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Abstract: Solar water splitting is a promising method for producing renewable fuels. Thermodynamically,
the overall water splitting reaction is an uphill reaction involving a multiple electron transfer process.
The oxygen evolution reaction (OER) has been identified as the bottleneck process. Hematite (α-Fe2O3)
is one of the best photoanode material candidates due to its band gap properties and stability in
aqueous solution. However, the reported efficiencies of hematite are notoriously lower than the
theoretically predicted value mainly due to poor charge transfer and separation ability, short hole
diffusion length as well as slow water oxidation kinetics. In this Review Article, several emerging
surface modification strategies to reduce the oxygen evolution overpotential and thus to enhance
the water oxidation reaction kinetics will be presented. These strategies include co-catalysts loading,
photoabsorption enhancing (surface plasmonic metal and rare earth metal decoration), surface passivation
layer deposition, surface chemical etching and surface doping. These methods are found to reduce charge
recombination happening at surface trapping states, promote charge separation and diffusion, and
accelerate water oxidation kinetics. The detailed surface modification methods, surface layer materials,
the photoelectrochemical (PEC) performances including photocurrent and onset potential shift as well as
the related proposed mechanisms will be reviewed.

Keywords: hematite; photoelectrochemical; water oxidation; surface modification; flatband potential;
onset potential; photocurrent; kinetics; photoanode

1. Introduction

Solar water splitting is a technology that can potentially produce a clean, environmentally friendly
and cheap hydrogen fuel by using renewable energy sources. It allows to collect and store solar
energy in chemical bonds and thus to overcome the challenge of daily and seasonal variability in
renewable energy [1]. However, even though the electrolysis of water is considered to be one of
the easiest methods to obtain hydrogen [2], the required high overpotentials still hinder a large
scale application. Thermodynamically, the overall water splitting reaction is an uphill reaction
(∆G = 237 kJ/mol) involving a multiple electron transfer process [3]. The oxygen evolution reaction
(OER) has been identified as the bottleneck for the conversion process because of its large requisite
overpotential [4]. Hematite (α-Fe2O3) is predicted to be an efficient photoelectrode material due to its
moderate band gap (Eg = ~1.9–2.2 eV), chemical stability, abundance, non-toxicity and low cost [5–7].
A photocurrent of 12.5 mA cm−2 under AM1.5 solar light irradiation is predicted [8]. Although a
respectable photocurrent onset potential (Vonset) of <0.8 V vs. reverse hydrogen electrode (RHE) and
photocurrents of 3.2 mA cm−2 under AM1.5 solar light irradiation have been achieved [9], the reported
efficiencies are notoriously lower than the theoretical value. It is worth mentioning that the Vonset is
the shift or deviation from the flatband potential (Vfb). The flatband potential (Vfb) is the potential
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required to bring back the semiconductor band edges to their flat band position from the bending
position at the hematite/electrolyte junction. Vfb is an intrinsic property of hematite and one of the
key parameters used in the evaluation of the photocatalytic activity of the photoelectrode and mainly
affects the probability of charge recombination. The Vfb of hematite is around 0.4 V vs. RHE [9].
The quantity Vonset − Vfb is generally referred to as overpotential for the solar water oxidation. Thus,
a smaller value for (Vonset − Vfb) indicates a lower external bias (overpotential) required and hence
implies a better photocatalytic activity. The poor performance of hematite is predominantly due
to the poor charge transfer and separation ability, the short lifetime of the charge carriers (<10 ps),
accompanying a short hole diffusion length (2–4 nm) [10], as well as slow water oxidation kinetics.
Further improvements are highly demanded before the full potential of hematite can be reached for
artificial photosynthesis devices.

To improve the solar water splitting efficiency of hematite materials a nanostructured morphology
can be adopted, for example, nanorods or nanowire arrays [11], ultra-thin films [12], or thin films grown
on three-dimensional (3D) nanotextured conducting substrates [13]. However, the nanostructured
morphology strategy cannot speed up the slow water oxidation process, which limits the solar to
fuel energy conversion efficiency. Surface modification of the photoanode with a co-catalyst, loading
a surface passivation layer, or doing surface chemical corrosion were found to improve the overall
system efficiency [14]. These methods may reduce charge recombination occurring at surface trapping
states, promote separation and diffusion of carrier species and accelerate water oxidation kinetics [15].
Recently, forming heterojunctions at the nanoscale by coupling hematite to a second semiconductor
has been evidenced as an effective way to engineer the band structure for enhanced optical absorption
and promoting charge separation [15].

