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Abstract: A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and
Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned
catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the
catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature
programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller
(BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed
that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4

poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at
350 ◦C. The introduction of SO4

2− and S2O7
2− created new Brønsted acid sites, which facilitated the

adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the
conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and
the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 ◦C. Characterization results
showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio,
which suppressed catalytic performance. However, they increased the content of chemically adsorbed
oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.

Keywords: V2O5–WO3/TiO2 catalysts; poisoning; sulfur-containing sodium salts; SO3; NO removal

1. Introduction

Nitrogen oxides (NOx) are recognized as a major air pollutant. They destroy the ozone layer, form
acid rain, affect the ecological environment, and endanger human health. The main source of NOx in
China is thermal power plants [1,2]. NOx are listed as a binding assessment indicator for total air pollution
control. Consequently, selective catalytic reduction (SCR) flue gas denitration equipment is being used
on a large scale in China’s thermal power plants. Catalysts are the heart of SCR flue gas denitration
technology. The most extensively used commercial catalyst is V2O5–WO3/TiO2 [3]. Zhundong coal
enriches a large amount of sodium (the total content is higher than 2%) because of the special coal-forming
environment and the effect of groundwater [4]. The sodium in the coal is not completely stable in the
furnace after burning [5]. The presence of large amounts of fly ash and alkali metals in the flue gas
can cause catalyst clogging and poisoning. The former is generally reversible and belongs to physical
function. The latter belongs to chemical action. In recent years, the toxic effect of alkali metals on the
catalyst has been extensively investigated [6,7]. The mechanism of toxicity can be summarized as follows:
(1) The presence of alkali metal causes V–O–H to be replaced by V–O–M and decreases the strength and
number of Brønsted acid sites. This leads to the reduction of denitration efficiency [8]. (2) Alkali metal can
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weaken the intensity of V5+=O bonds, decreasing the oxidation ability of the catalysts. Moreover, alkali
metals interact with the active ingredient on the catalyst surface. This causes the chemical valence of the
elements and the concentration of the active ingredient to change [9,10].

Peng et al. [11,12] studied the mechanism of alkali metals poisoning catalysts. They concluded
that after the alkali metals were added they would interact with the V species, causing a reduction in
the surface acidity and inhibition of the adsorption of NH3. This is thought to have resulted in the
decreased activity of the catalysts. According to a series of alkali metal bromide poisoning results
obtained by Chang et al. [13], the addition of alkali metal compounds decreased the intensity of the V=O
bonds and the content of chemically adsorbed oxygen on the catalyst surface. Consequently, the redox
ability of the vanadium-based catalysts was weakened. When considering catalysts poisoning, most
researchers have focused on the toxic effects of different forms of alkali metals on the catalysts.
However, the flue gas contains a large amount of SO2. Therefore, it will react with gas phase NaCl to
form substances such as Na2SO4 and Na2S2O7 [14–16]. The reaction formulas are as follows:

2NaCl + 2SO2 + O2 + H2O→ Na2S2O7 + 2HCl (1)

4NaCl + 2SO2 + O2 + 2H2O→ 2Na2SO4 + 4HCl (2)

V2O5–WO3/TiO2 catalysts also have a catalytic effect on the conversion of SO2 to SO3. SO2

conversion is also the main index in evaluating the denitration performance of an SCR catalyst. SO3 will
cause the corrosion of gas pipes. NH3 will react with SO3 to produce (NH4)2SO4 and NH4HSO4. These
aforementioned compounds can plug the air preheater and cause great harm. Li et al. [17] found that
the presence of SO2 decreased the catalytic activity of K poisoned catalysts because of the generation
of K2S2O7. They suggested that K2S2O7 inhibited the adsorption of NH3 and weakened the oxidation
ability of the catalysts. However, some researchers concluded that the presence of pyrosulfates would
maintain the high oxidizability of V species to a certain degree [18]. Tian et al. [19] studied the
influence of different Na salts on the deactivation of SCR catalysts. They concluded that the V–OH
bonds were replaced by V–O–Na, reducing the amount of Brønsted acid sites. However, the presence
of SO4

