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Abstract: The acceptor properties of mixed chlorometallate ionic liquids for isobutane-butene
alkylation (C4 alkylation) reaction were studied. These ionic liquids were prepared by mixing
metal chlorides with either triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride
in various molar ratios. Using triethylphosphine oxide as a probe, Gutmann Acceptor Numbers
(AN) of the catalysts were determined, and the Lewis acidity of mixed chlorometallate ionic liquids
was quantitatively measured. Additionally, AN value was developed to determine the relationship
between Lewis acidity and catalytic selectivity. The favorite AN value for the C4 alkylation reaction
should be around 93.0. The [(C2H5)3NH]Cl–AlCl3−CuCl appears to be more Lewis acidity than
that of [(C2H5)3NH]Cl–AlCl3. The correlation of the acceptor numbers to speciation of the mixed
chlorometallate ionic liquids has also been investigated. [AlCl4]−, [Al2Cl7]−, and [MAlCl5]−

(M = Cu, Ag) are the main anionic species of the mixed chlorometallate ILs. While the presence of
[(C2H5)3N·M]+ cation always decreases the acidity of the [(C2H5)3NH]Cl−AlCl3−MCl ionic liquids.
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1. Introduction

In the last decade, the use of chloroaluminate ionic liquids (ILs) to replace conventional acid catalysts
has received much attention [1,2]. Due to their versatile properties, ionic liquids have been used in many
fields [3]. The applications of chloroaluminate ILs primarily focus on the industrial Friedel–Crafts
alkylation, oligomerization, and isomerization reactions of olefins [4]. A well-known example of catalysis
in chloroaluminate ILs may be the alkylation of isobutane and butenes (C4 alkylation) [5]. In this reaction,
[C4mim]Cl–AlCl3 [6], [(C2H5)3NH]Cl–AlCl3 [7], and amide-AlCl3-based [8] ionic liquids were used
instead of concentrated sulfuric acid and hyper-toxic hydrogen fluoride. In addition, the isomerization
of dicyclopentadienes could be catalyzed by [Hpy]Cl–AlCl3 chloroaluminate ILs [9,10]. Particularly,
a pilot-scale oligomerization of the olefins process has been established by BP (British Petroleum
Company plc), which uses the [(CH3)3NH]Cl–AlCl3 ionic liquid as a catalyst. Akzo Nobel also developed
an industrial application of the benzene alkylation employing a similar chloroaluminate ionic liquid [11].

Introducing metal salts to chloroaluminate ILs can either change the activity of chloroaluminate
anions, or coordinate the added metal ions to chloroaluminate anions [12]. Compared with net
chloroaluminate ILs, this feature of mixed chlorometallate ILs might be one of the key benefits
for some reactions. For example, a significant catalytic activity could be observed in a Beckman
rearrangement reaction of acetophenone oxime, when the mixed metal [(C2H5)3NH]2x[(1−x)AlCl3 +
xZnCl4] double salt ILs were adopted. The activity of the ionic liquid was found even higher than that
of [(C2H5)3NH][Al2Cl7] or AlCl3 [13]. Zinurov et al. [14] have found that the route of the n-pentane
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isomerization could be controlled by using [(CH3)3NH]Cl–AlCl3/copper-salt mixtures. Additionally,
high yields of branched olefin polymers can be obtained by adding TiCl4 to the [C4mim]Cl–AlCl3 ionic
liquid [15]. Yang et al. also found that the mixed chlorometallate [(C2H5)3NH]Cl–FeCl3–CuCl might
enhance the conversion and selectivity of the isobutene oligomerization [16]. Perhaps the most famous
application of mixed chlorometallate ionic liquids is the Difasol process, which was developed by IFP
(Institut Francais Du Petrole) and the [C4mim][AlCl4] –EtAlCl2–NiCl2 ionic liquid was employed for
olefin dimerization [17,18].

