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Abstract: Cuprous oxide nanoparticles (Cu2O NPs) were dispersed into a graphene oxide (GO)
solution to form a homogeneous Cu2O-GO dispersion. After this, the cuprous oxide nanoparticles
were functionalized to electrochemically reduce the graphene oxide decorated glassy carbon electrode
(Cu2O-ErGO/GCE). This was prepared by coating the Cu2O-GO dispersion onto the surface of
the glassy carbon electrode (GCE), which was followed by a potentiostatic reduction process.
An irreversible two-electron reaction of uric acid (UA) was observed at the voltammetric sensor.
Moreover, the high concentrations of dopamine (DA) and ascorbic acid (AA) hardly affected the peak
current of UA, which suggested that Cu2O-ErGO/GCE have excellent selectivity for UA. This is
probably because the response peaks of the three compounds are well-separated from each other. The
oxidation peak current was proportional to the concentration of UA in the ranges of 2.0 nM−0.6 µM
and 0.6 µM−10 µM, respectively, with a low limit of detection (S/N = 3, 1.0 nM) after an accumulation
time of 120 s. Cu2O-ErGO/GCE was utilized for the rapid detection of UA in human blood serum
and urine samples with satisfactory results.
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1. Introduction

Uric acid (UA) is a metabolite of nucleoprotein and nucleic acid. Having excessive amounts of
UA in the human body can cause gout, renal failure and congenital hyperuricemia [1,2]. Therefore, the
quantitative analysis of UA in the physiological fluids is of great importance in drug control and clinical
diagnosis. Various methods have been developed for UA detection, such as spectrofluorometry [3],
chromatography [4,5], enzymatic methods [6,7], chemiluminescence [8] and electroanalytical methods.
Among these techniques, electrochemical methods are very suitable for the practical detection of
UA due to their unique superiorities, including low cost, high sensitivity and good selectivity. The
electrochemical determination of UA is commonly based on monitoring the oxidation signal of UA
on the electrode. The electrooxidation process of UA is illustrated in Scheme 1 [9]. However, it is
susceptible to interference from coexisting species, such as dopamine (DA) and ascorbic acid (AA),
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when detecting UA with bare electrodes since they have similar oxidation peak potentials [10–12].
Nanocomposite-modified electrodes can improve the anti-interference performance and selectivity,
which is a common method that is used to solve this problem. At present, many chemically modified
electrodes have been proposed for the determination of UA [9,13–22] although their selectivity is
limited, especially due to the coexistence of DA and AA. Hence, developing a modified electrode with
high sensitivity and selectivity to meet clinical demands is still challengeable and desirable.
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Scheme 1. The reaction mechanism of UA.

In the past few years, transition metals and metal oxides have received increasing attention in
many fields, such as sensors and electrocatalysis, due to their unique sensing performance and superior
electrocatalytic activity [9,11,23,24]. Among these metal oxides, cuprous oxide (Cu2O) is a new type
of p-type semiconductor with a narrow band gap, which can also be easily excited by visible light.
Due to their outstanding advantages, such as non-toxic, low cost and stable photochemical properties,
Cu2O nanoparticles have been extensively used in many fields, such as new energy, photocatalytic
degradation, sterilization and sensing [25–27]. The different morphologies of Cu2O nanomaterials,
such as hollow spheres, cubes, wires, octahedrons and cages, can be synthesized by adjusting the
synthesis conditions [28]. At present, various electrochemical sensors based on Cu2O nanoparticles
have been constructed for the detection of H2O2 [29,30], glucose [30–32], dopamine [33–35], herbicide
paraquat [36], L-tyrosine [37], vanillin [38], sunset yellow [39] and NO2 [40]. As far as we know, the
use of Cu2O for the determination of UA has rarely been reported in the literature. However, Cu2O
nanoparticles are easily agglomerated, which greatly limits their application in electrochemical sensors.
How to reduce the agglomeration of nano-semiconductors is an urgent problem to be solved.