2− produced new Brønsted acid sites and promoted the adsorption of NH3. Hu et al. [20]
and Chen et al. [21] specifically studied the role of SO4

2− in catalyst deactivation. Their research
found the addition of SO4

2− can create more acid sites on the catalyst surface. These acted as
Brønsted acid sites and adsorbed more NH3. Consequently, the performance of the catalysts was
enhanced. Dahlin et al. [22] studied the toxic effects of K, Na, P, S, and other poisons on the catalyst.
They concluded that Na and K had the greatest toxic effect on the catalyst. However, sulfates were
formed to prevent the alkali metal from interacting with the active sites of the catalyst when Na and S
existed simultaneously. Thus, the poisoning effect of the alkali metal decreased.

Most researchers focus on the denitration performance and deactivation of the catalysts [23,24].
The catalytic effect of sulfur-containing sodium salts poisoned catalysts on SO2 oxidation and the
effect of SO2 on denitration efficiency have rarely been studied. To address this, a series of different
concentrations of Na2SO4 and Na2S2O7 poisoned catalysts were prepared via the wet impregnation
method. The influence of sulfur-containing sodium salts poisoned catalysts on SO2 oxidation and NO
removal was investigated experimentally.

2. Results and Discussion

2.1. Effect of Different Catalysts on SO3 Generation

2.1.1. Effect of Temperature on SO3 Generation

SO2–SO3-conversion for different catalysts at different reaction temperatures are shown in Figure 1.
The results indicate that the SO2–SO3-conversion of different catalysts increases gradually with
increasing temperature. The SO2–SO3-conversion of the pure catalyst increases from 0.52% at 290 ◦C to
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0.83% at 410 ◦C. The concentration of SO3 increases from 9.33 ppm to 14.97 ppm. The most significant
increase is for the 3.6% Na2S2O7 poisoned catalyst. The SO2–SO3-conversion increases from 0.83% to
1.44% and the concentration of SO3 increases from 15 ppm to 26 ppm. The overall variation of
3.6% Na2SO4 poisoned catalyst is lower than that of 1.2% Na2S2O7.
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Figure 1. Effect of temperature on SO3 generation. Reaction conditions: 1800 ppm SO2, 5% O2, 500 
ppm NO, 500 ppm NH3, 2% H2O, total flow gas 1.5 L/min, and gas hourly space velocity (GHSV) = 
45,000 h−1. 
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The sulfur-containing sodium salts poisoned catalysts leads to an increase in the amount of
V–O–S bonds. The presence of V–O–S bonds promotes SO3 generation [25]. Zhang et al. [26] and
Ma et al. [27] suggested that the addition of sodium salts (in the presence of SO2 and O2) caused the
generation of VOSO4. With an increase in temperature, VOSO4 was reoxidized to SO3 and V2O5. Hence,
SO2–SO3-conversion increased. For Na2S2O7 poisoned catalysts, Alvarez et al. [18] and Wang et al. [28]
considered that the addition of Na2S2O7 inhibited the formation of VOSO4. This would keep the V
species in 5+ oxidation state below 400 ◦C, and ensure the catalytic effect. Meanwhile, the acid strength
of the catalyst surface can be enhanced by the induction of the S=O group. The pyrosulfate substance
provided stronger acidic sites than the sulfate substance. This resulted in an obvious increase in the
SO2–SO3-conversion of the pyrosulfates poisoned catalysts.