2. Surface Modification Strategies

In order to drive the water splitting reaction, the energy bands of the photoabsorber need to be
properly aligned. Considering the invariable losses, the interfacial charge transfers and overpotentials
for the molecular hydrogen and oxygen formation, a band gap of ~3.0 eV is required to make the
reaction energetically favorable if using a single junction PEC device. Further, the band positions
relative to the redox potentials of the electrolyte need to be considered. Figure 1a shows the energy
levels of conduction band (CB) and valence band (VB) of hematite in respect to the reverse hydrogen
electrode (RHE) and vacuum level (Evac). It can be seen that hematite has a more positive CB edge
than the hydrogen reduction potential, thus an external electrical bias is required to split water. This
is the main reason for the required overpotential [1] as well as the positive Vonset. Bulk doping is
an effective way to shift the Vfb and Vonset by changing the conduction and valence band levels [16].
However, details of bulk doping are beyond the scope of this review. Interested readers are referred
to the review references [17,18]. Slow water oxidation kinetics are considered to be another reason
for the positive Vonset. In order to enhance the water oxidation kinetics and reduce the applied
potential, various surface modification strategies have been developed for hematite photoanodes.
The effect of surface modification on a photoanode is schematically shown in Figure 1b. It can be seen
that surface modification can reduce the Vonset for water oxidation, increase the photocurrent and,
in some cases, reduce the Vfb. However, the effects and mechanisms of these surface modification
strategies are quite different. For example, a non-catalytic surface passivation layer may reduce
hematite surface charge trapping defects which reduces the electron-hole recombination rate, while a
co-catalyst may mainly assist hole transport from the surface of hematite to the electrolyte [19]. In the
next sections, various surface modification methods will be presented together with the resulting
effects and proposed mechanisms.
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The hematite bandgap (Eg), the flatband potential (Vfb), the applied bias (Vb), and the redox potential 

of water are indicated; (b) photoelectrochemical performance improvement of the hematite 

photoanode via surface modification. Arrow I indicates a photocurrent increase, arrow II indicates a 

photocurrent onset potential shift. The blue dotted line shows an idealized photocurrent vs. potential 

(I-V) of the hematite photoanode. The red line shows the I-V curve after surface modification while 

the back curve shows that of as prepared. 
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Figure 1. (a) Energy diagram for solar water splitting with a hematite photoanode performing the
oxygen evolution reaction (OER) and a cathode carrying out the hydrogen evolution reaction (HER).
The hematite bandgap (Eg), the flatband potential (Vfb), the applied bias (Vb), and the redox potential
of water are indicated; (b) photoelectrochemical performance improvement of the hematite photoanode
via surface modification. Arrow I indicates a photocurrent increase, arrow II indicates a photocurrent
onset potential shift. The blue dotted line shows an idealized photocurrent vs. potential (I-V) of the
hematite photoanode. The red line shows the I-V curve after surface modification while the back curve
shows that of as prepared.

2.1. Co-Catalyst

In the past few years, the studies of co-catalyst loading including noble metal oxides and earth
abundant metal oxides attracted great attention. Co-catalysts may promote separation and diffusion of
charge carriers, thus decrease the recombination rate, reduce the overpotential required for the OER to
occur, enhance the activity in the redox reactions, and in some cases provide a broadened absorption
range. In this section, we will start with a review of noble metal based co-catalyst surface modification.

2.1.1. Noble Metal Based Co-Catalysts

As it is well known that the PEC efficiency is limited by the sluggish four-electron water oxidation
kinetics [14,15], a great effort has been made to find a highly active and stable OER catalyst compatible
with the harsh working conditions, e.g., a wide range of pH values or a high anodic potential. Noble
metal oxides are the best available compromise between OER activity and stability at the moment.
Several noble metal based co-catalysts have been developed to modify the hematite photoanode
surface (see Table 1). These include IrO2 [9], IrOx [20,21], RuO2 [22], RuOx [23,24], Rh(OH)x [25]
and Pt [26]. For example, surface modification of nanostructured hematite photoanodes with 2 nm
IrO2 nanoparticles resulted in a 200 mV cathodic shift in the Vonset and an increase in the plateau
photocurrent from 3.45 to 3.75 mA cm−2 [9]. Even with this success, they still found the Vonset of
around 400 mV more positive than the Vfb, suggesting that surface states with mid-band-gap energies
cause the carrier recombination in hematite. This further emphasizes that the continued optimization
of both the nanostructure and the surface modification can ultimately achieve the full potential of solar
water splitting using hematite. An electrodeposited IrOx layer, which serves as a highly capacitive layer
was reported to catalyze water oxidation by enhancing charge separation and storing photo-generated
holes in hematite. This gave rise to a cathodic shift of 300 mV (see Figure 2) [20]. Similarly, Rh(OH)x