Graphene (GR) is a single-layer two-dimensional planar crystal with the specific surface area
of 2630 m2/g, which enables it to be an ideal template for GR-based composites in the fields of
battery, photocatalysis, sensing and so on [41]. Xu et al. [29] successfully prepared Cu2O-reduced
graphene oxide nanocomposites using three various methods (namely physical adsorption, in-situ
reduction and one-pot synthesis). The composites were dispersed in 0.1% nafion solution and decorated
on the glassy carbon electrode (GCE) by a drop-coating technique, which were constructed for
nonenzymatic hydrogen peroxide sensing. Cu2O/GR nanocomposites were also successfully prepared
by a solvothermal method [33], with Cu2O/GR/GCE having showed good electrocatalytic activity
towards DA. As result, the proposed Cu2O/GR/GCE exhibited excellent sensing performances in
terms of linear range (0.1−10 µM) and limit of detection (LOD, 10 nM). Ye et al. [36] developed a novel
paraquat sensor based on Cu2O/polyvinyl pyrrolidone-functionalized GR nanosheet nanocomposite.
However, the preparation of the above GR-based composites is complicated, which greatly affects the
use of sensors in practical applications. Therefore, the development of a green routine for the creation
of Cu2O–GR composite-based electrochemical sensors is very crucial.

Herein, a simple and green routine was proposed to construct an ultrasensitive sensor based on
Cu2O/electrochemically reduced graphene oxide decorated glass carbon electrode (Cu2O-ErGO/GCE),
which aimed to selectively detect UA even in the co-presence of DA and AA. The Cu2O-loaded
graphene oxide (GO) nanocomposites were directly coated on the electrode surface, before being
electrochemically reduced to obtain Cu2O-ErGO/GCE. The as-obtained Cu2O-ErGO has excellent
electrocatalytic activity towards UA oxidation and thus, we have successfully realized the selective
and sensitive detection of UA in human blood serum and urine samples.
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2. Results and Discussion

2.1. Characterization of Surface Morphologies

The morphologies of Cu2O, GO and Cu2O-ErGO nanocomposites were recorded by Scanning
Electron Microscope (SEM) (Figure 1). Figure 1A shows the SEM image of the Cu2O nanoparticles.
Most of these Cu2O nanoparticles had a spherical outline, with an average diameter of around 100 nm
based on the SEM measurements of 500 nanoparticles. Figure 1B shows the low magnification SEM
image of GO nanosheets, which clearly illustrates the flake-like shapes. Furthermore, the thickness
of the wrinkled edges could be regarded as the thickness of the exfoliated GO nanosheets, which
displayed a thickness about 2–20 nm. The GO at a high magnification (inset of Figure 1B) had
a wrinkled surface, which corrugated and scrolled in a similar way to crumpled silk veils. This
lamellar structure of GO can effectively increase the specific surface area of the modified electrode.
Figure 1C clearly shows that a large number of Cu2O nanoparticles were decorated on a thin film of
electrochemically reduced graphene oxide (ErGO), indicating the Cu2O nanoparticles successfully
combined with the graphene support. Besides, the SEM image in Figure 1C revealed that these particles
have a similar morphology and size to the Cu2O particles in Figure 1A, indicating that the introduction
of ErGO did not change the structure of Cu2O. The Cu2O-ErGO nanocomposite is expected to improve
the catalytic activity and sensitivity due to the catalytic activity of Cu2O and large surface area of
GO [42].Catalysts 2018, 8, x FOR PEER REVIEW  4 of 15 
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2.2. Voltammetric Responses of UA on Different Electrodes

The voltammetric behavior of 10 µM UA on the bare GCE, GO/GCE, ErGO/GCE and
Cu2O-ErGO/GCE was measured in 0.1 M phosphate buffer solution (PBS, pH of 3.0) by cyclic
voltammetry (CV). Only one oxidation peak was observed on all electrodes (Figure 2), which indicated
that the electrochemical reaction of UA is completely irreversible. On the bare GCE, a broad and weak
oxidation peak was observed at 0.683 V with a oxidation peak current (Ipa) of 5.413 µA, corresponding
to a slow electron transfer kinetic process. On the GO/GCE, the oxidation potential (Epa) moves
positively to 0.705 V and the Ipa decreases to 1.315 µA. This phenomenon is closely related to the
retarded electron transfer due to the presence of poor electrical conductivity of GO. When decorated
with ErGO, the Ipa of UA increases obviously (Ipa = 30.89 µA) and the Epa shifts negatively to 0.580 V,
showing that ErGO has good electrocatalytic activity towards UA. This is probably due to the large
specific surface area and excellent electrical conductivity of ErGO, which eventually increases the
response current of UA. When decorated with the ErGO-Cu2O nanocomposites, the sharp oxidation
peak appears with the Epa further shifting negatively to 0.561 V and the Ipa further increasing to
57.69 µA. The Ipa for Cu2O-ErGO/GCE is about 10-fold higher than that on the bare GCE and
almost twice as large as that at the ErGO/GCE, which is due to the synergistic effect of ErGO and
Cu2O nanoparticles.
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time: 30 s and sweep rate: 0.1 V s−1.
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2.3. pH-Dependent Electrochemical Response

