<sub>2</sub> composites. Ren et al. [126] reported TiO<sub>2</sub>-modified MoS<sub>2</sub> nanosheet arrays by the ALD process, coating a thin layer of TiO<sub>2</sub> on both the edge and basal planes of TiO<sub>2</sub> (Figure 17). It provides a new insight for the combination of sites at the basal planes of TiO<sub>2</sub>.
- *TiO<sub>2</sub> composite as substrate.* For coated MoS<sub>2</sub>/TiO<sub>2</sub> composites, TiO<sub>2</sub> are usually substrates. Liu et al. [127] reported a N-TiO<sub>2-x</sub>@MoS<sub>2</sub> core-shell heterostructure composite. TBT and urea were used to prepare N-doped TiO<sub>2</sub> microspheres (N-TiO<sub>2</sub>) with a smooth surface by hydrothermal method. Considering the growth of molybdenum sulfide on the TiO<sub>2</sub> substrate, specific morphology and growth sites of TiO<sub>2</sub> is needed. Sun et al. [128] took a targeted etching route to control the morphology of TiO<sub>2</sub>/MoS<sub>2</sub> nanocomposites. Hollow microspheres structured TiO<sub>2</sub>/MoS<sub>2</sub> showed a higher dye degradation activity due to a larger proportion of interface, compared to TiO<sub>2</sub>/MoS<sub>2</sub> nanocomposites of yolk-shell structures. Other structures such as nanobelts and nanotubes have also been developed [129,130]. In addition to the morphology, the formation of a specific crystal structure of TiO<sub>2</sub> as a substrate has also got attention to prepare high performance MoS<sub>2</sub>/TiO<sub>2</sub> composites [130,131]. He et al. [130] reported a few-layered 1T-MoS<sub>2</sub> coating on Si doped TiO<sub>2</sub> nanotubes (MoS<sub>2</sub>/TiO<sub>2</sub> NTs hybrids) through hydrothermal process. Because of the higher catalytic activity of 1T phase of MoS<sub>2</sub> and Si doped TiO<sub>2</sub>, MoS<sub>2</sub>/TiO<sub>2</sub> NTs hybrids nanocomposites exhibited excellent photocatalytic activity.



**Figure 17.** (**a**) Schematic illustration and (**b**) TEM image of the ALD TiO<sub>2</sub> coating on pristine MoS<sub>2</sub>. Reprinted with permission from [126]. Copyright 2017, Wiley-VCH.

#### 2.4.2. The Role of MoS<sub>2</sub> in TiO<sub>2</sub> Photocatalysis

During the photocatalysis process, electrons transfer through the interface between  $TiO_2$  and  $MoS_2$ , and therefore the contact between the two is vital for photocatalytic activity. A strategy for construction of 3D semiconductor heterojunction structure by  $TiO_2$  and 2D-structured  $MoS_2$  is proposed to achieve increase of active sites and decrease of electron-hole pair combination [127,132]. For example, a 3D flower-like N- $TiO_{2-x}@MoS_2$  was obtained by hydrothermal method. Considering that the smooth  $TiO_2$  nanosphere shows poor affinity when coated with  $MoS_2$  nanosheets,  $TiO_2$  was doped with N and

 $Ti^{3+}$ . X-ray photoelectron spectroscopy (XPS) shows the existence of electronic interactions between  $MoS_2$  and N-TiO<sub>2-x</sub> and the strong heterostructure effect between the  $MoS_2$  nanoflower and N-TiO<sub>2-x</sub> nanosphere [127]. Another study of 3D TiO<sub>2</sub>@MoS<sub>2</sub> revealed that the formation of Ti-S bonds made TiO<sub>2</sub> nanoarrays firmly grasp  $MoS_2$ , thus affording a marvelous mechanical stability for the integrated architectures [133].

Different phase of MoS<sub>2</sub> exhibits various chemical and physical properties when combined with TiO<sub>2</sub>. MoS<sub>2</sub> has two main phases, namely the metallic 1T phase and semiconducting 2H phase. As for 2H phase, the active site with catalytic activity is located at the edge of the MoS<sub>2</sub> layers and the basal surface of  $MoS_2$  is catalytically inactive [134]. Therefore, the 1T phase of  $MoS_2$  with active sites on both edge and basal planes attracts researchers' attention in recent years [118,125,131]. A typical schematic of  $MoS_2/TiO_2$  composites for photocatalytic hydrogen production is shown in Figure 18. The 1T-MoS\_2 nanosheets not only provide extra reaction sites on the basal plane, but also play a role in electron delivery. Because of the active site distributing on the edge of 2H-MoS<sub>2</sub> nanosheets, the photogenerated electron from TiO<sub>2</sub> needs a long-distance move before reacted with H<sub>2</sub>O. This leaded to a lower diffusion rate compared with 1T-MoS<sub>2</sub>/TiO<sub>2</sub> composites and thus enhanced the separation efficiency of electron-hole pairs. Therefore, the 1T-MoS<sub>2</sub>/TiO<sub>2</sub> composites exhibited excellent photocatalytic activity as the hydrogen production rate of  $1T-MoS_2/TiO_2$  was 5 and 8 times higher than those of bare  $TiO_2$  and  $1T-MoS_2/TiO_2$  [125]. In another research,  $1T-MoS_2$  coated onto  $TiO_2$  (001) composite (MST) was synthesized. DFT calculations suggested a closer distance between the interface electrons and  $MoS_2$  surface than that of  $TiO_2$  [131] (Figure 19). Therefore the photo-induced electrons can easily transfer to the conducting channel of MoS<sub>2</sub>. Furthermore, the introduction of 1T-MoS<sub>2</sub> prolonged the carrier lifetime remarkedly. All the factors led to an enhanced photocatalytic activity.