2.1.2. Effect of SO2 on SO3 Generation

Figure 2 shows the effect of SO2 concentration on both SO2–SO3-conversion and SO3 concentration
for different catalysts. It shows that the SO3 concentration generated with all catalysts used
increases gradually. However, it does not increase linearly and a turning point can be identified.
SO2–SO3-conversion decreases with increasing SO2 concentration. When the SO2 concentration is
3000 ppm, the SO3 generation concentration for 3.6%-Na2S2O7-SCR increases to 23 ppm. However,
the SO2–SO3-conversion is only 0.77%. Therefore, the concentration of SO3 should also be considered.
In high concentration SO2 flue gas, the diffusion rate of SO2 is much larger than the reaction rate.
Consequently, the main factors in determining the SO2–SO3-conversion are the SO2 oxidation process
and the active sites of the catalysts. According to the Le Chatelier’s principle, the concentration of
the reactant increases. This results in a shift of the equilibrium to the positive reaction direction
in the reversible reaction. Hence, the increased reactant further reduces. But the reactant cannot
be completely converted. Consequently, the increase of SO2 is greater than the reacted amount of
SO2. This results in the decrease of SO2–SO3-conversion. However, increasing SO2 can also inhibit
the decomposition of SO3 which can result in the growth of SO3 concentration [29]. The addition
of Na2S2O7 causes less reduction in the catalyst activity than addition of Na2SO4. Hence, the SO3

concentration of the Na2S2O7 poisoned catalyst is higher than Na2SO4 poisoned catalyst at the same
temperature. As far as the catalyst is concerned, the limited active sites on the catalyst surface restrict
the adsorption of SO2. This results in low SO2–SO3-conversion at high SO2 concentrations [30].
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Figure 2. Effect of SO2 concentration on (a) SO2–SO3-conversion and (b) SO3 concentration. Reaction 
conditions: T = 350 °C, 5% O2, 500 ppm NO, 500 ppm NH3, 2% H2O, total flow gas 1.5 L/min, and gas 
hourly space velocity (GHSV) = 45,000 h−1. 
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2.2. Performance of Different Catalysts

2.2.1. Effect of Temperature on NO Conversion

The denitration efficiency curves for different catalysts at different temperatures are shown
in Figure 3. The pure catalyst has a wide range of activity temperature and exhibits favorable
denitration performance. The efficiency remains above 95% over the entire temperature range
considered and reaches 99.33% at 350 ◦C. The addition of sodium salts results in the deactivation
of catalysts. The activity sequence is as follows: SCR > 1.2%-Na2S2O7-SCR > 1.2%-Na2SO4-SCR
> 3.6%-Na2S2O7-SCR > 3.6%-Na2SO4-SCR. The denitration efficiency decreases with the increase
of sodium salt loading. It initially increases but then decreases with increasing temperature.
For 1.2%-Na2SO4-SCR and 1.2%-Na2S2O7-SCR, the denitration efficiency decreases slightly but remains
above 80% (reaching 87.86% and 91.49% at 350 ◦C, respectively). When the loading increases to 3.6%,
the denitration efficiencies of Na2S2O7 and Na2SO4 poisoned catalysts drop to 75.57% and 50.97% at
350 ◦C, respectively. Overall, the degree of poisoning of Na2SO4 is higher than Na2S2O7 under equal
loading. Therefore, the degree of poisoning of catalysts is also related to the form of sodium salts used.
For instance, S2O7

2− can provide more Brønsted acid sites and has stronger oxidizability than SO4
2−.

This results in more NH3 being adsorbed which promotes NO reduction [31].
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2.2.2. Effect of SO2 on NO Conversion

The influence of SO2 concentration on the denitration efficiency of different catalysts is shown in
Figure 4. The denitration efficiency of pure catalysts remains approximately constant after initially
decreasing from 99.33% to 88%. The 3.6% Na2SO4 and Na2S2O7 poisoned catalysts initially increase
before decreasing and then plateauing. The denitration efficiencies (when SO2 concentration is
1800 ppm) of catalysts poisoned with 3.6% Na2SO4 and 3.6% Na2S2O7 reach maximum values of
57.03% and 82.95%, respectively. Wu et al. [32] examined pure catalysts after the introduction of SO2

