Supplementary Informations

Rapid Suzuki-Miyaura Couplings with ppm Level of Palladium Catalyst in a High-Pressure and High-Temperature Water System

Ikuhiro Nagao, Maya Chatterjee and Hajime Kawanami *

National Institute of Advanced Industrial Science and Technology, 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan; <u>inagao2018@gmail.com</u> (I.N.); <u>c-maya@aist.go.jp</u> (M.C.)

* Correspondence: h-kawanami@aist.go.jp; Tel.: +81-22-237-2097

Received: 21 September 2018; Accepted: 9 October 2018; Published: date

For all the experiments, total flow rates of water and substrates solution from liquid pumps were kept constant at 4.8 mL/min under ambient conditions. Under the working conditions, Reynolds number and residence time of the fluid in the microreactor at various temperature and pressure were estimated as described below:

Density and viscosity data from "NIST Chemistry Webbook" were utilized for the calculations.

Residence time (t) in the reaction tube was calculated using equation (1).

$$t = \pi \left(\frac{r}{20}\right)^2 \times L \times \rho_w \times \left(\frac{60}{F_{total}}\right) \tag{1}$$

where *t*: residence time (s), *r*: inner diameter of microreactor SUS316 tube (= 0.5 mm), *L*: length of SUS316 microreactor tube (cm), ρ_w : density of water at certain temperature/pressure (g/cm³), *F_{total}*: total flow rate of pumps (g/min).

Graphical representation of residence time using reactor of 450 cm length (0.88 cm³) at various temperatures/pressures is shown in **Figure S1**.

On the other hand, Reynolds number (Re) was calculated based on equation (2).

$$Re = Du\rho_w/\mu_w \tag{2}$$

where D: inner diameter (5.0 × 10⁻⁴ m), u: velocity of the object relative to the fluid (m/s), ρ_w : density of water (kg.m⁻³), μ_ω : dynamic viscosity of water (kg/(m.s)).

Graphical representation of Reynolds number at various temperatures/pressures is shown in **Figure S2**. Applied conditions in this investigation (pressure = 30~45 MPa; temperature = 350~445 °C) correspond to the estimated Reynolds number of approximately > 3.0×10^3 .

Figure S1. Residence time vs reactor length of reactor system.

Figure S2. Reynolds Number at each temperature.

Table S1 References	F			Process con	ditions													
lanuscript		IS		Water	Aqueous Soluti	ion of Catalyst/Bas	6	EtOH Solution of	f Substrate	Equivalence		Coil Reactor		Reactor Conditi	ons	Extra	ction	ction Theoretical Pi
Tables En	tries Figures	Tables	Entrie	s Feeding Rate from Pump1	e PdCl2 Conc	NaOH Conc	Feeding Rate from Pump2	Substrates Conc (1/2)	Feeding Rate from Pump3	PdCI2	NaOH	Diameter/Length	Volume (mL)	Pressure	Temperature	Feeding from Pu	Rate	mp4 4-Methylbiphu
				(mL/min)	(mM)	(<u>M</u>)	(mL/min)	(M)	(mL/min)	(mol%)	(mol%)	(mm/m)		MPa	degC	(mL/mir	1	1) (mmol/min)
Table 1 1	Figure 2	2 Table S	2	4.24	1.0	1.0	0.40	0.50/0.50	0.16	0.5	500	0.5/10	1.96	16	50 100	4.80		0800
4 0			4 ω												125 175			
5			6 5												200			
	//		7												250	<u> </u>		
	//		9 8												300			
$\left \right $	//		10												325			
Table 1 6		/	/		0.50					0.25					200			
	Figure 2	2 Table S	32	4.44	1.0		0.20				250				50			
			12												100			
	///		л <mark>14</mark> с												150			
Table 1 7	/		16												200			
	//		17												225			
Table 1 8		/	/		0.50					0.125					200			
	Figure	3 Table S	\$3 1,8,15	,22	0.010					0.0025		0.5/6	1.18		see Table S3	1		
Ą	//		2,9,16	,23 7.24								0.5/5	0.98					
			4,11,1	8,25								0.5/3	0.59					
			5,12,1	9,26								0.5/2	0.39					
/	//		0,13,2 7,14,2	1,28								0.5/0.3	0.059					
Table 1 9	Figure 4	4 Table S	1		0.10					0.025		0.5/10	1.96	1	200			
			2	4.48			0.16			0.02	200							
	//		. ω	4.52			0.12	-		0.015	150	•						
$\left \right $	//		n 4	4.56			0.08	_		0.01	100							
//	//		ກ ບ	4.60			0.04			0.000	0 20							
Table 1 10	/		7	4.44	0.010		0.20			0.0025	250				225			
	/		80	4.52			0.12			0.0015	150							
			9	4.55			0.09			0.001125	112.5							
			10	4.56			0.08	-		0.001	100							
	//		Ξ	4.57			0.07			0.000875	87.5							
	//		12	4.58			0.06			0.00075	75							
	//		13	4.6			0.04	-1		0.0005	50							
	///		í 14	4.64			0	-		0	0				200			2
	Figure	5 Table S	- -	4.26			0.30		0.24	0.0025	250				200			0.12
/	//		• ا	3.90			0.50		0.40									0.20
Ą	//		4 0	3.72			0.60		0.48									0.24
$\left \right $	//		UI .	4.04			0.60	1.5/1.5	0.16									0.24
	/		6	3.66			0.90		0.24									0.36
	//		7	3.28			1.20	_	0.32									0.48
$\left \right $	//		0 00	2.90			1.50		0.40									0.60
//	Figure 6		/	4 44			0.20	0 50/0 50	0.16									0.080
/	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		/	/			0110	000 000								-		0000