To further inhibit the recombination of electron-hole pairs, cocatalyst such as graphene is applied to  $MoS_2/TiO_2$  system [115,135,136]. Xiang et al. employed  $TiO_2/MoS_2/graphene$  composite as photocatalyst [135]. In this system, photo-inducted electrons transfer from VB to CB of TiO<sub>2</sub>. Then the electrons are further injected into the graphene sheets or MoS<sub>2</sub> nanoparticles. What is more, graphene sheets can be seen as electrons transport 'highway' through which electrons move from VB of  $TiO_2$ to  $MoS_2$  (Figure 20). The cocatalyst of  $MoS_2$  and graphene enhances the interfacial charge transfer rate, inhibits the recombination of electron-hole pairs and offers a host of active site for adsorption and reaction. Han et al. constructed 3D  $MoS_2/P25/graphene-aerogel$  networks. In addition to the above-mentioned advantages, 3D graphene porous architecture has a highly porous ultrafine nanoassembly network structure, excellent electric conductivity, and the maximization of accessible sites [115]. Recently, a 3D double-heterostructured photocatalyst was constructed by connecting a TiO<sub>2</sub>-MoS<sub>2</sub> core-shell nanosheets (NSs) on a graphite fiber (GF@MoS<sub>2</sub>-TiO<sub>2</sub>) [136]. Mechanism of photocatalytic decomposition of dyes under both visible light and UV light was discussed (Figure 21). Anatase  $TiO_2$  has a wide band gap (2.96 eV), while the band gap of  $MOS_2$  is 1.8 eV. Because of the moderate bandgap of MoS<sub>2</sub>, the electrons can be irradiated from VB to CB of MoS<sub>2</sub> and then inject into CB of TiO<sub>2</sub> or transfer to graphene through intimate double-heterojunction contact under visible light. Graphene acts as electrons accepter under both circumstance, leading to a high rate of charge separation and thus depress the charge recombination. The contact interfaces and synergy among graphene,  $TiO_2$  and  $MoS_2$  play an important role in the superior photocatalytic activities.

While the transfer of electrons are paid special attention, the role of capturing the holes are often ignored. To solve this problem, a  $TiO_2/WO_3@MoS_2$  (TWM) hybrid Z-scheme photocatalytic system was structured.  $TiO_2$  and  $WO_3$  have the appropriate energy level matching to form the Z-scheme, while the position of VB in  $WO_3$  is lower than the VB of  $TiO_2$ , and the CB of  $WO_3$  is between the CB and VB of  $TiO_2$  [137]. Under UV light irradiation, the VB electrons of all three parts are excited to corresponding CB level. The excited electrons on CB of  $TiO_2$  then transfer to CB of  $MoS_2$  for  $H_2$  evolution, meanwhile the excited electrons on CB of  $WO_3$  were inject to the VB of  $TiO_2$  (Figure 22). This procedure suppressed the recombination of photoinduced electrons and holes in  $TiO_2$ ,

and therefore the photogenerated electrons and holes can be efficiently separated, which further leads to effective photocatalytic activity [137].



**Figure 18.** Schematic illustrating charge-transfer behavior and  $H_2$  evolution active sites for (**a**) 1T-MoS<sub>2</sub>/TiO<sub>2</sub> and (**b**) 2H-MoS<sub>2</sub>/TiO<sub>2</sub>. Reprinted with permission from [125]. Copyright 2014, Springer.

![](_page_15_Figure_4.jpeg)

**Figure 19.** (a) The charge density difference, (b) electrostatic potential and differential charge density of the  $MoS_2/TiO_2(001)$  junction; (c) Planar-averaged differential electron density Dr(z) for  $MoS_2/TiO_2(001)$ ; (d) Photocatalytic mechanism for  $1T-MoS_2/TiO_2$ . Reprinted with permission from [131]. Copyright 2017, the Owner Societies.

![](_page_16_Figure_1.jpeg)

**Figure 20.** Schematic illustration of the charge transfer in TiO<sub>2</sub>/MoS<sub>2</sub>/graphene composites. Reprinted with permission from [135]. Copyright 2012, American Chemical Society.

![](_page_16_Figure_3.jpeg)

**Figure 21.** Structure (**a**) and schematic diagram of electron-hole separation mechanism upon UV (**b**) and visible light (**c**) excitation for 3D graphene@MoS<sub>2</sub>-TiO<sub>2</sub> composites. Reprinted with permission from [136]. Copyright 2017, Elsevier.

![](_page_16_Figure_5.jpeg)

**Figure 22.** (a) Schematic illustration for the growth of  $MoS_2$  nanosheets (b) Schematic diagram of the photocatalytic H<sub>2</sub> generation over the ternary  $TiO_2/WO_3@MoS_2$  heterostructure composite. Reprinted with permission from [137]. Copyright 2017, Elsevier.

## 3. Conclusions

The coupling between  $TiO_2$  and 2D material has proven to be an efficient approach to enhanced photocatalytic activity. Different methods vary the structures and surface contact of the hybrid and thus can modify the carrier separation process. The synergistic effects show that 2D material plays a vital role in photocatalysis when composited with TiO<sub>2</sub>. First, 2D material can act as electrons accepter or bridge to conduct photoinduced electrons, and therefore represses the recombination of carriers efficiently. Second, the gigantic surface of 2D material provides substantial active sites for substrate capture and reaction, not to mention rapid electrons transfer rate. Third, the 2D material can be decorated to obtain expected properties, for example, non-metal doping to adjust the energy level, specific crystal structure to short the pathway for interfacial charge transfer, and defects or introduced functional group for substrate trapping. What's more, the interfacial heterojunction can adjust energy level to broaden light response range and improve solar utilization. To further enhance the separation efficiency of electron-hole pairs, other photocatalysts are introduced to construct co-catalyst systems among which Z-scheme system can raise the hole trapping rate to some extent, and thus offers a new point to improve the separation of carriers. All factors mentioned above highlight the critical role of 2D material in photocatalyst and the 2D material/TiO<sub>2</sub> hybrid is worth to get further insight for a wider range of applications.

**Funding:** This research was funded by the National Natural Science Foundation of China (21761132007, 21773168, and 51503143), the National Key R&D Program of China (2016YFE0114900), Tianjin Natural Science Foundation (16JCQNJC05000), Innovation Foundation of Tianjin University (2016XRX-0017), and Tianjin Science and Technology Innovation Platform Program (No. 14TXGCCX00017).

Conflicts of Interest: The authors declare no conflict of interest.