formed from the Na3RhCl6·12H2O alkaline solution was also used to modify the hematite photoanodes,
which resulted in a significant decrease of up to 200 mV in the overpotential due to efficient hole
transfer from hematite to Rh(OH)x [25]. Hematite modified with oxidized Pt species also shows a
greatly enhanced photocurrent density for water splitting, mainly due to improved charge transfer and
retarded carrier recombination [26]. Even though these noble metal or noble metal oxide decorated
hematite photoanodes show a significant overpotential reduction and high stability, it has to be
considered that noble metals are expensive and not abundant elements, making them unsuitable for
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large-scale water splitting applications. Therefore, it is an essential step towards practical applications
to find a cheap, efficient and scalable OER co-catalyst. In the next section, several earth abundant OER
co-catalyst will be reviewed.

Table 1. List of noble metal co-catalysts used for surface modification on hematite nanostructures.
Note: a vs. NHE, b at 0.72 V vs. NHE (200 W Xe, 150 mW·cm−2), c 500 W xenon illumination.

Noble Metal Preparation Electrolyte
Onset

Potential
(VRHE)

Onset
Potential

shift (mV)

Photocurrent at
1.23 VRHE

(mA cm−2)
Ref.

IrO2 Electrophoresis 1 M NaOH 0.8 200 ~3.2 [9]
IrOx Electrodeposition 0.1 M KPi (pH 7) ~1.1 300 0.2 [20]

IrOx Photoelectrodeposition 0.1 M KNO3
(pH = 1.01) 0.6 250 0.66 [21]

RuO2 Spray pyrolysis
0.2 M NaOH

containing 0.5 M
Na2SO4 (pH 13)

0.22 a 120 ~0.68 b [22]

Ru complex Dip coating 1 M NaOH 0.72 ~100 ~2.2 [23]

Ru complex Self-assembly
0.1 M

KHC8H4O4-HCl
buffer (pH 3)

0.7 ~200 ~0.12 [24]

Rh(OH)x Precipitation 1 M NaOH ~0.2 ~300 1.5 c [25]
Pt Sputtering 0.1 M NaOH 0.8 No data 0.638 [26]
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Figure 2. (a) Cross-section scanning electron microscope (SEM) image of fluorine doped tin oxide
(FTO)/hematite and (b) steady-state I-V curves for bare hematite and after electrodeposition of
pentamethylcyclopentadienyl (Cp*) iridium(III) [Cp*Ir(III)] from differently concentrated solutions
(5 µM, 10 µM, 1 mM and 5 mM). The lines are used as eye guides. Reprinted with permission from
Reference [20], copyright (2013) American Chemical Society.

2.1.2. Earth Abundant Metal Based Co-Catalysts

Several earth abundant transition metal oxides based e.g., on Co and Ni have been used to modify
photoanodes serving as stable co-catalyst that increases the turnover frequency (TOF) (see Table 2).
Amorphous cobalt oxide (CoOx), named also Co-Pi, which is electrodeposited by the oxidation of Co2+

ions to higher oxidation state in a neutral phosphate buffer solution, shows many favorable properties
for application as water oxidation catalyst [27]. This includes its facile synthesis procedure, low cost,
neutral operation condition (pH 7), and a self-repairing mechanism. It has emerged as one of the
most important OER co-catalysts and has been coupled with various photoanodes for effective PEC
water splitting [28,29]. For example, an electrodeposited Co-Pi modified hematite photoanode shows a
cathodic Vonset shift of 350 mV [30]. Scanning electron microscope (SEM) studies imply that the catalyst
layer deposited conformally onto the mesostructured hematite results in a large contact area at the
interface of the composite photoanode. The modification of the hematite film with a conformal layer of
co-catalyst is proposed to allow the separation of the processes of photon absorption and redox catalysis.
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This strategy has important and general ramifications for PEC hydrogen generation. The enhancement
mechanism by Co-Pi incorporation was addressed in a systematic PEC and impedance spectroscopy
study. The authors found that the Co-Pi co-catalyst can efficiently collect and store photo-generated
holes from the hematite electrode, thus, reduces the surface state recombination [31]. They also found
that thicker Co-Pi films lead to increased water oxidation efficiencies which they attributed to the
superior charge separation as well as the increased surface area. Besides Co-Pi, there are also other
Co-based co-catalyst modified hematite studies. Xi et al. found that in situ incorporation of the Co3O4