Table S2. S	creening of F	Process Temp	eratures			
Me	-B(OH) ₂		PdCl₂ NaOH H₂O/EtOH Me			
1		2	16 M	Pa	3	
Entry	PdCl ₂	NaOH	Temp	Residence time	Yield of 3	
	(mol%)	(eq)	(°C)	(s)	(%)	
1	5.0×10^{-1}	5.0	50	24.4	38	
2			100	24.0	78	
3			125	23.7	82	
4			175	22.7	84	
5			200	21.5	98	
6			225	20.7	97	
7			250	19.9	67	
8			275	19.0	62	
9			300	17.8	53	
10			325	16.4	39	
11	2.5×10^{-1}	2.5	50	24.4	5	
12			100	23.7	33	
13			125	23.2	64	
14			150	22.7	79	
15			175	22.1	90	
16			200	21.5	99	
17			225	20.7	99	
18			250	19.9	77	
a) Process con	ditions: refer to	Figure S1.; b)	The yields were	e determined by ¹ H-N	MR using tridecane	
as an internal	standard.					

Figure S3. GC Charts of the reaction products without purifications.

Figure S4. NMR Chart of the reaction product without purifications.

Table S3. E	ffects of Res	idence Time.				
Me		<u> </u>	PdCl ₂ (0.00 NaOH (2	25 mol%) 2.5 eq)	► Ma_	
		_/ '	H ₂ O/E	EtOH		_/ _/
1		2		ira	[3
Entry	Temp	Reactor Vol.	Residence	Yield of 3	TON	TOF (s^{-1})
	(°C)	(mL)	Time (s)	(%)		
1	225	1.18	12.4	99	3.96×10 ⁴	3.19×10 ³
2		0.98	10.4	98	3.94×10 ⁴	3.78 ×10 ³
3		0.79	8.3	97	3.87×10 ⁴	4.67×10 ³
4		0.59	6.2	95	3.79×10 ⁴	6.12×10 ³
5		0.39	4.1	95	3.78×10 ⁴	9.22×10 ³
6		0.20	2.1	90	3.61×10 ⁴	1.72×10 ³
7		0.059	0.62	61	2.45×10 ⁴	3.95×10 ³
8	200	1.18	12.9	99	3.94×10 ⁴	3.05×10 ³
9		0.98	10.7	96	3.86×10 ⁴	3.61×10 ³
10		0.79	8.6	92	3.69×10 ⁴	4.30×10 ³
11		0.59	6.4	91	3.63×10 ⁴	5.67×10 ³
12		0.39	4.3	83	3.33×10 ⁴	7.77×10 ³
13		0.20	2.1	64	2.56×10 ⁴	1.22×10 ⁴
14		0.059	0.64	53	2.12×10 ⁴	3.31×10 ⁴
15	175	1.18	13.3	98	3.93×10 ⁴	2.96×10 ³
16		0.98	11.1	97	3.87×10 ⁴	3.49×10 ³
17		0.79	8.8	93	3.72×10 ⁴	4.23×10 ³
18		0.59	6.6	73	2.91×10 ⁴	4.41×10 ³
19		0.39	4.4	62	2.49×10 ⁴	5.66×10 ³
20		0.20	2.2	39	1.55×10 ⁴	7.05×10 ³
21		0.059	0.66	41	1.64×10 ⁴	2.48×10^{4}
22	150	1.18	13.6	77	3.06×10 ⁴	2.25×10 ³
23		0.98	11.4	70	2.79×10 ⁴	2.45×10 ³
24		0.79	9.1	60	2.38 ×10 ⁴	2.62×10 ³
25		0.59	6.8	36	1.43×10 ⁴	2.10×10 ³

26		0.39	4.5	25	1.01×10 ⁴	2.25×10 ³
27		0.20	2.3	12	4.84×10 ³	2.10×10 ³
28		0.059	0.68	9	3.69×10 ³	5.42×10 ³
a) Process cor	nditions: refer to	Figure S1.; b)	The yields were	determined by	¹ H-NMR using	tridecane as
an internal sta	ndard.					

Figure S5 The residence time effects on turn over frequency (TOFs); \blacklozenge : 225°C, \blacksquare : 200°C, \blacktriangle : 175°C, \times : 150°C.

Table S4. Effect of Su	ubstrate Concentration.		
Me — (OH) ₂	PdCl ₂ (0.0025 mol%) NaOH (2.5 eq) H ₂ O/EtOH 2 16 MPa, 200 °C	Ne - Ale - A	- Me
Entry	Total Concentration	Yield	(%)
	of Substrates (M)	3	4
1	0.025	>96%	0.14
2	0.033		0.22
3	0.042		0.24
4	0.050		0.29
5	0.050		0.22
6	0.075		0.23
7	0.10		0.29
8	0.125		0.68
9	0.15		0.79
a) Process conditions: refe internal standard.	r to Figure S1.; b) The yields were	e determined by ¹ H-NMR	using tridecane as an

Figure S6 Production ratio of by-products (1,1) biphenyl and 4,4 dimethyl-1,1 biphenyl) in the concentration of substrate (1 + 2).