## References

- Lei, J.M.; Peng, Q.X.; Luo, S.P.; Liu, Y.; Zhan, S.Z.; Ni, C.L. A nickel complex, an efficient cocatalyst for both electrochemical and photochemical driven hydrogen production from water. *Mol. Catal.* 2018, 448, 10–17. [CrossRef]
- 2. Wang, Z.; Jin, Z.; Yuan, H.; Wang, G.; Ma, B. Orderly-designed Ni<sub>2</sub>P nanoparticles on g-C<sub>3</sub>N<sub>4</sub> and UiO-66 for efficient solar water splitting. *J. Colloid Interface Sci.* **2018**, 532, 287–299. [CrossRef] [PubMed]
- 3. Vaiano, V.; Lara, M.A.; Iervolino, G.; Matarangolo, M.; Navio, J.A.; Hidalgo, M.C. Photocatalytic H<sub>2</sub> production from glycerol aqueous solutions over fluorinated Pt-TiO<sub>2</sub> with high {001} facet exposure. *J. Photochem. Photobiol. A* **2018**, *365*, 52–59. [CrossRef]
- 4. Liu, Y.L.; Yang, C.L.; Wang, M.S.; Ma, X.G.; Yi, Y.G. Te-doped perovskite NaTaO<sub>3</sub> as a promising photocatalytic material for hydrogen production from water splitting driven by visible light. *Mater. Res. Bull.* **2018**, 107, 125–131. [CrossRef]
- Cai, Q.; Hu, J. Effect of UVA/LED/TiO<sub>2</sub> photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. *Water Res.* 2018, 140, 251–260. [CrossRef] [PubMed]
- Lee, C.G.; Javed, H.; Zhang, D.; Kim, J.H.; Westerhoff, P.; Li, Q.; Alvarez, P.J.J. Porous electrospun fibers embedding TiO<sub>2</sub> for adsorption and photocatalytic degradation of water pollutants. *Environ. Sci. Technol.* 2018, 52, 4285–4293. [CrossRef] [PubMed]
- 7. Zhou, Y.; Li, W.; Wan, W.; Zhang, R.; Lin, Y. W/Mo co-doped BiVO<sub>4</sub> for photocatalytic treatment of polymer-containing wastewater in oilfield. *Superlattice Microstruct.* **2015**, *82*, 67–74. [CrossRef]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C<sub>3</sub>N<sub>4</sub>-TiO<sub>2</sub> photocatalysts for the decomposition of formaldehyde in air. *Phys. Chem. Chem. Phys.* 2013, *15*, 16883–16890. [CrossRef] [PubMed]
- 9. Abou Saoud, W.; Assadi, A.A.; Guiza, M.; Bouzaza, A.; Aboussaoud, W.; Ouederni, A.; Soutrel, I.; Wolbert, D.; Rtimi, S. Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. *Appl. Catal. B Environ.* **2017**, *213*, 53–61. [CrossRef]

- 10. Zhang, J.; Ma, Z. Ag<sub>3</sub>VO<sub>4</sub>/AgI composites for photocatalytic degradation of dyes and tetracycline hydrochloride under visible light. *Mater. Lett.* **2018**, *216*, 216–219. [CrossRef]
- Huang, C.; Chen, H.; Zhao, L.; He, X.; Li, W.; Fang, W. Biogenic hierarchical MIL-125/TiO<sub>2</sub>@SiO<sub>2</sub> derived from rice husk and enhanced photocatalytic properties for dye degradation. *Photochem. Photobiol.* 2018, 94, 512–520. [CrossRef]
- Kumar, M.; Mehta, A.; Mishra, A.; Singh, J.; Rawat, M.; Basu, S. Biosynthesis of tin oxide nanoparticles using psidium guajava leave extract for photocatalytic dye degradation under sunlight. *Mater. Lett.* 2018, 215, 121–124. [CrossRef]
- 13. Dashairya, L.; Sharma, M.; Basu, S.; Saha, P. Enhanced dye degradation using hydrothermally synthesized nanostructured Sb<sub>2</sub>S<sub>3</sub>/rGO under visible light irradiation. *J. Alloy Compd.* **2018**, 735, 234–245. [CrossRef]
- Xiao, L.; Lin, R.; Wang, J.; Cui, C.; Wang, J.; Li, Z. A novel hollow-hierarchical structured Bi<sub>2</sub>WO<sub>6</sub> with enhanced photocatalytic activity for CO<sub>2</sub> photoreduction. *J. Colloid Interface Sci.* 2018, 523, 151–158. [CrossRef] [PubMed]
- Nie, N.; Zhang, L.; Fu, J.; Cheng, B.; Yu, J. Self-assembled hierarchical direct Z-scheme g-C<sub>3</sub>N<sub>4</sub>/ZnO microspheres with enhanced photocatalytic CO<sub>2</sub>, reduction performance. *Appl. Surf. Sci.* 2018, 441, 12–22. [CrossRef]
- 16. Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. Ultrathin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO<sub>2</sub> reduction. *J. Mater. Chem. A* **2017**, *5*, 3230–3238. [CrossRef]
- 17. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* **1972**, 238, 37–38. [CrossRef] [PubMed]
- 18. Verbruggen, S.W. TiO<sub>2</sub> photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. *J. Photochem. Photobiol. C Photochem. Rev.* **2015**, *24*, 64–82. [CrossRef]
- 19. Zhang, H.; Wang, Z.; Li, R.; Guo, J.; Li, Y.; Zhu, J.; Xie, X. TiO<sub>2</sub> supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. *Chemosphere* **2017**, *185*, 351–360. [CrossRef] [PubMed]
- 20. Geltmeyer, J.; Teixido, H.; Meire, M.; Van Acker, T.; Deventer, K.; Vanhaecke, F.; Van Hulle, S.; De Buysser, K.; De Clerck, K. TiO<sub>2</sub> functionalized nanofibrous membranes for removal of organic (micro)pollutants from water. *Sep. Purif. Technol.* **2017**, *179*, 533–541. [CrossRef]
- 21. Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO<sub>2</sub> photocatalyst for removal of volatile organic compounds in gas phase—A review. *Chem. Eng. J.* **2018**, *334*, 2408–2439. [CrossRef]
- Drunka, R.; Grabis, J.; Jankovica, D.; Krumina, A.; Rasmane, D. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO<sub>2</sub> nanofibers. *IOP Conf. Sér. Mater. Sci. Eng.* 2015, 77, 012010. [CrossRef]
- 23. Dong, C.; Song, H.; Zhou, Y.; Dong, C.; Shen, B.; Yang, H.; Matsuoka, M.; Xing, M.; Zhang, J. Sulfur nanoparticles in situ growth on TiO<sub>2</sub> mesoporous single crystals with enhanced solar light photocatalytic performance. *RSC Adv.* **2016**, *6*, 77863–77869. [CrossRef]
- Wang, S.; Pan, L.; Song, J.J.; Mi, W.; Zou, J.J.; Wang, L.; Zhang, X. Titanium-defected undoped anatase TiO<sub>2</sub> with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983. [CrossRef] [PubMed]
- 25. Hoffmann, M.R.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. *Chem. Rev.* **1995**, *95*, 69–96. [CrossRef]
- 26. Ma, Y.; Li, Z. Coupling plasmonic noble metal with TiO<sub>2</sub>, for efficient photocatalytic transfer hydrogenation: M/TiO<sub>2</sub>, (M = Au and Pt) for chemoselective transformation of cinnamaldehyde to cinnamyl alcohol under visible and 365 nm UV Light. *Appl. Surf. Sci.* **2018**, 452, 279–285. [CrossRef]
- Matos, J.; Llano, B.; Montana, R.; Poon, P.S.; Hidalgo, M.C. Design of Ag/and Pt/TiO<sub>2</sub>-SiO<sub>2</sub> nanomaterials for the photocatalytic degradation of phenol under solar irradiation. *Environ. Sci. Pollut. Res. Int.* 2018, 25, 18894–18913. [CrossRef] [PubMed]
- 28. Roberto, F.; Orc, M.B.; Luisa, D.; Giuseppe, C.; Leonardo, P.; Salvatore, S. Au/TiO<sub>2</sub>-CeO<sub>2</sub> catalysts for photocatalytic water splitting and VOCs oxidation reactions. *Catalysts* **2016**, *6*, 121. [CrossRef]
- Md Saad, S.K.; Ali Umar, A.; Ali Umar, M.I.; Tomitori, M.; Abd Rahman, M.Y.; Mat Salleh, M.; Oyama, M. Two-dimensional, hierarchical Ag-doped TiO<sub>2</sub> nanocatalysts: Effect of the metal oxidation state on the photocatalytic properties. *ACS Omega* 2018, *3*, 2579–2587. [CrossRef]