and found that a large amount of Lewis acid sites on the catalyst surface were covered by ammonium
sulfate. This weakened the adsorption of NH3 and NO by the catalyst. Anstrom et al. [33] and
Zhu et al. [34] suggested that due to the addition of SO2, NO, and SO2 competed for adsorption on
the catalyst surface. This would explain why the adsorption amount of NO was reduced and the
denitration efficiency was lowered. For catalysts poisoned with Na salts, Hu et al. [20] concluded
that the anions from the sodium salt provided more acidic sites and V–O–S bonds. This was found to
promote the catalytic oxidation of SO2 and enhance the adsorption capacity of NH3. Consequently,
the denitration efficiency improved. The amount of acid sites on the catalyst surface began to decrease
when the concentration of SO2 in the flue gas was increased to a certain extent. The adsorption of SO2

on V2O5 resulted in the formation of an intermediate structure, namely VOSO4. This then reduced the
V5+ concentration for the SCR reaction, which caused the denitration efficiency to decrease.
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Figure 4. Effect of SO2 concentration on NO conversion. Reaction conditions: 500 ppm NO,
500 ppm NH3, 5% O2, 2% H2O, T = 350 ◦C, total flow gas 1.5 L/min, and gas hourly space velocity
(GHSV) = 45,000 h−1.

2.3. Catalyst Characterization

2.3.1. NH3-TPD and H2-TPR Analysis

The adsorption capacity of NH3 on the acid sites indicates the activity of the catalyst. Therefore,
the NH3-TPD experiment was conducted. The spectrum obtained can indicate the strength and acidity of
the acid center. The larger the area of the desorption peak, the higher the corresponding acid concentration.
The higher the peak temperature is, the greater the corresponding acid strength will be. Figure 5 shows
the NH3-TPD patterns of different catalysts. It is generally believed that the desorption peak below
200 ◦C corresponds to the desorption of physisorbed NH3, the desorption peak in the range of 200 to
350 ◦C corresponds to the weakly chemisorbed NH3, and the desorption peak between 350 and 500 ◦C
corresponds to the strongly chemisorbed NH3 [35,36]. For 1.2% and 3.6% Na2SO4 poisoned catalysts,
NH3 adsorption decreased most noticeably. For 1.2% and 3.6% Na2S2O7 poisoned catalysts, the amount
of physisorbed NH3 reduces between 100 and 200 ◦C. In contrast, the amount of strongly chemisorbed
NH3 significantly increased between 350 to 500 ◦C. According to Zheng et al. [37], this increase can be
attributed to the catalyst surface being sulfated through the addition of Na2S2O7. The traces of these
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compounds remaining on the surface of catalysts can provide strong acid sites, which is beneficial to the
adsorption of NH3. Chang et al. [13] have shown that Na preferentially coordinated on V–OH bonds and
V–O–H was replaced by V–O–Na after addition of alkali metals. This resulted in a reduced number of
acid sites and lower catalytic activity. The reaction formulas are as follows:

–V–OH + Na2SO4 → –V–O–Na + NaHSO4 (3)

–V–OH + NaHSO4 → –V–O–Na + H2SO4 (4)

–V–OH + Na2S2O7 → –V–O–Na + NaHS2O7 (5)

–V–OH + NaHS2O7 → –V–O–Na + H2S2O7 (6)
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Figure 6 shows the NH3-TPD curves of different catalysts when the SO2 concentration is 0 and
1800 ppm. The desorption of the physisorbed and weakly chemisorbed NH3 on the poisoned
catalyst surfaces increased significantly after the introduction of SO2. This improved the denitration
performance of the catalyst to some extent. Giakoumelou et al. [38] noted that the introduction of SO2

led to the formation of more SO4
2− on the poisoned catalyst surface. SO4

2− can adsorb more NH3

in the form of NH4
+ on the catalyst surface to react with NO in the flue gas. For the pure catalyst,