during hydrothermal growth of hematite nanorod arrays greatly improves the photocurrent and the
incident photon-to-current efficiency (IPCE) of hematite photoanodes (see Figure 3) [32]. We recently
investigated photoelectrodeposited CoBi modified hematite nanorods combining PEC characterizations
and in situ X-ray absorption spectroscopy (XAS) and found that the current density at 1.23 V of the
bare hematite is 0.88 mA cm−2 and increases to 1.12 mA cm−2 after CoBi co-catalyst modification
(~27% improvement) [4]. Operando XAS studies showed that photo-generated holes gradually oxidize
Co species into higher oxidation states, e.g., Co4+, in the CoBi layer. The CoBi co-catalyst layer is
suggested to mainly improve OER kinetics and also to reduce electron-hole recombination at the
surface, resulting in photocurrent enhancement and a cathodic shift of Vonset. Similar, nickel based
co-catalysts have been applied to hematite photoanodes for efficient solar water splitting [33–37].
For example, photochemically deposited Ni-Bi on hematite nanorods resulted in a cathodic shift of
>200 mV in the Vonset for water oxidation and a 9.5 times photocurrent enhancement at 0.86 V vs.
RHE compared to the pristine material [34]. The authors found that the Ni-Bi modified hematite
photoanode showed an encouraging improvement of photocurrent density near the Vfb of hematite.
In another study, atomic layer deposited (ALD) Ni(OH)2 led to a considerable reduction of the Vonset

for water oxidation and a twofold improvement in photocurrent density at 1.23 V vs. RHE, which was
effective for both the pristine and Ti-doped hematite photoanodes [36]. This enhanced performance is
attributed to the improved charge separation with the ion-permeable Ni(OH)2 catalyst film.

Table 2. List of earth abundant metal based co-catalysts used for surface modification on
hematite photoanodes.

Transition Metal Catalyst Preparation Electrolyte
Onset

Potential
(VRHE)

Onset
Potential

shift (mV)

Photocurrent
at 1.23 VRHE

(mA/cm2)
Ref.

Co

Co3O4
in situ hydrothermal

growth 1 M NaOH 0.66 40 1.20 [32]

Co-Bi
photoelectrochemical

deposition
0.1 M NaBi

(pH 9.2) 0.8 50 1.12 [4]

Co-Pi
electrochemical

deposition 1 M NaOH ~0.8 350 0.6 [30]

Co-Pi
photoelectrochemical

deposition
0.1M KPi (pH 6.9)

with 0.2 M KCl ~0.9 ~240 0.4 [31]

Ni

Ni(OH)2 ALD 1 M KOH 0.9 ~300 0.4 [36]

Ni(OH)2 Dip coating 1 M KOH and
0.1 M glucose 0.7 ~200 3.0 [33]

NiOOH Photoelectrodeposition 1 M NaOH 0.62 150 0.625 [37]
Ni-Bi Photodeposition 1 M NaOH 0.7 ~200 0.55 [34]
Ni-Bi Photodeposition 1 M KBi (pH~9.2) 0.6 140 0.65 [35]

Others

MnOx ALD 1 M NaOH 0.1.6 ~100 <0.01 [38]
FeNiOOH Electrodeposition 1 M NaOH 0.57 190 2.21 [39]

ZnCo
LDHs Electrodeposition 1 M KOH ~1.0 −100 1.73 [40]

NiCo2S4 hydrothermal method 1 M KOH 0.51 ~330 1.51 [41]
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Figure 3. (a) Cross-section SEM image of hematite after annealing at 550 °C for 2 h and (b) I-V curves 

of hematite photoanodes with different amounts of Co2+ added to the precursor solution. Reprinted 

with permission from Reference [32], copyright (2012) American Chemical Society. 
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Figure 3. (a) Cross-section SEM image of hematite after annealing at 550 ◦C for 2 h and (b) I-V curves
of hematite photoanodes with different amounts of Co2+ added to the precursor solution. Reprinted
with permission from Reference [32], copyright (2012) American Chemical Society.