- Meryam, Z.; Benoit, S.; Mounira, M.; Ramzi, B.; Yu, W.; Wu, M.; Olivier, D.; Li, Y.; Su, B. ZnO quantum dots decorated 3DOM TiO<sub>2</sub> nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. *Appl. Catal. B Environ.* 2016, 199, 187–198. [CrossRef]
- Luisa, M.P.; Sergio, M.-T.; Sónia, A.C.; Josephus, G.B.; José, L.F.; Adrián, M.T.; Silvab, J.L. Photocatalytic activity of functionalized nanodiamond-TiO<sub>2</sub> composites towards water pollutants degradation under UV/Vis irradiation. *Appl. Surf. Sci.* 2018, 458, 839–848. [CrossRef]
- Prabhu, S.; Cindrella, L.; Kwon, O.J.; Mohanraju, K. Photoelectrochemical and photocatalytic activity of TiO<sub>2</sub>-WO<sub>3</sub> heterostructures boosted by mutual interaction. *Mater. Sci. Semicond. Process.* 2018, *88*, 10–19. [CrossRef]
- 33. Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. Solution-processed two-dimensional MoS<sub>2</sub> nanosheets: Preparation, hybridization, and applications. *Angew. Chem. Int. Ed. Engl.* **2016**, *55*, 8816–8838. [CrossRef] [PubMed]
- 34. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. *J. Mater. Chem.* **2008**, *18*, 4893–4908. [CrossRef]
- 35. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. *Chem. Soc. Rev.* **2014**, *43*, 7520–7535. [CrossRef] [PubMed]
- 36. Han, J.H.; Kwak, M.; Kim, Y.; Cheon, J. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. *Chem. Rev.* **2018**, *118*, 6151–6188. [CrossRef] [PubMed]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. *Science* 2015, 347, 1246501. [CrossRef] [PubMed]
- Jin, Z.; Yuan, M.; Li, H.; Yang, H.; Zhou, Q.; Liu, H.; Lan, X.; Liu, M.; Wang, J.; Sargent, E.H.; et al. Graphdiyne: An efficient hole transporter for stable high-performance colloidal quantum dot solar cells. *Adv. Funct. Mater.* 2016, 26, 5284–5289. [CrossRef]
- 39. Muller, G.A.; Cook, J.B.; Kim, H.S.; Tolbert, S.H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. *Nano Lett.* **2015**, *15*, 1911–1917. [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. *Nat. Mater.* 2009, *8*, 76–80. [CrossRef] [PubMed]
- 41. Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of interfaces in two-dimensional photocatalyst for water splitting. *ACS Catal.* **2018**, *8*, 2253–2276. [CrossRef]
- 42. Huang, C.; Li, Y.; Wang, N.; Xue, Y.; Zuo, Z.; Liu, H.; Li, Y. Progress in research into 2D graphdiyne-based materials. *Chem. Rev.* **2018**, *118*, 7744–7803. [CrossRef]
- 43. Fiori, G.; Francesco, B.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. *Nat. Nanotechnol.* **2014**, *9*, 768–779. [CrossRef] [PubMed]
- Cao, X.; Tao, C.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenidebased nanomaterials for energy storage and conversion. *Adv. Mater.* 2016, 28, 6167–6196. [CrossRef] [PubMed]
- 45. Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. *Nat. Nanotechnol.* **2016**, *11*, 218–230. [CrossRef] [PubMed]
- 46. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. *Science* **2004**, *306*, 666–669. [CrossRef] [PubMed]
- 47. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. *Science* **2008**, *321*, 385–388. [CrossRef] [PubMed]
- 48. Tang, B.; Hu, G.; Gao, H.; Hai, L. Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. *Int. J. Heat Mass Transf.* **2015**, *85*, 420–429. [CrossRef]
- 49. Tang, B.; Guoxin, H.; Gao, H. Raman spectroscopic characterization of graphene. *Appl. Spectrosc. Rev.* **2010**, 45, 369–407. [CrossRef]
- 50. Wang, Q.; Arash, B. A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. *Comput. Mater. Sci.* 2014, *82*, 350–360. [CrossRef]
- 51. Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.-J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. *J. Ind. Eng. Chem.* **2015**, *21*, 11–25. [CrossRef]