the desorption of physisorbed NH3 increased slightly and the peak area (ranging from 250 ◦C to
450 ◦C) clearly decreased. This was unfavorable to denitration performance. After the introduction of
SO2, the denitration efficiency of the pure catalyst is mainly attributed to the competitive adsorption
between SO2 and NO [39]. This agrees with the experimental results.
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The redox performance of the catalyst accounts for another important factor in catalytic reduction.
The lower the temperature corresponding to the reduction peak is, the easier the catalytic redox reaction
of the catalyst will be. Peak area represents H2 consumption. To test the impact of sulfur-containing
sodium salts poisoned catalysts on the redox performance, the H2-TPR was carried out and the
experimental results are shown in Figure 7. The reduction peak temperature of the pure catalysts
appeared at 556 ◦C, which can be attributed to the reduction of V5+ to V3+. After the addition of
sodium salts, the reduction peak temperature of the catalysts increased. This indicates that sodium
salts poisoned catalysts decreased the oxidizability. Chen et al. [40] suggested that the interaction of
sodium salts with V species hindered the release of lattice oxygen in the catalyst, making V species
more difficult to be reduced. The temperature shifted towards higher values with the increased
loading. However, the reduction peak temperatures of the Na2SO4 and Na2S2O7 poisoned catalysts
with the same loading were very similar. The H2 consumptions were 0.251, 0.897, 1.614, 2.690,
and 4.698 mmol/g for pure catalyst, 1.2% Na2SO4, 1.2% Na2S2O7, 3.6% Na2SO4, and 3.6% Na2S2O7

poisoned catalyst, respectively. The H2 consumption significantly increases for sodium salts poisoned
catalysts. In particular, the Na2S2O7 poisoned catalyst is 1.8 times higher than Na2SO4 poisoned
catalyst with the same loading. This is because S2O7

2− has stronger oxidizability than SO4
2−.
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Figure 8 shows the H2-TPR curves of 3.6% Na2SO4 and Na2S2O7 poisoned catalysts when the
SO2 concentration is 0 and 1800 ppm. The reduction peak temperature shifted towards the higher end
after addition of SO2, which decreased the denitration performance of the catalyst. However, the H2

consumption also increased to 3.120 and 5.129 mmol/g, respectively. Yu et al. [41] considered that
the introduction of SO2 made the surface of the poisoned catalyst sulfated, increasing the catalytic
performance of the poisoned catalyst. However, this is not the only influence factor for catalytic
performance based on catalytic performance results.
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2.3.2. XPS Analysis

The chemical species and surface atomic concentration of several major elements were analyzed
using X-ray photoelectron spectroscopy (XPS). Table 1 shows the atomic concentrations on the catalyst
surface. Figure 9 shows the spectra of O1S and V2P, respectively. Table 2 shows the states of O and
V on these catalyst surfaces. Table 1 shows that with increasing loading of sodium salts, the atomic
concentration of the active component on the catalyst surface significantly decreased. This result
is consistent with the XRD measurement, indicating that sodium salts interacted with the active
component of the catalyst.

Table 1. The surface atomic concentrations for these samples.

Samples Surface Atomic Concentration (%)

O Na Ti V W S

Pure catalyst 65.04 0.07 16.27 0.60 3.50 0.05
1.2%-Na2SO4-SCR 60.24 4.42 14.32 0.40 2.61 1.13
3.6%-Na2SO4-SCR 59.88 5.58 13.01 0.35 2.14 3.54
1.2%-Na2S2O7-SCR 61.93 4.17 15.19 0.44 2.77 2.32
3.6%-Na2S2O7-SCR 61.08 5.25 14.77 0.38 2.69 5.12
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Table 2. The states of O and V on the catalyst surfaces.

Samples Surface Atomic Concentration (%) Surface Atomic Ratio

Oα/(Oα+Oβ) Oβ/(Oα+Oβ) V4+ V5+ V4+/V5+

Pure catalyst 44.3 55.7 43.6 56.4 0.77
1.2%-Na2SO4-SCR 51.0 49.0 41.4 58.6 0.71
3.6%-Na2SO4-SCR 53.1 46.9 40.2 59.8 0.67
1.2%-Na2S2O7-SCR 51.8 48.2 40.6 59.4 0.69
3.6%-Na2S2O7-SCR 55.3 44.7 39.8 60.2 0.66