The influence of the solution pH on the voltammetric responses of 10 µM UA at Cu2O-ErGO/GCE
was investigated by CV. The variation of Epa and Ipa with the solution pH values are shown in Figure 3.
The Epa of UA shifts negatively with an increase in the pH, suggesting that the protons (H+) are
involved in the oxidation of UA. Moreover, Epa is linearly related to the pH, while the corresponding
regression equation is Epa (V) = −0.0548pH + 0.7304 (r = 0.9977). The slope (54.8 mV/pH) approaches
the theoretical value of 57.6 mV/pH, implying that the equal number of electrons and protons take
part in the UA oxidation. The Ipa of UA increases gradually with an increase in the pH, before
reaching a maximum in the pH range of 2.7–3.1. After this, the Ipa decreases with a further increase
in the pH. It is well known that the electrochemical behavior of UA (pKa1 = 2.38 and pKa2 = 9.39) is
dependent on the pH value of the aqueous solution. In an acidic solution, UA is positively charged
due to the protonation of the amino group, which is available to form strong hydrogen bonds with
oxygen-containing groups on ErGO surface, such as carboxyl groups and carbonyl groups. This
ultimately improves the adsorption of UA onto the electrode surface. Considering the sensitivity of
the detection, a pH of 3.0 is recommended for UA determination.Catalysts 2018, 8, x FOR PEER REVIEW  6 of 15 
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2.4. Sweep Rate and Electrochemical Kinetics

The electrochemical kinetics of UA oxidation at Cu2O-ErGO/GCE was investigated by CV, which
was measured at various sweep rates. As presented in Figure 4, the Ipa has a positive linear relationship
with the sweep rates (v), while the corresponding linear relationship can be expressed as Ipa (µA)
= 497.32v (V s−1) + 5.2533 (r = 0.9984). This indicates that the oxidation of UA is controlled by the
adsorption process. The diffusion or adsorption-controlled behavior was also cross-verified by plotting
logIpa vs. logv, which yielded a linear regression equation of logIpa (µA) = 0.8841logv (V s−1) + 2.6319
(r = 0.9987). The obtained slope (0.8841) is close to 1.0, which further confirms that the reaction is
adsorption-controlled. Furthermore, the Epa has a linear relationship to the Napierian logarithm of
sweep rate (lnv). The linear regression equation is Ep (V) = 0.0219lnv (V s−1) + 0.6117 (r = 0.9974).
For a completely irreversible and adsorption-controlled process, the electron transferred number
(n) was calculated to be 2 according to Laviron’s theory [43]. Combining with the pH-dependent
response results, the UA oxidation is a 2-electron and 2-proton process. This is consistent with previous
reports [12,21].
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2.5. Optimization of the Analytical Conditions

2.5.1. Optimization of Supporting Electrolytes

The influence of different supporting electrolytes on the Ipa of 10 µM UA at Cu2O-ErGO/GCE
was investigated. PBS (pH of 2.3–6.6), (CH2)6N4–HCl buffer (pH of 4.0–6.0), HAc–NaAc buffer (pH of
3.0–6.0), HAc–NH4Ac buffer (pH of 3.0–6.0), NH3-NH4Cl buffer (pH of 8.0–10.0), H2SO4, HCl and
H3PO4 (all concentrations of 0.1 M) were used as the supporting electrolytes. The sharp oxidation
peak with the largest Ipa was found in 0.1 M PBS.

2.5.2. Optimization of Accumulation Conditions

As demonstrated in Section 2.4, the oxidation of UA at Cu2O-ErGO/GCE is an
adsorption-controlled process. Therefore, the accumulation can increase the adsorption capacity
of UA on the electrode surface and significantly enhance the sensitivity of the detection. The influence
of the accumulation potential on the Ipa of UA is plotted in Figure 5A. When the accumulation potential
varied from −0.3 to 0.1 V, the Ipa altered very slightly. However, the Ipa of UA decreases rapidly when
the accumulation potential shifts to the positive and exceeds 0.1 V. The influence of the accumulation
time was also investigated, with the results presented in Figure 5B. During 0–120 s, the Ipa of UA
increases significantly over time, before leveling off. This is mainly related to the saturation adsorption
of UA on the electrode surface. Therefore, the accumulation was performed at −0.2 V for 120 s before
the electrochemical measurement or detection.