- 52. Zhang, Q.; Wu, Z.; Li, N.; Pu, Y.; Wang, B.; Zhang, T.; Tao, J. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. *Mater. Sci. Eng. C Mater. Biol. Appl.* **2017**, *77*, 1363–1375. [CrossRef] [PubMed]
- Chabot, V.; Higgins, D.; Yu, A.; Xiao, X.; Chen, Z.; Zhang, J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. *Energy Environ. Sci.* 2014, 7, 1564–1596. [CrossRef]
- 54. Hu, G.; Tang, B. Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation. *Mater. Chem. Phys.* **2013**, *138*, 608–614. [CrossRef]
- 55. Chen, Y.; Dong, X.; Cao, Y.; Xiang, J.; Gao, H. Enhanced photocatalytic activities of low-bandgap TiO<sub>2</sub>-reduced graphene oxide nanocomposites. *J. Nanopart. Res.* **2017**, *19*. [CrossRef]
- Sun, J.; Zhang, H.; Guo, L.H.; Zhao, L. Two-dimensional interface engineering of a Titania-graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Interfaces 2013, 5, 13035–13041. [CrossRef] [PubMed]
- Lin, L.Y.; Nie, Y.; Kavadiya, S.; Soundappan, T.; Biswas, P. N-doped reduced graphene oxide promoted nano TiO<sub>2</sub> as a bifunctional adsorbent/photocatalyst for CO<sub>2</sub> photoreduction: Effect of N species. *Chem. Eng. J.* 2017, 316, 449–460. [CrossRef]
- 58. Zhu, M.; Muhammad, Y.; Hu, P.; Wang, B.; Wu, Y.; Sun, X.; Tong, Z.; Zhao, Z. Enhanced interfacial contact of dopamine bridged melamine-graphene/TiO<sub>2</sub>, nano-capsules for efficient photocatalytic degradation of gaseous formaldehyde. *Appl. Catal. B Environ.* **2018**, 232, 182–193. [CrossRef]
- 59. Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. *Chem. Soc. Rev.* 2012, 41, 782–796. [CrossRef] [PubMed]
- 60. Hummers, J.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [CrossRef]
- Bai, H.; Li, C.; Shi, G. Functional composite materials based on chemically converted graphene. *Adv. Mater.* 2011, 23, 1089–1115. [CrossRef] [PubMed]
- Rahimi, R.; Zargari, S.; Sadat Shojaei, Z. Photoelectrochemical investigation of TiO<sub>2</sub>-graphene nanocomposites. In Proceedings of the International Electronic Conference on Synthetic Organic Chemistry, Tehran, Iran, 18 November 2014; pp. 1–10.
- Pogacean, F.; Rosu, M.C.; Coros, M. Graphene/TiO<sub>2</sub>-Ag based composites used as sensitive electrode materials for amaranth electrochemical detection and degradation. *J. Electrochem. Soc.* 2018, 165, B3054–B3059. [CrossRef]
- 64. Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. *Prog. Mater Sci.* **2012**, *57*, 1061–1105. [CrossRef]
- 65. Zhang, J.; Xiong, Z.; Zhao, X.S. Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. *J. Mater. Chem.* **2011**, *21*, 3634–3640. [CrossRef]
- 66. Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. Nanocomposites of TiO<sub>2</sub> and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. *J. Phys. Chem. C* **2011**, *115*, 10694–10701. [CrossRef]
- 67. Fu, C.; Chen, T.; Qin, W.; Lu, T.; Sun, Z.; Xie, X.; Pan, L. Scalable synthesis and superior performance of TiO<sub>2</sub>-reduced graphene oxide composite anode for sodium-ion batteries. *Ionics* **2015**, *22*, 555–562. [CrossRef]
- 68. Yan, Y.; Zhang, X.; Mao, H.; Huang, Y.; Ding, Q.; Pang, X. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO<sub>2</sub> nanotube by electrochemical deposition for biomedical applications. *Appl. Surf. Sci.* **2015**, *329*, 76–82. [CrossRef]
- Anjusree, G.S.; Nair, A.S.; Nair, S.V.; Vadukumpully, S. One-pot hydrothermal synthesis of TiO<sub>2</sub>/graphene nanocomposites for enhanced visible light photocatalysis and photovoltaics. *RSC Adv.* 2013, *3*, 12933–12938. [CrossRef]
- Shi, M.; Shen, J.; Ma, H.; Li, Z.; Lu, X.; Li, N.; Ye, M. Preparation of graphene–TiO<sub>2</sub> composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. *Colloids Surf. Physicochem. Eng. Aspects* 2012, 405, 30–37. [CrossRef]
- Zhang, X.Y.; Li, H.P.; Cui, X.L.; Lin, Y. Graphene/TiO<sub>2</sub> nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. *J. Mater. Chem.* 2010, 20, 2801–2806. [CrossRef]
- Farhangi, N.; Chowdhury, R.R.; Medina-Gonzalez, Y.; Ray, M.B.; Charpentier, P.A. Visible light active Fe doped TiO<sub>2</sub>, nanowires grown on graphene using supercritical CO<sub>2</sub>. *Appl. Catal. B Environ.* 2011, 110, 25–32. [CrossRef]