As mentioned above, the C4 alkylation reaction is one of the most important IL applications.
However, the requirement of acidity for the C4 alkylation reaction is very strict. When the acidity of
the catalyst is strong, the product would contain many C5−C7 fractions. In contrast, if the acidity is
weak, the C9+ byproducts would be dominant. In order to improve the catalytic performance of ILs,
the super acidity of chloroaluminate ILs usually need to be tuned by other compounds. In the cases of
[Bmim]Cl−AlCl3 and [(C2H5)3NH]Cl−AlCl3, the introduction of CuCl to these chloroaluminate ILs
is beneficial to increase the content of the desired trimethylpentanes (TMP, C8 fractions). Similarly,
the presence of AgAlCl4 in MTBE−AlCl3 solution often leads to a high TMP selectivity. Adding
CuCl to the ether–AlCl3 system or the amide-AlCl3-based ionic liquid analogues also significantly
increased the TMP content. Therefore, the transition metal chlorides can significantly improve the
catalytic performance of chloroaluminate ILs. This improvement is often interpreted as the decrease of
super-acidity of the chloroaluminate ILs [19].

The size, shape, and relative energy of the acid and the base will markedly affect the interaction
of a Lewis acid-base pair. It means that the base of a Lewis acid interacting with can determine the
acid strength [5]. Although a universal scale of Lewis acidity could not be established [20], several
studies on the determination of the quantitative behavior of chloroaluminate ILs have been reported.
For example, Thomazeau et al. have measured the acid strength of a series of imidazolium ILs by
using UV-vis spectroscopy and Hammett indicators [21]. The acceptor properties of chlorometallate
ILs have been studied by Osteryoung [22,23] and Swadźba-Kwaśny [24], respectively. In addition,
the Lewis acidity of halometallate-based ILs and the basicity of hydrogen bond could be obtained by
X-ray photoelectron spectroscopy [25]. Using infrared spectroscopy and pyridine probe, Kou et al. [26]
developed a new method for determining the acid strength of chloroaluminate ILs, and Hu [27] made
a more detailed measurement for these ILs. However, the Lewis acidity of the mixed chlorometallate
ILs for C4 alkylation reaction is still ambiguous.

Apart from the changes of acidity, adding metal salts to chloroaluminate ILs would lead to
an interaction of the added metal ions and the chloroaluminate anions. In the previous works,
we found that the catalytic performance of C4 alkylation is probably determined by the compositions
of the mixed chlorometallate ILs rather than by the Lewis acid strength. That is, the presence of
heterometallic chlorometallate anion [CuAlCl5]− might improve the catalytic selectivity. This anion has
been detected in the 27Al NMR spectra of [Bmim]Cl−AlCl3−CuCl and [(C2H5)3NH]Cl−AlCl3−CuCl
ionic liquids [28–30]. However, other researchers argued that the peak of [CuAlCl5]− should be
identified as the signal of [Al2Cl6OH]− [31]. They proposed that Cu(I) could substitute the proton
in the [(C2H5)3NH]+ cation and generate [(C2H5)3N·Cu]+ and HCl [19]. Generally, the speciation of
chlorometallate ionic liquids are closely related to their Lewis acidity [1,5,32]. Thus, a quantitative
study of the Lewis acidity may be helpful to clarify the speciation of the ionic liquids.

We want to make a quantitative investigation on the acidity of mixed chlorometallate ILs by using
31P NMR chemical shifts. Gutmann Acceptor Number (AN) is considered as an effective methodology
for quantitatively determining the Lewis acidity [33]. When triethylphosphine oxide (tepo) was added
to the acidic sample, the coordination of tepo with the Lewis acid always induces a change of the
31P NMR chemical shift, and then the AN can be calculated by the equation: AN = 2.348 × δinf.
In order to obtain the δinf value (31P chemical shift at infinite dilution of tepo), the chemical shifts of
31P NMR at several concentrations of tepo need to be measured at first, and then these data should be
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extrapolated to infinite dilution. Using tepo probe, the AN values can precisely indicate the Lewis
acidity of many compounds.

In this paper, the Lewis acidity of mixed chlorometallate ILs for isobutane alkylation was
quantitatively studied by determining the AN values. The relationship between the Lewis acidity of ionic
liquids and their catalytic performance of C4 alkylation has been studied. In addition, the speciation
of ions has been determined for the [Bmim]Cl−AlCl3−CuCl and [(C2H5)3NH]Cl−AlCl3−CuCl mixed
chlorometallate systems. The correlation of the observed changes in the acidity to speciation has also
been investigated.