2.6. Analytic Properties

2.6.1. Calibration Curves, Dynamical Response Regions and Detection Limit

Under the optimal experimental conditions, the Ipa of UA with different concentrations at
Cu2O-ErGO/GCE was measured by Second-order derivative linear sweep voltammetry (SDLSV)
(Figure 6). The Ipa of UA increases linearly with an increase in the concentration in the ranges of
2.0 nM–0.6 µM and 0.6 µM–10 µM. The corresponding linear equations for these two ranges are Ipa (µA)
= 8.6267c (µM) + 0.1289 (r = 0.9971) and Ipa (µA) = 13.467c (µM) − 4.3026 (r = 0.9996), respectively. The
detection limit (S/N = 3) is found to be 1.0 nM. Compared with the existing nanocomposite-modified
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electrodes (Table 1), Cu2O-ErGO/GCE has a lower limit of detection and is suitable for the detection
of UA at a lower concentration level.
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concentrations of UA. (A) From inner to outer: 1, 2, 4, 6, 8 and 10 µM; (B) From inner to outer: 0.1, 0.2,
0.4, 0.6, 0.8 and 1.0 µM; (C) From inner to outer: 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08 and
0.10 µM; (D) Linear relationship between the oxidation peak currents and the concentration of UA:
(a) 0.6~10 µM and (b) 0.002~0.6 µM. Accumulation at −0.2 V for 120 s; Sweep rate: 0.1 V s −1.
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Table 1. Characteristics of various voltammetric sensors for the detection of uric acid.

Electrodes Techniques Supporting Electrolyte Working
Potential

Linear
Range/µM

Detection
Limit/µM

Repeatability
(RSD%) Stability Ref.

a PD-Cu(II)/GCE l DPV 0.1 M o PBS (pH 7.5) +0.4 V vs. SCE 60–1680 24.6 1.6 5.8% loss after 28
days [12]

b PSA-ERCG/GCE DPV 0.1 M NH3-NH4Cl (pH 9.0) +0.016 V vs.
SCE 0.02–15 0.012 2.8 10% loss after 2

weeks [13]

c P-4-ABA/GCE DPV 0.2 M PBS (pH 4.5) +0.576 V vs.
Ag/AgCl 1.0–80.0 0.5 3.1 2.3% loss after 1

week [14]

d Trp-GR/GCE DPV 0.1 M PBS (pH 7.0) +0.355 V vs.
Ag/AgCl 10–1000 1.24 5.92

2.77% loss after 1
week and 6.91% in 2

weeks
[15]

e Au-RGO/GCE DPV 0.1 M PBS (pH 7.0) +0.26 V vs. SCE 8.8–53 1.8 2.0 5% loss after 1 week [16]

f PDDA-G/CPE DPV 0.1 M PBS (pH 7.0) +0.18 V vs.
Ag/AgCl 0.5–20 0.08 3.6 10.1% loss after 20

days [17]

g poly
(Tyr)/MWCNTs-COOH/GCE DPV 0.1 M PBS (pH 7.4) +0.30 V vs. SCE 1.0–350 0.30 3.0 Not mentioned [18]

h MWCNT–HoFNPs–CH/GCE m CV 0.1 M p DCAABS (pH 1.0) +0.605 V vs.
SCE 0.2–500.0 0.16 1.19

No significant
change after 6

months
[19]

i PAO/GH/GCE DPV 0.1 M PBS (pH 6.5) +0.260 V vs.
SCE 0.1–1000 0.02 2.2 7.0% loss after 1

month [20]

j LaHCF/GCE DPV 0.1 M PBS (pH 7.0) +0.432 V vs.
SCE 0.2–100 0.1 Not mentioned Not mentioned [21]

k Nano-Au-PMT/GCE DPV 0.1 M PBS (pH 7.0) +0.37 V vs. SCE 0.07–1.0 0.045 Not mentioned 12.0% loss after 2
weeks [22]