In the literature, other metal oxides, e.g., MnOx [38], metal layered double (oxy)hydroxides [39,40] or
sulfides [41] have been used as co-catalysts for hematite photoanodes to promote PEC performances for
water splitting. For instance, electrodeposited FeNiOOH modified hematite resulted in a 190 mV cathodic
shift in the Vonset as well as a great increase in photocurrent density from 0.9 to 2.24 mA cm−2 [39].
The electrochemical impedance spectroscopy (EIS) results show that the FeNiOOH co-catalyst decreases
the charge transfer barrier and reduces the OER barrier, leading to a cathodic shift of the Vonset.

It can be seen that surface modification with co-catalysts is an effective strategy to facilitate the
water photo-oxidation reaction by accommodating excited electrons/holes via the oxidation of the
metal element of the co-catalyst, assisting photo-generated hole transport from the hematite to the
electrolyte and facilitating redox reaction kinetics. This results in a cathodic shift of Vonset and an
enhancement in the photocurrent for the solar water oxidation.

2.2. Enhancing Photoabsorption

The poor PEC performance of hematite is mainly due to a short lifetime of photo-generated
minority carriers (holes, <10 ps) as well as a short diffusion length (2–4 nm) [10], resulting in significant
non-radiative electron-hole recombination inside the hematite. The short diffusion length stands
in conflict with the long absorption length of light (near the band edge in the micrometer regime)
which greatly limits its PEC performance [14]. In recent years, several strategies including preparing
ultrathin films, nanostructured hematite morphologies (nanorod, nanowire, nanopillar, nanotube
and nanosheet), dual absorber heterostructures and 3D nanophotonic structured substrate/hematite
photoanodes giving maximum possible photon absorption have been developed. Interested readers
are referred to references [4–11,14,15,42]. Here, we will introduce two strategies, rare earth element
and surface plasmonic metal decoration, to enhance photoabsorption of hematite photoanodes.

2.2.1. Rare Earth Element Decoration

Rare earth elements have attracted great attention in catalytic processes due to their optoelectronic
properties arising from their unique electronic structure [43]. Infrared radiation accounts for a large
share of the solar energy distribution. Current solar water splitting devices generally consisting
of a semiconductor as photocatalyst, mainly absorb ultraviolet (UV) radiation and only to a much
smaller extend visible light (see Figure 4) [44]. Adapting the optical properties of a solar water
splitting device to the solar spectrum is a great challenge. One recent approach to improve the
performance of photoelectrodes is to take advantage of the low energy photons in the infrared (IR)
range [43,45]. Some of these rare earth elements, e.g., lanthanum, erbium or ytterbium, have the
capability to absorb light in the infrared region and to convert them into shorter wavelength photons
via a so-called up-conversion process, which effectively enhances the overall light harvesting and
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photon management in the films [43]. For example, Zhang et al. attempted to exploit IR radiation,
by casting a rare-earth element solution on top of hematite photoelectrodes [45]. Emission spectra
evidence that the rare earth nanocrystals (RENs) in the composite absorb at around 980 nm and emit
photons at 550 and 670 nm. The emitted photons are absorbed by the surrounding hematite film,
leading to a photocurrent enhancement from 25 to 130 nA cm−2 and thus to an improvement of water
splitting efficiency. In another study, it is proposed that drop-casted ytterbium oxide on hematite
nanorod photoelectrodes induces the formation of a passivating layer that accounts for the great
photocurrent enhancement [46]. However, it might be that here, the photoabsorption enhancement
effect via up-conversion also plays a role.
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of the up-conversion process (top) and enhanced solar water splitting performance by using near
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2.2.2. Surface Plasmonic Metal Decorated Hematite

Surface plasmon polaritons (SPPs) are electromagnetic excitations coupled to the collective
oscillations of free electrons on a metal surface, and thus can be considered to be surface electromagnetic
waves propagating along the interface of a metal and a dielectric material [47]. The SPP electromagnetic
field is confined to the vicinity of the metallodielectric boundary, resulting in a great field enhancement
at the interface. For a plasmonic metal decorated semiconductor photoanode, the optical excitation of
SPPs propagating at the nanostructured metallodielectic interface probably traps incident solar energy
and transforms it into surface electromagnetic waves propagating along the photoelectrode surface,
thus enhances the effective light path length as well as the absorption [47]. It probably also enhances
solar absorption near the interface where the electromagnetic field is confined and amplified. Thus,
SPPs are promising to overcome the dilemma of the requirement for hematite to be physically thin
enough and optically thick enough for efficient solar energy-conversion.