2. Results and Discussion

2.1. Estimation of δi,cor at Infinite Dilution

The Gutmann Acceptor Number is an experimental procedure to evaluate the Lewis acidity of
molecules. Generally, triethylphosphine oxide (tepo) is very sensitive to the Lewis acidic environment.
When tepo is used as a probe molecule, the interaction between tepo and the Lewis acid will cause
deshielding of the 31P chemical shift of tepo. Therefore, the Lewis acidity of ionic liquids could be
assessed by 31P NMR spectroscopy. The AN values of Lewis acidic compounds are usually between
the two reference points of the weak Lewis acid hexane (δ = 41.0 ppm, AN = 0) and the strong Lewis
acid SbCl5 (δ = 86.1 ppm, AN 100). Thus, an acceptor number scale for solvent Lewis acidity is
established. The acceptor numbers can be calculated from the equation AN = 2.21 × (δsample –41.0).
Higher AN value often indicates that the compound has a greater Lewis acidity. For example, the AN
of AlCl3 is 87 and the AN value is 70 for transition-metal compound TiCl4, which all display Lewis
acidic properties.

In all studied ILs, the 31P NMR (Nuclear Magnetic Resonance) signal of tepo was a single peak.
Because of the volume susceptibility differences between the studied ILs and hexane, the acceptor
numbers of ILs should be calculated by extrapolating the chemical shift to infinite dilution. It means
that the 31P NMR chemical shifts of infinite dilution tepo in the ionic liquid (δinf) must be obtained
at first. Here, the values of δinf were determined by extrapolation, and the acceptor numbers were
calculated through AN = 2.348 × δi,cor instead of using AN = 2.21 × (δsample –41.0). The number of
δi,cor is the susceptibility-corrected value, which is defined as the infinite-dilution chemical shift of the
probe molecule in a solvent (i) relative to that of the probe molecule in hexane. For instance, the 31P
NMR chemical shift of tepo with different concentrations in [(C2H5)3NH]Cl−AlCl3 and the fitted
straight lines are depicted in Figure 1. These data (δexp) were fitted by regression analysis to get a
linear equation: δexp = mctepo + δi,cor. The values of m and R2 were collected in Table 1, and the δi,cor

values were finally obtained by the linear regression approach.
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Figure 1. Experimental 31P NMR chemical shifts for tepo as a function of tepo concentration
in chloroaluminate compositions: (a) [(C2H5)3NH]+−based ILs, [(C2H5)3NH]Cl−AlCl3 (4),
[(C2H5)3NH]Cl−AlCl3−CuCl (#), and [(C2H5)3NH]Cl−AlCl3−AgCl (*); (b) [Bmim]+−based ionic
liquids (ILs), [Bmim]Cl−AlCl3 (4), [Bmim]Cl−AlCl3−CuCl (#), and [Bmim]Cl−AlCl3−AgCl (*).
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Table 1. Parameters of linear regression for various ionic liquids.

Entry Ionic Liquids 1 m δi,cor R2

1 [(C2H5)3NH]Cl−AlCl3 −0.0016 39.9123 0.9591
2 [(C2H5)3NH]Cl−AlCl3−CuCl −0.0082 40.1273 0.9611
3 [(C2H5)3NH]Cl−AlCl3−AgCl −0.0057 40.2422 0.9631
4 [Bmim]Cl−AlCl3 −0.0109 40.2572 0.9983
5 [Bmim]Cl−AlCl3−CuCl −0.0502 39.7951 0.9203
6 [Bmim]Cl−AlCl3−AgCl −0.0444 39.2126 0.9921
7 [(C2H5)3NH]Cl−CuCl −0.0361 35.9313 0.9998
8 [(C2H5)3NH]Cl−ZnCl2 −0.0316 36.3523 0.9877

1 The molar ratio of AlCl3, CuCl, or ZnCl2 to organic salt is 1.6:1.

2.2. AN Values and C4 Alkylation Performance

In this work, 31P NMR chemical shifts of the ILs for alkylation reaction were determined.
The chemical shifts of those ILs with weaker Lewis acidity [34,35], such as [(C2H5)3NH]Cl−CuCl and
[(C2H5)3NH]Cl−ZnCl2, benzene−CuAlCl4, and ether−CuClAl4, were also measured for comparison.
For convenience, the apparent molar ratio of organic salt to AlCl3 was 1:1.6, while the apparent
molar ratio of MClx (M = Cu, Ag, or Zn; x = 1 or 2) to AlCl3 was 0.5:1. Generally, the metal
chlorides would react with the ions of net chloroaluminate ILs. Although some of the transition
metal chlorides at this ratio might not be completely dissolved to the chloroaluminate ionic liquids,
it did not significantly reduce the catalytic activities of the chloroaluminate ILs. To better understand
these changes, we measured the AN values at first, and then the catalytic selectivities of various ILs
were compared.