As shown in Figure 9a, the spectra of O1S were divided into two peaks. The peak corresponding
to 531.0–531.6 eV was attributed to surface chemical adsorption oxygen (defined as Oα). The peak
corresponding to 528.4–528.7 eV was attributed to lattice oxygen (defined as Oβ) [42,43]. The concentration
ratio of chemical adsorption oxygen (Oα/(Oα+Oβ)) was computed using peaking software, which is
shown in Table 2. The sodium salts poisoned catalysts increased chemical adsorption oxygen content
on the catalyst surface. However, for 1.2% and 3.6% Na2SO4 poisoned catalyst the surface oxygen
concentration was lower than for other catalysts (see Table 1). Therefore, the chemical adsorption oxygen
content of the Na2SO4 poisoned catalyst was low. The chemical adsorption oxygen is very active and is
indispensable for oxidation reactions. There is a positive correlation between the oxidative properties
of the catalyst and the surface chemically adsorbed oxygen content [44]. Therefore, the relatively high
chemically adsorbed oxygen content in the sodium salt poisoned catalysts are beneficial for SO2 oxidation.

Figure 9b shows the spectra of V2P. The spectra were also divided into two peaks. The peak
corresponding to 515.3–516 eV belonged to V5+. The peak corresponding to 514.0–514.6 eV belonged
to V4+ [45]. Table 2 shows that the V4+ ratio was 43.6% for pure catalyst. It also shows the V4+ content
of other sodium salt poisoned catalysts were reduced and the corresponding V4+/V5+ ratios decreased.
Economidis et al. [46] confirmed experimentally that in the process of synthesizing the vanadium-based
catalyst, V5+ partially transformed into V4+. Equivalently, the reduction of VO2

+ to VO2+ occurred.
The ratio of V4+/V5+ plays a pivotal role in the redox reaction of the catalyst. The denitration efficiency
could be improved by appropriately increasing the ratio. However, the addition of sodium salts
decreased the ratio (causing the decrease in denitration performance). This is consistent with the
denitration performance test.

2.3.3. BET and XRD Analysis

The structural characteristics of different catalysts were determined by N2 adsorption-desorption
experiments. The specific surface area and pore structure also affected the denitration performance of
the catalyst to an extent. Table 3 describes the specific surface area and pore structure characteristics of
different catalysts. For example, the specific surface area, pore volume and pore diameter of the pure
catalyst were found to 95 m2·g−1, 0.21 cm3·g−1, and 9.3 nm, respectively. After loading with sodium
salts, the specific surface area and pore volume of the catalyst significantly reduced. With increased
loading, the degree of reduction increased. Na2S2O7 poisoned catalyst has a greater influence on the
specific surface area and pore volume. Xiao et al. [47] suggested that sodium pyrosulfate had larger
molecular size, which led to the catalyst blockage. Conversely, the pore size increased. This is because
the addition of sodium salts caused the microporous blockage and the proportion of macropores
consequently increased.

Table 3. Structural characteristics of different Na salts loadings.

Samples SBET (m2·g−1) Vtotal (cm3·g−1) Dp (nm)

Pure catalyst 95 0.21 9.3
1.2%-Na2SO4-SCR 75 0.18 10.5
1.2%-Na2S2O7-SCR 69 0.17 10.5
3.6%-Na2SO4-SCR 63 0.16 11.3
3.6%-Na2S2O7-SCR 44 0.12 11.1
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Figure 10 shows the Barret–Joyner–Halenda (BJH) pore size curves of different catalysts.
The catalyst surface mainly contains mesopores (2–50 nm), as shown in Figure 10. The sodium
salts poisoned catalyst increased the pore size compared with the pure catalyst.
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Figure 11. XRD results of the (a) Na2SO4 and (b) Na2S2O7 poisoned catalysts. 
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Figure 10. Barret–Joyner–Halenda (BJH) pore size distribution curves of the catalysts.