In recent years, surface plasmonic nanostructures have been widely studied in enhancing the
solar water splitting efficiency [48–50]. For example, the influence of gold nanoparticles on hematite
photoanodes for solar water splitting was reported [49]. Only for electrode geometries with metal
particles located at the semiconductor-electrolyte interface a relative enhancement was observed
(see Figure 5) [49]. This is in agreement with the observation that minority carrier (holes) transport to
the electrolyte is the most significant barrier to achieving high efficiencies in this system. In another
study, three times higher light absorption and photocurrent improvement compared with the pristine
hematite photoanodes are achieved from thin hematite films containing Au nanoparticles [50]. They
found that the plasmonic enhancement goes along with an increase in the amount of Au nanoparticles
for hematite films of constant thickness and is maximized for thin films. A thin hematite film can
reduce the charge transport distance and have an optimal local field enhancement effect. The plasmonic
resonance of metallic nanoparticles can also be adjusted through adjustment of the shapes or sizes to
match the absorption bands of semiconductors [47]. It also strongly depends on the light incidence
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angle. The disadvantage of surface plasmonic metal decoration is the usage of noble metal, thus the
high cost and low abundancy are critical issues.
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Figure 5. (a) Two different electrode configurations: Embedded and surface; (b) I–V curves for the
embedded configuration and (c) I–V curves for the surface configuration. Reprinted with permission
from reference [49], copyright (2011) American Chemical Society.

2.3. Surface Passivation

Even when using a nanostructured hematite combined with a surface incorporating oxygen
evolution co-catalyst, a large overpotential is still required to drive water oxidation. This suggests
that other factors besides slow OER kinetics or poor visible light absorption greatly affect the water
splitting [42]. Surface states, also named interfacial states, are two-dimensional (2D) localized levels
associated with the surface of hematite, which are caused by either oxygen vacancies or crystalline
disorder [7,51]. Surface states are thought to be responsible for the recombination of photo-generated
electron-holes before participating in the water oxidation reaction. However, they are also considered
to transfer the photo-generated holes and accelerate the water oxidation reaction (see Figure 6) [51].
In order to improve charge separation at the hematite/electrolyte interface, introducing a surface
passivation layer is an effective way to minimize the surface states. Representative surface passivation
materials, such as Al2O3 [7,52,53], Ga2O3 [53], In2O3 [53], ZnO [54] and TiO2 [55,56], have shown
significant photocurrent improvements and resulted in a cathodic shift of Vonset (see Table 3). These
studies showed that advantageous surface modifications of hematite can be achieved by safe,
inexpensive materials as well as simple processing techniques. Established preparation methods
are spin coating, ALD, hydrothermal and chemical bath deposition. For example, Le Formal et al.
coated nanostructured hematite photoanodes with a very thin (0.1 to 2 nm) Al2O3 overlayer by ALD
and found a significant decrease in the overpotential, due to the passivation of surface trapping states
eliminating surface charge recombination [7,52]. Hisatomi et al. found that an Al2O3, Ga2O3, or In2O3

engineered overlayer created by facile chemical bath deposition can improve the Vonset of PEC water
oxidation of hematite photoanodes [53]. These corundum-type overlayers were expected to release the
lattice strain of the ultrathin hematite layer, reducing the surface state density. As revealed by transient
absorption (TA) studies under applied bias, such cathodic shift of the Vonset, coincides with a similar
cathodic shift of the occurrence of long-lived photo-generated holes, was due to slower electron-hole
recombination, and primarily attributed to enhanced electron depletion in hematite [15]. Xi et al.
previously reported that a very thin ZnO overlayer deposited by spin-coating on the surface of a
hematite film was found to enhance the photocurrent by more than 40% and to induce a cathodic Vonset

shift of 170 mV, compared to untreated hematite [54]. This improvement resulted from the altered
Vfb and reduced surface defects. Yang et al. reported that an ultrathin ALD-grown TiO2 overlayer on
the hematite surface contributed to an obvious improvement in PEC water oxidation performance
by cathodically shifting the Vonset up to 100 mV [55]. With electrocatalytic or bulk doping effects
ruled out, this PEC improvement was attributed to better charge separation, fewer surface charge
recombination, and thus greater photovoltage induced by the TiO2 overlayer. A greater cathodic shift
of 250 mV in turn-on potential was achieved over hematite photoanodes with surface passivated by a
TiO2 overlayer via an ALD method [56]. TA spectroscopy shows that the enhanced PEC responses of
heterostructured photoanodes are mainly due to an enhanced charge separation.
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Table 3. List of materials and preparation methods used for surface passivation on hematite nanostructures.