- 73. Peng, R.; Liang, L.; Hood, Z.D.; Boulesbaa, A.; Puretzky, A.; Ievlev, A.V.; Come, J.; Ovchinnikova, O.S.; Wang, H.; Ma, C.; et al. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS<sub>2</sub> nanosheets as efficient photocatalysts for hydrogen evolution from water reduction. ACS Catal. 2016, 6, 6723–6729. [CrossRef]
- 74. Zhu, Z.; Han, Q.; Yu, D.; Sun, J.; Liu, B. A novel p-n heterojunction of BiVO<sub>4</sub>/TiO<sub>2</sub>/GO composite for enhanced visible-light-driven photocatalytic activity. *Mater. Lett.* **2017**, *209*, 379–383. [CrossRef]
- 75. Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. *Chem. Commun.* **2010**, *46*, 3256–3258. [CrossRef] [PubMed]
- Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. *J. Am. Chem. Soc.* 2017, 139, 3145–3152. [CrossRef] [PubMed]
- 77. Yin, X.P.; Wang, H.J.; Tang, S.F.; Lu, X.L.; Shu, M.; Si, R.; Lu, T.B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. *Angew. Chem. Int. Ed. Engl.* **2018**, *57*, 9382–9386. [CrossRef] [PubMed]
- 78. Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. *Adv. Mater.* 2017, 29. [CrossRef] [PubMed]
- He, J.; Wang, N.; Cui, Z.; Du, H.; Fu, L.; Huang, C.; Yang, Z.; Shen, X.; Yi, Y.; Tu, Z.; et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. *Nat. Commun.* 2017, *8*, 1172. [CrossRef] [PubMed]
- Wang, K.; Wang, N.; He, J.; Yang, Z.; Shen, X.; Huang, C. Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. *ACS Appl. Mater. Interfaces* 2017, 9, 40604–40613. [CrossRef] [PubMed]
- 81. Diederich, F. Carbon scaffolding-building acetylenic all-carbon and carbon-rich compounds. *Nature* **1994**, 369, 199–207. [CrossRef]
- 82. Xue, Y.; Li, Y.; Zhang, J.; Liu, Z.; Zhao, Y. 2D graphdiyne materials: Challenges and opportunities in energy field. *Sci. China Chem.* **2018**, *61*, 765–786. [CrossRef]
- 83. Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO<sub>2</sub>: From theory to experiment. *ACS Nano* **2013**, *7*, 1504–1512. [CrossRef] [PubMed]
- 84. Wang, S.; Yi, L.; Halpert, J.E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. *Small* **2012**, *8*, 265–271. [CrossRef] [PubMed]
- 85. Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Synthesis and properties of 2D carbon-graphdiyne. *Acc. Chem. Res.* 2017, *50*, 2470–2478. [CrossRef] [PubMed]
- Dong, Y.; Zhao, Y.; Chen, Y.; Feng, Y.; Zhu, M.; Ju, C.; Zhang, B.; Liu, H.; Xu, J. Graphdiyne-hybridized N-doped TiO<sub>2</sub> nanosheets for enhanced visible light photocatalytic activity. *J. Mater. Sci.* 2018, *53*, 8921–8932. [CrossRef]
- 87. Li, G.; Li, Y.; Qian, X.; Liu, H.; Lin, H.; Chen, N.; Li, Y. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. *J. Phys. Chem. C* **2011**, *115*, 2611–2615. [CrossRef]
- Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. *J. Am. Chem. Soc.* 2015, 137, 7596–7599. [CrossRef] [PubMed]
- 89. Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: From theoretical predictions to practical construction. *Chem. Soc. Rev.* **2014**, *43*, 2572–2586. [CrossRef] [PubMed]
- 90. Thangavel, S.; Krishnamoorthy, K.; Krishnaswamy, V.; Raju, N.; Kim, S.J.; Venugopal, G. Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material. *J. Phys. Chem. C* 2015, *119*, 22057–22065. [CrossRef]
- 91. Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. *ACS Nano* **2011**, *5*, 2593–2600. [CrossRef] [PubMed]
- 92. Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Li, Y.; Mao, L. Graphdiyne oxides as excellent substrate for electroless deposition of pd clusters with high catalytic activity. *J. Am. Chem. Soc.* 2015, 137, 5260–5263. [CrossRef] [PubMed]
- Zhang, X.; Zhu, M.; Chen, P.; Li, Y.; Liu, H.; Li, Y.; Liu, M. Pristine graphdyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. *Phys. Chem. Chem. Phys.* 2015, *17*, 1217–1225. [CrossRef] [PubMed]