As Table 2 shown, most TMP selectivities of chloroaluminate ionic liquids could be improved
by the modification of metal chlorides. Meanwhile, it is found that the transition metal chlorides
would reduce the Lewis acid strength of the [Bmim]+−based chloroaluminate IL. For example,
the AN value of [Bmim]Cl−AlCl3−AgCl is about 2.5 lower than that of [Bmim]Cl−AlCl3.
The other [Bmim]Cl−AlCl3−MClx (M = Cu, Zn) ionic liquids also have the same trend. If AN
over 95, the catalysts can be defined as superacids. For an extreme case, the super-acidity of
trifluoromethanesulfonic acid (CF3SO3H) is not good for the C4 alkylation reaction (Entry 11: AN
> 126, but RON < 85). Similarly, the trifluoroacetic acid (CF3COOH) that with strong acidity
also lead to a relatively poor product quality (Entry 14: AN > 110, but RON < 87). In contrast,
those ionic liquids with weak Lewis acidity (AN < 86), such as CH3COOH, [(C2H5)3NH]Cl−CuCl,
CH3COOOH, and [(C2H5)3NH]Cl−ZnCl2, cannot catalyze the alkylation reaction. However, acceptor
number determination for the [(C2H5)3NH]+−based chloroaluminate ILs indicates that the Lewis
acidity of the IL [(C2H5)3NH]Cl−AlCl3 was not reduced by the introduction of CuCl or AgCl.
[(C2H5)3NH]Cl−AlCl3−CuCl or [(C2H5)3NH]Cl−AlCl3−AgCl usually results in much better catalytic
selectivity than that of [(C2H5)3NH]Cl−AlCl3 (Entries 2 and 3 vs. Entry 1). Thus, the effects of Lewis
acidity on the selectivity of alkylation reaction may be much more complicated than the previous
conclusions [19].

On the other hand, it is well known that the chloroaluminate ionic liquid appears to be Lewis
acidity only when the molar ratio of AlCl3 to the organic salt is greater than 1:1. Therefore, if we
investigated the relationship between the acceptor number of ILs with various mole ratios of AlCl3
and the alkylation results, it is possible to provide a quantitative scale of Lewis acidity for the C4

alkylation reaction. Figure 2 depicts this evaluation, which again indicates that the C4 alkylation
reaction is strict to the acidity. Only the AN value of [(C2H5)3NH]Cl−AlCl3 is greater than 92.0
(e.g., mole ratio of AlCl3 to [(C2H5)3NH]Cl is 1.3), the isobutane can be completely reacted with
butenes (olefin conversion > 97%). While the AN value is greater than 95.0, the product quality will be
lowered (e.g., [(C2H5)3NH]Cl−2AlCl3). In general, the favorite AN value for the C4 alkylation reaction
should be around 93.0.
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Table 2. The relationship between Acceptor Number (AN) value and the alkylate selectivity.

Entry Catalysts AN TMP 1, wt.% Calculated RON 2

1 [(C2H5)3NH]Cl−AlCl3 93.71 37.5 88.6
2 [(C2H5)3NH]Cl−AlCl3−CuCl 94.22 78.2 99.0
3 [(C2H5)3NH]Cl−AlCl3−AgCl 94.49 80.5 99.6
4 [Bmim]Cl−AlCl3 94.52 43.7 90.6
5 [Bmim]Cl−AlCl3−CuCl 93.44 74.8 98.3
6 [Bmim]Cl−AlCl3−AgCl 92.07 76.5 98.9
7 [Bmim]Cl−AlCl3−ZnCl2 92.61 71.6 97.5
8 benzene−CuAlCl4 91.08 68.7 97.0
9 ether−CuClAl4 91.95 69.1 97.2
10 CH3COOH 55.68 none -
11 CF3SO3H 126.21 28.2 84.9
12 [(C2H5)3NH]Cl−CuCl 84.37 none -
13 [(C2H5)3NH]Cl−ZnCl2 85.36 none -
14 CF3COOH 115.14 34.0 86.4
15 CH3COOOH 70.25 none -