Passivation Materials Preparation Electrolyte
Onset

Potential
(VRHE)

Onset
Potential

shift (mV)

Photocurrent at
1.23 VRHE

(mA cm−2)
Ref.

Al2O3 CBD 1 M NaOH 0.91 200 0.4 [52]
Al2O3 ALD 1 M NaOH 0.8 100 2.8 [7]
Al2O3 ALD 1 M NaOH 0.97 ~90 ~2.2 [53]
Ga2O3 CBD 1 M NaOH 0.8 ~210 ~0.45 [52]
In2O3 CBD 1 M NaOH 0.89 ~100 ~0.47 [52]
ZnAc Spin coating 1 M NaOH 0.76 170 1.08 [54]
TiO2 ALD 1 M NaOH ~0.9 100 1.014 [55]
TiO2 ALD 1 M NaOH 0.8 ~250 2 [56]

NaPO2H2 Decompose 1 M NaOH 0.7 100 1.1 [57]
CTAB Hydrothermal 1 M KOH 0.6 0 0.45 [58]
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passivation layer. (a) High charge recombination happening at surface defects and thus inefficient
water oxidation by the photo-generated holes; (b) use of thin non-catalytic passivation layers which
suppress surface recombination and improve water oxidation. Adapted from Reference [14], copyright
(2016) Royal Society of Chemistry.

Additionally, non-metal surface passivation of hematite using e.g., phosphorus [57], or bromide [58]
were previously presented. It was shown that amorphous phosphorus is able to passivate surface states
of a hematite nanorod photoanode and to suppress electron-hole recombination, significantly enhancing
the photocurrent for water oxidation [57]. It is proposed that cetyltrimethylammonium bromide (CTAB)
modification of the hematite surface leads to an increase of carrier density favoring the transport of
the charge carriers [58]. The Br-layer induced negative electric field created on the hematite surface is
assumed to speed up the interfacial charge transfer and the OER kinetics leading to an enhancement in
the solar water splitting performance.

2.4. Surface Chemical Etching

Surface chemical etching, e.g., etching with HF [59], HCl [60,61] or H2 [62], can remove native
and/or amorphous oxides and change the chemical state of the surface of the electrode, thus potentially
improve the surface conductivity and photocurrent. Hematite is generally accepted to be kinetically
stable under oxidizing conditions, hence surface etching may help to passivate surface states and
facilitate the water oxidation at low applied potentials [14,19]. An HF treatment on hematite nanowires
etches away the amorphous iron oxide phase at the surface, leading to a single crystalline surface
and a reduction of the Vonset by 300 mV [59]. Rioult et al. found that the HCl etching does not
contribute any amorphous structure removal [60]. They found that partial HCl wet-etching has a
great effect on the morphology of the hematite films, but also on the electronic structure and the
oxidation state. Recently, H2-treated hematite nanostructures were deposited by a simple pyrolysis
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of sodium borohydride (NaBH4) in a crucible [62]. The H2-treated photoanode showed more than
2.5 times photocurrent density enhancement and 120 mV cathodic shift in the Vonset than that of
the pristine hematite. The authors attributed the photocurrent increase to an increased number of
oxygen vacancies, while they correlated the cathodic shift of the Vonset to the surface effect of H2

treatment. Using CoF3 aqueous solution as an etching agent for Ti-doped hematite photoelectrode
was also reported [63]. The authors proposed that the adsorption of fluoride on the surface of the
electrode shifts the CB to a more negative potential than the redox level of H2/H+. This allows the
photo-generated electrons to directly reduce water to H2. There are also other etching agents to remove
surface defects [64,65]. Table 4 summarizes recent surface etching works for hematite photoanodes.

Table 4. List of surface chemical etching for surface modification on hematite nanostructures. Note:
a directly oxidizing Fe foil in a H2-O2 flame at around 1700 K.

Modification
Material Preparation Electrolyte

Onset
Potential
(VRHE)

Onset
Potential

Shift (mV)

Photocurrent at
1.23 VRHE

(mA cm−2)
Ref.