- Zhou, J.; Zhang, M.; Zhu, Y. Photocatalytic enhancement of hybrid C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> prepared via ball milling method. *Phys. Chem. Chem. Phys.* 2015, 17, 3647–3652. [CrossRef] [PubMed]
- 95. Gu, L.; Wang, J.; Zou, Z.; Han, X. Graphitic-C<sub>3</sub>N<sub>4</sub>-hybridized TiO<sub>2</sub> nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity. *J. Hazard. Mater.* 2014, 268, 216–223. [CrossRef] [PubMed]
- 96. Li, H.; Gao, Y.; Wu, X.; Lee, P.H.; Shih, K. Fabrication of heterostructured g-C<sub>3</sub>N<sub>4</sub>/Ag-TiO<sub>2</sub> hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO<sub>2</sub> under simulated sunlight irradiation. *Appl. Surf. Sci.* **2017**, *402*, 198–207. [CrossRef]
- 97. Li, K.; Huang, Z.; Zeng, X.; Huang, B.; Gao, S.; Lu, J. Synergetic effect of Ti<sup>3+</sup> and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions. *ACS Appl. Mater. Interfaces* **2017**, *9*, 11577–11586. [CrossRef] [PubMed]
- Zhang, C.; Zhou, Y.; Bao, J.; Fang, J.; Zhao, S.; Zhang, Y.; Sheng, X.; Chen, W. Structure regulation of ZnS@g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> nanospheres for efficient photocatalytic H<sub>2</sub> production under visible-light irradiation. *Chem. Eng. J.* 2018, 346, 226–237. [CrossRef]
- 99. Song, J.; Wang, X.; Ma, J.; Wang, X.; Wang, J.; Xia, S.; Zhao, J. Removal of microcystis aeruginosa and microcystin-LR using a graphitic-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> floating photocatalyst under visible light irradiation. *Chem. Eng. J.* **2018**, *348*, 380–388. [CrossRef]
- 100. Ricci, P.C.; Laidani, N.; Chiriu, D.; Salis, M.; Carbonaro, C.M.; Corpino, R. ALD growth of metal oxide on carbon nitride polymorphs. *Appl. Surf. Sci.* **2018**, *456*, 83–94. [CrossRef]
- 101. Ren, B.; Wang, T.; Qu, G.; Deng, F.; Liang, D.; Yang, W.; Liu, M. In situ synthesis of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> heterojunction nanocomposites as a highly active photocatalyst for the degradation of orange ii under visible light irradiation. *Environ. Sci. Pollut. Res.* **2018**, *25*, 19122–19133. [CrossRef] [PubMed]
- Wang, X.; Wang, F.; Bo, C.; Cheng, K.; Wang, J.; Zhang, J.; Song, H. Promotion of phenol photodecomposition and the corresponding decomposition mechanism over g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> nanocomposites. *Appl. Surf. Sci.* 2018, 453, 320–329. [CrossRef]
- 103. Wu, D.; Li, J.; Guan, J.; Liu, C.; Zhao, X.; Zhu, Z.; Ma, C.; Huo, P.; Li, C.; Yan, Y. Improved photoelectric performance via fabricated heterojunction g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>/HNTS loaded photocatalysts for photodegradation of ciprofloxacin. *J. Ind. Eng. Chem.* **2018**, *64*, 206–218. [CrossRef]
- 104. Tan, Y.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z. One-step synthesis of nanostructured g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> composite for highly enhanced visible-light photocatalytic H<sub>2</sub> evolution. *Appl. Catal. B Environ.* 2018, 230, 260–268. [CrossRef]
- Elbanna, O.; Fujitsuka, M.; Majima, T. g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> mesocrystals composite for H<sub>2</sub> evolution under visible-light irradiation and its charge carrier dynamics. *ACS Appl. Mater. Interfaces* 2017, *9*, 34844–34854. [CrossRef] [PubMed]
- 106. Guo, N.; Zeng, Y.; Li, H.; Xu, X.; Yu, H.; Han, X. Novel mesoporous TiO<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub> hollow core@shell heterojunction with enhanced photocatalytic activity for water treatment and H<sub>2</sub> production under simulated sunlight. *J. Hazard. Mater.* **2018**, *353*, 80–88. [CrossRef] [PubMed]
- 107. Jiang, Y.; Li, F.; Liu, Y.; Hong, Y.; Liu, P.; Ni, L. Construction of TiO<sub>2</sub> hollow nanosphere/g-C<sub>3</sub>N<sub>4</sub> composites with superior visible-light photocatalytic activity and mechanism insight. *J. Ind. Eng. Chem.* 2016, 41, 130–140. [CrossRef]
- 108. Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of heterostructured g-C<sub>3</sub>N<sub>4</sub>/Ag-TiO<sub>2</sub> microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405–14414. [CrossRef] [PubMed]
- 109. Zhao, Y.; Xu, S.; Sun, X.; Xu, X.; Gao, B. Unique bar-like sulfur-doped g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study. *Appl. Surf. Sci.* 2018, 436, 873–881. [CrossRef]
- 110. Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; et al. Pegylated WS<sub>2</sub> nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. *Adv. Mater.* **2014**, *26*, 1886–1893. [CrossRef] [PubMed]
- 111. Zheng, L.; Xiao, X.; Li, Y.; Zhang, W. Enhanced photocatalytic activity of TiO<sub>2</sub> nanoparticles using WS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrid as co-catalyst. *Trans. Nonferrous Met. Soc. China* **2017**, *27*, 1117–1126. [CrossRef]
- 112. He, H.Y. Solvothermal synthesis and photocatalytic activity of s-doped TiO<sub>2</sub> and TiS<sub>2</sub> powders. *Res. Chem. Intermed.* **2010**, *36*, 155–161. [CrossRef]