1 TMP (trimethylpentanes) is the most desired product, which include 2,2,4−, 2,3,3−, and 2,3,4−TMP. The selectivity
of TMP is equal to the total amount of trimethylpentanes in the alkylation product. Data of [(C2H5)3NH]+− and
[Bmim]+−based ILs are from Refs. [28,29], respectively. The other TMP data are obtained in this work. 2 The research
octane number (RON) was calculated according to the method of Ref. [6].
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Figure 2. The effects of Lewis acidity on acceptor number, TMP selectivity, and conversion of olefins:
(a) Mole ratio of AlCl3 to [(C2H5)3NH]Cl vs. acceptor number; (b) Mole ratio of AlCl3 to [(C2H5)3NH]Cl
vs. TMP selectivity and conversion of olefins.

2.3. Effects of Metal Chloride (MCl) on the Acidity of the Chloroaluminate IL

In order to further study the acidity of mixed chlorometallate ionic liquids, the change in the 31P
chemical shift of the tepo vs. the composition of metal chloride (MCl, M = Cu or Ag) was investigated.
Here, the apparent mole ratio of organic salt to AlCl3 is 1:1.6, while the ratio of MCl to AlCl3 is 0.60:1,
0.55:1, 0.50:1, 0.40:1, 0.30:1, 0.20:1, 0.10:1, and 0.05:1, respectively. Tepo was added to each ILs, and then
the acceptor numbers were obtained for each sample.

When CuCl was added to the IL [(C2H5)3NH]Cl−AlCl3, AN values exhibit a tendency of first
decreasing and then increasing (Figure 3a). It might be explained by the reactions (1)−(8). [Al2Cl7]− is
a strong acidic anion in contrast to the [AlCl4]− anion. With the molar ratio of CuCl to AlCl3 increasing,
the concentration of [Al2Cl7]− would be proportionately decreased (reactions (1) and (2)). Subsequently,
the tepo reacted with AlCl3 or [AlCl4]−. The presence of tepo·AlCl3 indicated that the acid strength of
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[(C2H5)3NH]Cl−AlCl3 was reduced (reactions (3)–(6)). In particular, as we increased the concentration
of CuCl, a little solid would precipitate. This solid is presumably CuAlCl4 (reaction (6)).

Al2Cl7− + CuCl 
 CuAlCl5− + AlCl3 (1)

[(C2H5)3NH]+·AlCl4− + CuCl→ [(C2H5)3NH]·CuAlCl5− (2)

Al2Cl7− + Cl− 
 2AlCl4
− (3)

tepo + AlCl3 → tepo·AlCl3 (4)

tepo + AlCl4− → tepo·AlCl3 + Cl− (5)

CuAlCl5− → CuAlCl4 + Cl− (6)

However, when the mole ratio of CuCl to AlCl3 is great than 0.5, it is found that the AN value of
the IL was increased with respect to the 0.5 mole ratio. This result should be attributed to the following
reactions (7) and (8).

[(C2H5)3NH]+·AlCl4− + CuCl→ [(C2H5)3NCu]+ + AlCl4− + HCl (7)

tepo·AlCl3 + AlCl4
− + Cu+ 
 tepo·2AlCl3 + CuCl (8)

where tepo·2AlCl3 is more acidic than the tepo·AlCl3, resulting in an increase of the acidity.
Quantum theory calculation maybe provides another support of the above explanation. Vs,max

is an effective parameter for interpreting and predicting the acidic region of ILs. The larger
magnitude of Vs,max usually implies stronger acidity or interaction [36]. It is found that the Vs,max