HF Dip in HF solution 1 M KOH ~0.8 No data ~0.18 [59]
HCl Dip in HCl solution 0.1 M NaOH ~1.0 100 ~1.0 [60]
HCl Dip in HCl solution 1 M NaOH 0.87 100 1.5 [61]

NaBH4 Pyrolysis by NaBH4 solution 1 M NaOH 0.87 120 2.28 [62]
CoF3 Dip in CoF3 solution 1 M NaOH 0.6 200 ~1.5 [63]

H2-O2
a React in a H2-O2 flame 1 M NaOH 0.50 No data ~0.45 [64]

Oxalic acid Dip in oxalic acid solution 1 M NaOH with and
without H2O2 added ~0.7 <20 ~1.4 [65]

2.5. Surface Doping

Surface doping with metal ions is an alternative way to obtain an enhanced PEC performance
of hematite photoanodes [14]. It possibly promotes charge migration, broadens the absorption range
and/or creates a doped overlayer to catalyze the surface water oxidation reaction. Several studies
demonstrated that surface-engineered hematite nanostructures with metal ion doping, e.g., Sn4+ [11],
Ni3+/4+ [66] or Ag+ [7], exhibited a considerable photocurrent density enhancement and cathodic
Vonset shifts [15] (see Table 5). Xi et al. treated hydrothermally grown iron oxyhydroxide nanorod arrays
with Sn4+ aqueous solution before subsequently annealing it at high temperature [11]. The formation
of a FexSn1−xO4 thin layer on hematite nanorod arrays by surface Sn doping is assumed to passivate
surface defects, thus to reduce electron-hole recombination at the interface of hematite–electrolyte,
as well as to suppress the electron tunneling from the hematite core. Later, similar to this approach,
a hematite nanotube photoanode doped with a thin NixFe2−xO3 overlayer on the surface showed a
280% enhancement of the photoconversion efficiency compared to the pristine hematite nanotube
film (see Figure 7) [66]. The authors proposed that the NixFe2−xO3 overlayer was attributed to
the facilitated charge migration, accelerated oxygen evolution, and avoiding the photoexcited hole
recombination at the interface of hematite and electrolyte [14,66]. Recently, an AgxFe2−xO3 passivation
layer with a thickness of 2–3 nm along hematite nanorods was reported for surface doping of Ag
ions [67]. The authors claimed that the Ag-doped passivation layer increases the charge carrier density
in the near-surface region and accelerates the kinetics of the surface oxidation reaction, synergistically
contributing to the improved PEC performances.
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Figure 7. (a) Schematic of the OER process taking place at the hematite photoanode. In the sketch map,
it only shows the OER process occurring on the outside surface of the hematite nanotube wall covered
with the NixFe2−xO3 thin layer. The authors admitted that the same process also occurs on the inside
surface; (b) current density (inset: Photochemical stability curves); and (c) incident photon-to-current
conversion efficiency (IPCE) curves of the pristine, Ni-deposited and Ni-doped samples. Reprinted
with permission from Reference [66], copyright (2012) American Chemical Society.

Table 5. List of surface doping for surface modification on hematite nanostructures.

Modification
Material Preparation Electrolyte

Onset
Potential
(VRHE)

Onset
Potential

Shift (mV)

Photocurrent at
1.23 VRHE

(mA cm−2)
Ref.

Sn4+ aqueous
solution

Drop the solution on top and then
anneal at high temperature 1 M NaOH 0.62 100 2.25 [11]

Ni2+ aqueous
solution

Electrodeposit and then anneal at
high temperature 1 M KOH ~1.0 100 ~1.0 [66]

Ag+ aqueous
solution

Dip in the Ag+ solution, dry and
then anneal at high temperature

0.5 M NaCl
(pH 6.7) 0.40 100 ~0.1 [67]

3. Conclusions and Outlook

Due to its moderate band gap, chemical stability, non-toxicity, abundance, and low cost, hematite
is a promising photoelectrode material for solar water splitting. However, it suffers from poor charge
transfer and separation ability, short hole diffusion length as well as slow water oxidation kinetics.
Several surface modification methods have been developed to improve slow water oxidation kinetics
and the range of light absorption in the past decade. In this review, several of these surface modification
techniques were reviewed. They include loading of co-catalysts, decorating with rare earth metal oxides
or surface plasmonic metal oxides to enhance photoabsorption, applying a surface passivation layer,
surface chemical etching and surface doping. Although significant progress in surface modification
has been made, continuous innovations and new studies of surface modification using operando
methods, e.g., UV-Vis, XAS, XPS and SEM are essential to meet the request for the development of
efficient photoanodes using hematite and to drive the solar water splitting into practical application.
In particular, future studies are highly demanded to explore new surface modification materials and
methods [42,68]. A limited material and method selection may not meet the demands for obtaining
highly efficiency solar water oxidation devices. We prospect that in the near future, a combination of
different modification strategies, as well as nanostructure and semiconductor engineering, may greatly
help to generate strong synergistic effects for further PEC performance improvement [15].
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