Figure 11 exhibits the XRD diffractograms of different catalysts. The XRD patterns of all catalyst
samples are mostly similar, which demonstrates that the addition of sodium salts did not change
the basic structure of the support. However, for the 1.2% and 3.6% Na2SO4 poisoned catalyst,
the diffraction peak of Na2SO4 could be detected. For the pure catalyst and 1.2% Na2S2O7 poisoned
catalyst, there was no peak of V2O5 and no appearance of Na2S2O7. But for the 3.6% Na2S2O7 poisoned
catalyst, the diffraction peak of Na4V3O9 could be detected. This was because some molten sodium
pyrosulfate interacted with V2O5 during the preparation process. The appearance of the new peaks
indicates that the accumulation of sodium salts on the catalyst surface blocked the catalyst pores
and reduced the specific surface area. This was not conducive to the catalytic reaction. However,
Shpanchenko et al. [48] considered that the new vanadium oxide complex Na4V3O9 had special
structural and magnetic properties. It was made from isolated chains of square V4+O5 pyramids linked
by two bridging V5+O4 tetrahedra. This structure had strong magnetic exchange between the V4+

along the chain, which was beneficial to catalytic performance.
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2.3.4. FT-IR Analysis

The characteristic peaks of different functional groups on different catalyst surfaces were obtained
via FT-IR measurements. The results are shown in Figure 12. These catalysts exhibit two key peaks
located at 1015 cm−1 and 1627 cm−1. The peak at 1015 cm−1 is attributed to the terminal vanadium oxy
group (V5+=O) [49]. The peak at 1627 cm−1 is attributed to the Lewis acid sites [50]. According to the
experimental results, the sodium salts poisoned catalyst was found to have reduced the Lewis acid sites.
With increased loading, the degree of reduction increased. This indicates that the weak acidic strength
of the catalyst surface was lowered. This is consistent with the results of NH3-TPD. The peak intensity
at 1015 cm−1 increased and Na2S2O7 poisoned catalyst had the most significant effect. The increase of
V5+=O bond strength is beneficial for promoting the conversion of SO2 to SO3 [51]. Alvarez et al. [18]
suggested that the presence of pyrosulfates would maintain the high oxidizability of V species to a
certain degree. This result is consistent with the results of SO2 oxidation experiments.
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3. Experimental

3.1. Sample Preparation

The commercial SCR catalysts were obtained from Beijing Nation Power Group Co., Ltd., Beijing,
China. The poisoned catalysts were prepared using the wet impregnation method. A certain amount
of sodium sulfate or sodium pyrosulfate was weighed according to the mass percentage of Na in the
active ingredient of catalysts. After being formulated into solution, they were mixed with catalysts
and ultrasonically shaken for 4 h. They were then dried in the blast drying oven at 110 ◦C for 12 h.
Finally, the catalysts were calcined in the muffle furnace at 350 ◦C for 5 h and ground to 40–60 mesh to
obtain x-Na2SO4/Na2S2O7-SCR poisoned catalysts. Here, x means the mass percentage of sodium
element (1.2% or 3.6%).

3.2. Catalyst Characterization

The experiment was performed using the model tp-5080 temperature programmed adsorption
instrument (manufactured by Tianjin Xianquan Company, Tianjin, China) for NH3-TPD and H2-TPR of
different catalysts. For a NH3-TPD test, 0.1 g samples were prepared and then pretreated for 1 h at 250 ◦C.
Next, they were cooled to ambient temperature in a pure N2 atmosphere (30 mL/min). Then 10%NH3 (N2

as balance gas) was passed over the samples for 1 h. After NH3 was cut off, the catalysts were warmed to
60 ◦C and purged in pure N2 for 20 min. Finally, they were heated to 800 ◦C (at a rate of 10 ◦C/min) and
maintained at 800 ◦C for 5 min. The consumption of NH3 was recorded. For a H2-TPR test, 0.05 g samples
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were prepared and then pretreated for 1 h at 250 ◦C. Next, they were cooled to ambient temperature in
pure N2 atmosphere (30 mL/min). Then 5%H2 (N2 as balance gas) was passed over the samples as a
reducing agent. Finally, the catalysts were heated to 800 ◦C (at a rate of 10 ◦C/min) and maintained at
800 ◦C for 5 min. The consumption of H2 was recorded.