of [(C2H5)3NH]+[CuAlCl5]− is slightly larger than that of [(C2H5)3NH]+[AlCl4]−, and the order
of Lewis acidity is [(C2H5)3NH]+[Al2Cl7]− > [(C2H5)3NH]+[CuAlCl5]− > [(C2H5)3NH]+[AlCl4]− >
[(C2H5)3NCu]+[AlCl4]− [37,38]. When a small amount of CuCl was introduced into the IL, CuCl
might first react with [Al2Cl7]− to form CuAlCl4 or [CuAlCl5]−. Decreasing the concentration of
[Al2Cl7]− would lead to reducing the acidity of the whole [(C2H5)3NH]Cl−AlCl3. However, adding
more CuCl to the IL, [(C2H5)3NH]+ would react with Cu+ to form [(C2H5)3NCu]+ in accordance with
the reaction (7). Meanwhile, a large quantity of [AlCl4]− anion might have more opportunity to react
with Cu+, and finally formed more acidic [(C2H5)3NH]+[CuAlCl5]−. Therefore, it may be deduced
that [(C2H5)3NCu]+ and [CuAlCl5]− should all exist in the [(C2H5)3NH]+−based chloroaluminate
IL. The change of 31P chemical shifts for [(C2H5)3NH]Cl−AlCl3−AgCl is very similar to that of
[(C2H5)3NH]Cl−AlCl3−CuCl, indicating that [AgAlCl5]− and [(C2H5)3N·Ag]+ ions should also
present in the IL.
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Figure 3. Effects of MCl on the acidity of the chloroaluminate IL: (a) adding MCl (M = Cu, Ag) into
[(C2H5)3NH]Cl−AlCl3; (b) adding CuCl into [Bmim]Cl−AlCl3.
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However, the AN value of the [Bmim]Cl−AlCl3−CuCl system is different from those of
[(C2H5)3NH]Cl−AlCl3−CuCl. With the mole ratio of CuCl to AlCl3 increasing, the 31P shifts shows a
monotonic decreasing trend (Figure 3b). When CuCl continues to be added to [Bmim]Cl−AlCl3, CuCl
would react with chloroaluminate anions according to the reaction (1), and thus the acidity of ionic
liquids decreased with increasing the content of [AlCl4]−. It is well known that [Bmim]+[Al2Cl7]−

would give more stronger acidity than that of [Bmim]+[AlCl4]− or [Bmim]+[CuAlCl5]− [39,40].
With more CuCl being added, the acidity of [Bmim]Cl−AlCl3−CuCl would become weaker than that
of [Bmim]Cl−AlCl3 because of the consumption of [Al2Cl7]−.

2.4. The Speciation of Mixed Chlorometallate Ions

To further clarify the mixed metal ions, effects of AlCl3 on the acidity of net chlorometallate IL
(e.g., [(C2H5)3NH]Cl−CuCl, [BMIM]Cl−CuCl) were investigated. In this work, the ratio of organic
salt to CuCl is kept constant 1:1. After [(C2H5)3NH]Cl−CuCl or [BMIM]Cl−CuCl was prepared,
AlCl3 was then added to the IL. The ratios of AlCl3 to organic salt were 0.5:1−1.5:1. All ionic liquids
were homogeneous solutions, and no solid precipitate has been found. Because the CuCl was the main
inorganic species of the IL, there were a large quantity of [CuCl2]− and [Cu2Cl3]− anions.

With the mole ratio of AlCl3 to CuCl increasing, the changes of the AN value for
[(C2H5)3NH]Cl−CuCl−AlCl3 have shown three distinct stages (Figure 4). Therefore, the interaction
model between AlCl3 and the original cations/anions may be deduced through these phenomena.
The addition of AlCl3 increases the AN value of [(C2H5)3NH]Cl−CuCl at the first stage, indicating
that [(C2H5)3NH]+ and Cl− ions would directly react with AlCl3 to form [(C2H5)3NH]+[AlCl4]−

(reaction (9)).
[(C2H5)3NH]+ + Cl− + AlCl3 → [(C2H5)3NH]+[AlCl4]− (9)

However, the change of AN values exhibits a platform when more AlCl3 was added, suggesting
that the ions of [(C2H5)3N·Cu]+[AlCl4]− were formed (reaction (7)). Because the Lewis acidity of
[(C2H5)3N·Cu]+[AlCl4]− is significantly less than that of [(C2H5)3NH]+[AlCl4]−, the presence of the
[(C2H5)3N·Cu]+ would neutralize the acidity resulted from the addition of AlCl3. When the ratio of
AlCl3:CuCl exceeded 1:1, the AN value was increased again. A large amount of [CuAlCl5]− anion
should be formed at this stage (reaction (2)), which enhanced the Lewis acidity of the ionic liquid.