- 113. Shen, M.; Yan, Z.; Yang, L.; Du, P.; Zhang, J.; Xiang, B. MoS<sub>2</sub> nanosheet/TiO<sub>2</sub> nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. *Chem. Commun.* **2014**, *50*, 15447–15449. [CrossRef] [PubMed]
- 114. Hai, X.; Chang, K.; Pang, H.; Li, M.; Li, P.; Liu, H.; Shi, L.; Ye, J. Engineering the edges of MoS<sub>2</sub> (WS<sub>2</sub>) crystals for direct exfoliation into monolayers in polar micromolecular solvents. *J. Am. Chem. Soc.* **2016**, *138*, 14962–14969. [CrossRef] [PubMed]
- 115. Han, W.; Zang, C.; Huang, Z.; Zhang, H.; Ren, L.; Qi, X.; Zhong, J. Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO<sub>2</sub> nanoparticles and loading MoS<sub>2</sub> nanosheets as co-catalyst. *Int. J. Hydrogen Energy* **2014**, *39*, 19502–19512. [CrossRef]
- 116. Nimbalkar, D.B.; Lo, H.-H.; Ramacharyulu, P.V.R.K.; Ke, S.C. Improved photocatalytic activity of rGO/MoS<sub>2</sub> nanosheets decorated on TiO<sub>2</sub> nanoparticles. *RSC Adv.* **2016**, *6*, 31661–31667. [CrossRef]
- 117. Wang, D.; Xu, Y.; Sun, F.; Zhang, Q.; Wang, P.; Wang, X. Enhanced photocatalytic activity of TiO<sub>2</sub> under sunlight by MoS<sub>2</sub> nanodots modification. *Appl. Surf. Sci.* **2016**, 377, 221–227. [CrossRef]
- 118. Pi, Y.; Li, Z.; Xu, D.; Liu, J.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W.; Fan, X. 1T-phase MoS<sub>2</sub> nanosheets on TiO<sub>2</sub> nanorod arrays: 3D photoanode with extraordinary catalytic performance. ACS Sustain. Chem. Eng. 2017, 5, 5175–5182. [CrossRef]
- Yu, Y.; Wan, J.; Yang, Z.; Hu, Z. Preparation of the MoS<sub>2</sub>/TiO<sub>2</sub>/HMFS ternary composite hollow microfibres with enhanced photocatalytic performance under visible light. *J. Colloid Interface Sci.* 2017, 502, 100–111. [CrossRef] [PubMed]
- 120. Yuan, Y.-J.; Ye, Z.J.; Lu, H.W.; Hu, B.; Li, Y.-H.; Chen, D.Q.; Zhong, J.S.; Yu, Z.T.; Zou, Z.G. Constructing anatase TiO<sub>2</sub> nanosheets with exposed (001) facets/layered MoS<sub>2</sub> two-dimensional nanojunctions for enhanced solar hydrogen generation. *ACS Catal.* **2015**, *6*, 532–541. [CrossRef]
- Liu, X.; Xing, Z.; Zhang, H.; Wang, W.; Zhang, Y.; Li, Z.; Wu, X.; Yu, X.; Zhou, W. Fabrication of 3D mesoporous black TiO<sub>2</sub>/MoS<sub>2</sub>/TiO<sub>2</sub> nanosheets for visible-light-driven photocatalysis. *ChemSusChem* 2016, 9, 1118–1124. [CrossRef] [PubMed]
- 122. He, H.; Lin, J.; Fu, W.; Wang, X.; Wang, H.; Zeng, Q.; Gu, Q.; Li, Y.; Yan, C.; Tay, B.K.; et al. MoS<sub>2</sub>/TiO<sub>2</sub> edge-on heterostructure for efficient photocatalytic hydrogen evolution. *Adv. Funct. Mater.* 2016, *6*, 1600464. [CrossRef]
- Van Haandel, L.; Geus, J.W.; Weber, T. Direct synthesis of TiO<sub>2</sub>-supported MoS<sub>2</sub> nanoparticles by reductive coprecipitation. *ChemCatChem* 2016, *8*, 1367–1372. [CrossRef]
- 124. Ren, X.; Qi, X.; Shen, Y.; Xiao, S.; Xu, G.; Zhang, Z.; Huang, Z.; Zhong, J. 2D co-catalytic MoS<sub>2</sub> nanosheets embedded with 1D TiO<sub>2</sub> nanoparticles for enhancing photocatalytic activity. *J. Phys. D Appl. Phys.* 2016, 49, 315304. [CrossRef]
- 125. Bai, S.; Wang, L.; Chen, X.; Du, J.; Xiong, Y. Chemically exfoliated metallic MoS<sub>2</sub> nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO<sub>2</sub> nanocrystals. *Nano Res.* 2014, *8*, 175–183. [CrossRef]
- 126. Kim, Y.; Jackson, D.H.K.; Lee, D.; Choi, M.; Kim, T.W.; Jeong, S.-Y.; Chae, H.J.; Kim, H.W.; Park, N.; Chang, H.; et al. In situ electrochemical activation of atomic layer deposition coated MoS<sub>2</sub> basal planes for efficient hydrogen evolution reaction. *Adv. Funct. Mater.* **2017**, 27, 1701825. [CrossRef]
- 127. Liu, X.; Xing, Z.; Zhang, Y.; Li, Z.; Wu, X.; Tan, S.; Yu, X.; Zhu, Q.; Zhou, W. Fabrication of 3D flower-like black n- TiO<sub>2-x</sub>@MoS<sub>2</sub> for unprecedented-high visible-light-driven photocatalytic performance. *Appl. Catal. B Environ.* 2017, 201, 119–127. [CrossRef]
- Sun, Y.; Lin, H.; Wang, C.; Wu, Q.; Wang, X.; Yang, M. Morphology-controlled synthesis of TiO<sub>2</sub>/MoS<sub>2</sub> nanocomposites with enhanced visible-light photocatalytic activity. *Inorg. Chem. Front.* 2018, *5*, 145–152. [CrossRef]
- Pu, S.; Long, D.; Wang, M.Q.; Bao, S.J.; Liu, Z.; Yang, F.; Wang, H.; Zeng, Y. Design, synthesis and photodegradation ammonia properties of MoS<sub>2</sub>@TiO<sub>2</sub> encapsulated carbon coaxial nanobelts. *Mater. Lett.* 2017, 209, 56–59. [CrossRef]
- He, H.Y. Efficient hydrogen evolution activity of 1T- MoS<sub>2</sub>/Si-doped TiO<sub>2</sub> nanotube hybrids. *Int. J. Hydrogen Energy* 2017, 42, 20739–20748. [CrossRef]

- 131. Han, H.; Kim, K.M.; Lee, C.W.; Lee, C.S.; Pawar, R.C.; Jones, J.L.; Hong, Y.R.; Ryu, J.H.; Song, T.; Kang, S.H.; et al. Few-layered metallic 1T-MoS<sub>2</sub>/TiO<sub>2</sub> with exposed (001) facets: Two-dimensional nanocomposites for enhanced photocatalytic activities. *Phys. Chem. Chem. Phys.* 2017, 19, 28207–28215. [CrossRef] [PubMed]
- 132. Lin, T.; Kang, B.; Jeon, M.; Huffman, C.; Jeon, J.; Lee, S.; Han, W.; Lee, J.; Lee, S.; Yeom, G.; et al. Controlled layer-by-layer etching of MoS<sub>2</sub>. *ACS Appl. Mater. Interfaces* **2015**, *7*, 15892–15897. [CrossRef] [PubMed]
- 133. Yu, L.; Xie, Y.; Zhou, J.; Li, Y.; Yu, Y.; Ren, Z. Robust and selective electrochemical reduction of CO<sub>2</sub>: The case of integrated 3D TiO<sub>2</sub>@MoS<sub>2</sub> architectures and Ti–S bonding effects. *J. Mater. Chem. A* 2018, *6*, 4706–4713. [CrossRef]
- 134. Jaramillo, T.F.; Jorgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H<sub>2</sub> evolution from MoS<sub>2</sub> nanocatalysts. *Science* 2007, 317, 100–102. [CrossRef] [PubMed]
- 135. Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic effect of MoS<sub>2</sub> and graphene as cocatalysts for enhanced photocatalytic H<sub>2</sub> production activity of TiO<sub>2</sub> nanoparticles. *J. Am. Chem. Soc.* **2012**, *134*, 6575–6578. [CrossRef] [PubMed]
- Hu, X.; Zhao, H.; Tian, J.; Gao, J.; Li, Y.; Cui, H. Synthesis of few-layer MoS<sub>2</sub> nanosheets-coated TiO<sub>2</sub> nanosheets on graphite fibers for enhanced photocatalytic properties. *Sol. Energy Mater. Sol. Cells* 2017, 172, 108–116. [CrossRef]
- Zhao, J.; Zhang, P.; Fan, J.; Hu, J.; Shao, G. Constructing 2D layered MoS<sub>2</sub> nanosheets-modified z-scheme TiO<sub>2</sub>/WO<sub>3</sub> nanofibers ternary nanojunction with enhanced photocatalytic activity. *Appl. Surf. Sci.* 2018, 430, 466–474. [CrossRef]

![](_page_24_Picture_8.jpeg)

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).