Supplementary information

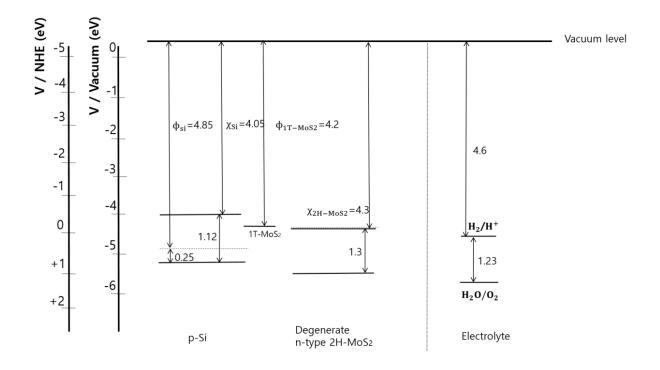
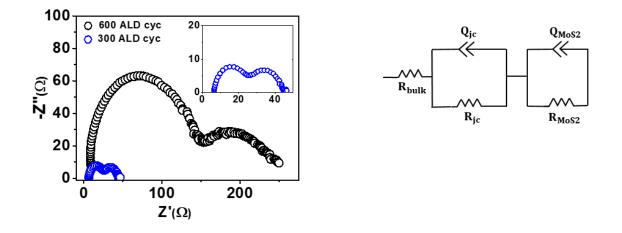



Figure S1. Schematic energy level diagram of the band alignment at *p*-Si/MoS₂ interface in terms of vacuum level and normal hydrogen electrode level in electrolyte of pH = 0.3. The *p*-Si doping level is ~ 1.6×10^{15} cm⁻³.

Figure S2. (a) Nyquist plot of 700–ALD-cycles and 300-ALD-cycles on *p*-Si photocathode under 1 sun illumination at 0 bias. (b) Equivalent circuit corresponding to the EIS measurement. R_{bulk} is bulk resistance of the silicon, Q_{jc} is constant phase element (CPE) of *p*-Si/MoS₂ junction along with junction resistance R_{jc} , CPE of MoS₂/electrolyte interface is denoted as QMoS₂ and the resistance of R_{Mos2} .

Condition	$R_{bulk}(\Omega cm^2)$	$R_{jc} (\Omega cm^2)$	$R_{MoS2}(\Omega cm^2)$
	Back contact/p-Si	p-Si/SiOx/MoS ₂	MoS ₂ /electrolyte
Dark (500)	5.94	702.5	9517
600	5.514	77.98	157.4
500	4.974	27.38	22.38
300	4.642	22.26	16.95
100	4.108	83.11	77.1

Table S1. Measured charge transfer resistances.

List of symbols with values and Units

N _a	Acceptor density	1.6 x10 ¹⁵ cm ⁻³
N _d	Donor density	$10^{19} \mathrm{cm}^{-3}$
n _{i_Si}	Intrinsic carrier density of p-silicon	10^{10} cm^{-3}
$n_{i_MoS_2}$	Intrinsic carrier density of MoS ₂	10^{13} cm^{-3}
n_0	Electron concentration in p-Si at dark equilibrium	66,000 cm ⁻³
p_0	Hole concentration in n-MoS2 at dark equilibrium	10^{13} cm^{-3}
n_s^0	Surface electron concentration across the	cm ⁻³
	electrode/electrolyte interface at light	
n _s	Surface electron concentration across the	cm ⁻³
	Electrode/electrolyte interface at dark equilibrium	
W	Depletion width	cm
χ_p	Electron negativity of p-Si	eV
Xn	Electron negativity of MoS2	eV
x_p	Interface to p-Si depletion width	cm
x_n	Interface to n-MoS2 depletion width	cm
L_n	Minority carrier diffusion length in p-Si	cm
L_p	Minority carrier diffusion length in MoS2	cm
N _c	Density of states in the conduction band	cm ⁻³
N_{v}	Density of states in the valence band	cm ⁻³
k	Boltzmann's constant	$1.38 \times 10^{-23} \text{JK}^{-1}$
q	Charge of an electron	$1.6 \times 10^{-19} C$
E _r	Relative permittivity	Fm ⁻¹
\mathcal{E}_0	Vacuum permittivity	Fm ⁻¹
V_{ph}	Photovoltage	V
V _{on}	On-Set voltage	V
V_{bi}	Built-in potential	V
V _{fb}	Flatband potential	V

V_A	Applied voltage	V
V_0	The maximum restriction of photovoltage	V
V_o	band bending of silicon	V
$\phi_{\scriptscriptstyle B}$	Barrier height	eV
ϕ_w	Work function	eV
J_{ph}	Saturated photocurrent density	mA·cm ⁻²
J_{sc}	Photocurrent density at 0 V vs RHE	mA·cm ⁻²
Т	Temperature	Т
С	Capacitance	Fcm ⁻²
R _s	Series resistance	Ωcm^2
F_p	Quasi-Fermi level in p-Si	eV
F_n	Quasi-Fermi level in n-MoS ₂	eV
g_{op}	Optical generation rate	$cm^{-3}s^{-1}$