The change of AN values caused by the interaction of AlCl3 and [Bmim]Cl−CuCl is illustrated in
Figure 5. Unlike the system of [(C2H5)3NH]Cl−CuCl, the AN value of [Bmim]Cl−CuCl is almost kept
a monotone increasing trend when the ratio of AlCl3:[Bmim]Cl is from 0.50:1 to 1.3:1. It means that
[AlCl4]− and [Al2Cl7]− anions were formed in the [(C2H5)3NH]Cl−CuCl ionic liquid.

AlCl3+Cl−→AlCl4− (10)

2AlCl3+Cl−→Al2Cl7− (11)

However, the acidity of [Bmim]Cl−CuCl−AlCl3 would be reduced slightly as AlCl3: [Bmim]Cl >
1.3:1, indicating that the [CuAlCl5]− anions were present in the IL (reaction (1)). Because the acidity
of [Bmim]+[CuAlCl5]− is lower than that of [Bmim]+[AlCl4]−, a large amount of [CuAlCl5]− would
lower the acidity of the ionic liquid. On the other hand, benzene−CuAlCl4 and ether−CuAlCl4 are two
common solvents for the absorption of C2−C4 olefins. The structure of benzene−CuAlCl4 have been
investigated by many works [34,41–43]. That is, CuAlCl4 is the main species of the metal ion-aromatic
complexes. When AlCl3 was added to these solvents, the changed trend of AN values (Figure 5b) is
very similar to that of [Bmim]Cl−CuCl−AlCl3 system. The results suggest that [Al2Cl7]−, [AlCl4]−,
and [CuAlCl5]− should be the dominated anions in these solvents.

In summary, the mixed metal ions [CuAlCl5]− and [(C2H5)3N·Cu]+ would be formed in
the [(C2H5)3NH]Cl−CuCl−AlCl3 system. Whereas, only one type of mixed chlorometallate ions
[CuAlCl5]− should be present in the [Bmim]Cl−CuCl−AlCl3 ionic liquid.
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3. Materials and Methods

3.1. Preparation of Ionic Liquids

All metal chlorides were anhydrous and high purity materials (>99%), which purchased
from Sigma–Aldrich Co. (Saint Louis, MO, USA). Triethylamine hydrochloride chloroaluminate
([(C2H5)3NH]Cl−AlCl3) and 1-butyl-3-methyl-imidazolium chloroaluminate ([BMIm]Cl−AlCl3) were
prepared and characterized using methods as reported previously [29,44]. In this work, the mole
ratio of AlCl3 to organic salt is kept at 1.6:1. The mixed chlorometallate IL were prepared by
directly adding metal chlorides to the chloroaluminate IL. According to the literature methods,
benzene−CuAlCl4 [41,42] and ether−CuAlCl4 [35] can be easily synthesized from the melt of CuCl
and AlCl3 (<250 ◦C), and then dissolved in the benzene or diethyl ether.

In a typical preparation for mixed chlorometallate IL, anhydrous aluminum chloride (~0.16 mol)
was first added to a round-bottomed flask that contains 0.1 mol 1-butyl-3-methyl-imidazolium chloride.
The reaction was then protected by nitrogen atmosphere at 110 ◦C. When the chloroaluminate
ionic liquid was formed, 0.05 mol metal chloride (e.g., CuCl) was mixed with the above IL. Finally,
the mixture was stirred at 110 ◦C overnight until a homogenous ionic liquid was obtained.

3.2. 31P NMR Spectroscopy

Triethylphosphine oxide (tepo) was obtained from Sigma–Aldrich Co. (Saint Louis, MO, USA).
It was stored in a nitrogen-filled glove box until used. Sample preparation for 31P NMR spectroscopy
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experiment was carried out in the glove box. The samples of chlorometallate ionic liquids were weighed,
and then tepo (5, 10, or 15 mol%) was mixed with the IL. The sample vial was put in an ultrasonic
mixer at room temperature overnight to ensure full dissolution. Before measuring the acceptor number,
the ionic liquid/tepo mixture was loaded into a NMR tube. Each NMR tube contained a sealed
capillary with deuterated dimethyl sulfoxide for external lock. In addition, 85% phosphoric acid
solution was also sealed in a capillary and loaded into the NMR tube, which was used as an external
reference (Scheme 1).