The pore structural parameters of the samples were determined via the specific surface
area and pore size analyzer (ASAP 2010, Micromeritics Instrument Corporation, Norcross, GA,
USA). The specific surface area of the catalyst was obtained by linear regression via the
Brunauer–Emmett–Teller (BET) equation. The pore size was calculated using the BJH model.

The XRD patterns of samples were obtained using the Bruker D8 (Bruker AXS Company,
Karlsruhe, Germany) Advance to determine the crystallinity and dispersion of the surface material of
the samples. The measurement was performed using a Cu Kα irradiation source with a scan range of
10–80◦. XPS was performed using the AXIS ULTRADLD (Kratos Company, Shimadzu, Kyoto, Japan).
An X-ray source was used as a monochromatic Al target and C1s (284.8 eV) was used for correction
when fitting the peak. FT-IR spectra were recorded in a Nicolet Nexus 670 FT-IR (Nicolet Company,
Madison, WI, USA). The catalysts were ground and then blended with KBr powder at the mass ratio
of 1:100 with a resolution of 4 cm−1. The recorded spectral range was 600–4000 cm−1, and the number
of scans was 32.

3.3. Test. Setup

Catalytic performance and SO2–SO3 conversion test apparatus is presented in Figure 13.
Each catalyst (2 mL, 40–60 mesh) was laid in a quartz tube reactor. The simulated flue gas used
in the experiment included 500 ppm NH3, 500 ppm NO, 5% O2, 2% H2O, and the SO2 concentration
ranged from 0 to 3000 ppm (N2 acted as a balance gas). The total gas flow rate was 1.5 L/min, resulting
in a GHSV of 45,000 h−1. The experimental test temperature was 250–410 ◦C. The inlet and outlet flue
gas (O2, SO2, NO) concentrations were monitored using the Testo 350 flue gas analyzer (Testo AG,
Lenzkirch, Germany). SO3 was gathered by the Graham Condenser, which was placed in a constant
temperature 80 ◦C water bath. The gathered SO3 was converted to SO4

2− using an 80% isopropanol
solution. Then the SO4

2− content in the solution was measured using an ion chromatograph to
determine the SO3 content, which was averaged over multiple measurements.
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The catalytic performance of the catalyst is represented by the conversion of NO, which is
defined as:

ηNO(%) =

(
[NO]inlet − [NO]outlet

[NO]inlet

)
× 100% (7)

The SO2–SO3 conversion is indirectly expressed by the SO2 oxidation, which is defined as:

SO2–SO3-conversation(%) =

(
[SO3]outlet
[SO2]inlet

)
× 100% (8)

4. Conclusions

The influence of different sulfur-containing sodium salts (Na2SO4 and Na2S2O7) poisoned
catalysts on SO2 oxidation and NO reduction was investigated. Sodium salts poisoned catalysts
led to a decrease in the denitration efficiency, while significantly improving the SO2–SO3-conversion.
The degree of change is related to the loading and form of the sodium salts poisoned catalysts.
The degree of poisoning of Na2S2O7 poisoned catalyst was weaker because S2O7

2− can create more
Brønsted acid sites and has stronger oxidizability than SO4

2−. The introduction of SO2 clearly increased
the number of surface acid sites. However, it had little effect on the redox capacity of the catalyst. Hence,
SO2 slightly enhanced the denitration efficiency of the sodium salts poisoned catalysts. According
to analysis of NH3-TPD, FT-IR, and H2-TPR results, sodium salts poisoned catalysts reduced the
Lewis acid sites and redox capacity. They also increased Brønsted acid sites and V5+=O bonds
strength. The presence of the V5+=O bonds facilitates SO2–SO3 conversion. XPS results showed that
sodium salts poisoned catalysts increased the chemically adsorbed oxygen content and promoted
SO2 oxidation. However, sodium salts poisoned catalysts reduced the V4+/V5+ ratio and inhibited
denitration performance.
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