31P NMR measurements were performed on a Bruker WB-400 AMX Spectrometer (Zurich, Switzerland).
The spectra were obtained at 130.32 MHz with a pre-acquisition delay time of 0.5 s. All samples were
measured at 25 ◦C. Additionally, 5, 10, and 15 mol% solutions of tepo in hexane were prepared and
measured as described above. From the 31P NMR chemical shifts measured for tepo in hexane, the δinf
for the infinite dilution of the IL could be obtained by extrapolation. Moreover, the acceptor number
that related to this chemical shift can be defined as AN = 0.
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3.3. C4 Alkylation Reaction

In this work, C4 alkylation refers specifically to the reaction between isobutane and 2-butene.
Hydrocarbon materials (>99 wt.%) were all purchased from China National Petroleum Corporation
(Lanzhou, China) without further purification. As Scheme 2 shown, C4 alkylation reactions were
carried out in a batch reactor (50 mL). The reactor includes a mechanical stirrer, which can provide
1200 r/min agitation. In a typical alkylation procedure, the ionic liquid (~10 mL) was charged to the
reactor at first. The mixture of isobutane/2-butene with a 7.5:1 molar ratio was then pumped into the
reactor at the rate of 500 mL/h. Meanwhile, the impeller of the reactor began to stir. The reaction
temperature was 25 ◦C, which was controlled by a water bath. The pump was stopped after the
pressure of the reactor was higher than 0.4 MPa. However, the impeller kept stirring until the total
reaction time was about 30 min. The alkylate and the ionic liquid were unloaded from the reactor
and settled for 30 min. In a Claisen flask, the alkylation product was distilled to remove isobutane,
and the remainder of the hydrocarbon phase was withdrawn for analysis. The alkylate samples were
sent to a gas chromatograph (GC), Hewlett-Packard, 6890, Santa Clara, CA, USA). The GC column
was used to quantitatively analyze the product, which was a Supelco Petrocol DH capillary column
(Supelco Inc., Bellefonte, PA, USA) (50 m × 0.1 mm × 0.1 mm). The temperatures of the injector
and the detector were 180 ◦C and 200 ◦C, respectively. The temperature program of GC was listed
as follows: (1) holding the column temperature at 40 ◦C for 2 min; (2) increasing the temperature
of column box to 60 ◦C at a rate of 1 ◦C/min; (3) increasing the temperature to 120 ◦C at a rate of
2 ◦C/min; (4) increasing the temperature to 180 ◦C at a rate of 1 ◦C/min; (5) holding 180 ◦C for 2 min.
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The qualitative identification of the product was analyzed by means of a mass spectrometer (MS),
Hewlett- Packard, 5972 Series II column, Santa Clara, CA, USA).
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Scheme 2. The reaction scheme of C4 alkylation.

4. Conclusions

Gutmann acceptor numbers of the mixed chlorometallate ILs for C4 alkylation reaction have
been determined by using 31P chemical shifts of tepo. The requirement of the acidity for the C4

alkylation reaction is very strict, and the appropriate AN value should be around 93. If AN is less
than 88, the reaction would be difficult to carry out. However, too high AN values (e.g., >95) would
reduce the quality of the alkylates. When metal chlorides are added to different chloroaluminate ILs,
their AN values would change to different directions. The introduction of metal chlorides would
decrease the acidity of [Bmim]Cl−AlCl3, while slightly increase the AN value of [(C2H5)3NH]Cl−AlCl3
system. AN values show that [AlCl4]−, [Al2Cl7]−, and [MAlCl5]− (M = Cu, Ag) are the dominant
anions of the mixed chlorometallate ILs. Although [(C2H5)3N·M]+ cations maybe exist in the
[(C2H5)3NH]Cl−AlCl3−MCl system, these ions often reduce the Lewis acidity of the ionic liquids.
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