Cu2O-ErGO/GCE n LSV 0.1 M PBS (pH 3.0) 0.561 V vs. SCE 0.002–0.6, 0.6–10 0.001 2.2 7.6% loss after 2
weeks This work

a PD-Cu(II)/GCE: polydopamine-Cu(II)-modified glassy carbon electrode; b PSA-ERCG/GCE: poly(sulfosalicylic acid) and electroreduced carboxylated graphene-modified glassy carbon
electrode; c P-4-ABA/GCE: poly(4-aminobutyric acid)-modified glassy carbon electrode; d Trp-GR/GCE: tryptophan-functionalized graphene nanocomposite-modified glassy carbon
electrode; e Au-RGO/GCE: Au nanoplates and reduced graphene oxide-modified glassy carbon electrode; f PDDA-G/CPE: poly(diallyldimethylammonium chloride)-functionalized
graphene modified carbon paste electrode; g poly (Tyr)/MWCNTs-COOH/GCE: poly (tyrosine)-functionalized multi-walled carbon nanotubes composite film-modified glassy carbon
electrode; h MWCNT–HoFNPs–CH/GCE: multiwalled carbon nanotubes–holmium fluoride nanoparticles–chitosan composite film-modified glassy carbon electrode; i PAO/GH/GCE:
poly (acridine orange)/graphene-modified glassy carbon electrode; j LaHCF/GCE: hexacyanoferrate lanthanum film-modified glassy carbon electrode; k Nano-Au-PMT/GCE:
poly(L-methionine)/gold nanoparticle-modified glassy carbon electrode; l DPV: differential pulse voltammetry; m CV: cyclic voltammetry; n LSV: linear sweep voltammetry; o

PBS: phosphate buffer solution; p DCAABS: dichloroacetic acid buffer solution.
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2.6.2. Interference

As we all know, AA, DA and UA always coexist in the biological fluids, such as blood and urine.
Hence, the interference effect of AA and DA on UA detection was first studied. The CV response of
10 µM UA in the presence of 1 mM AA and 50 µM DA is illustrated in Figure 7A. A broad and small
peak appears at 430 mV at the bare GCE, indicating the very close peak potentials of AA, DA and UA
at the bare electrode so that the simultaneous detection of the three compounds is difficult to achieve.
On the contrary, the oxidation peaks of the three species were well separated at both ErGO/GCE
and ErGO-Cu2O/GCE. For ErGO-Cu2O/GCE, the peak potential separation (∆Ep) between DA and
UA is greater, while the Ipa of UA is much higher than DA and AA. The SDLSV of DA, UA and AA
at ErGO-Cu2O/GCE is shown in Figure 7B. The ∆Ep for AA–DA, DA–UA are 0.262 V and 0.152 V,
respectively. The large ∆Ep is favorable for the accurate detection of UA without interference. Other
possible interferents, such as glucose, purine, oxalate, citrate and urea (all concentrations of 1.0 mM),
were also examined. The variation of Ipa is not beyond ±5%, indicating no significant interference
even in the presence of these potential interfering substances. Therefore, Cu2O-ErGO/GCE exhibits
good selectivity for the detection of UA.
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mixture of 1.0 mM AA, 50 µM DA and 10 µM UA obtained at Cu2O-ErGO/GCE.

2.6.3. Repeatability, Reproducibility and Stability

The repeatability of Cu2O-ErGO/GCE was validated by ten parallel measurements of the Ipa

of 10 µM UA. The relative standard deviation (RSD) is 2.2%, suggesting the good repeatability
of Cu2O-ErGO/GCE. The precision of multiple Cu2O-ErGO/GCEs was also investigated. Seven
Cu2O-ErGO/GCEs were fabricated by the same procedure independently and the RSD is calculated
as 4.8%, which suggested that the electrode fabrication method has good reproducibility. Finally, the
stability of Cu2O-ErGO/GCE was also evaluated. The ErGO-Cu2O/GCE was placed at 4 ◦C in a
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refrigerator for 2 weeks. After two weeks, the Ipa of 10 µM UA retains 92.4% of the initial response
current, indicating that the Cu2O-ErGO/GCE has good stability.

2.6.4. Real Sample Analysis

Under the optimal analytical conditions, Cu2O-ErGO/GCE was used for the detection of UA in
human serum and urine by SDLSV. The serum samples was provided by a local hospital and the urine
samples were collected from students in our group. A total of 1.0 mL was taken from each sample,
before being diluted with 0.1 M PBS (pH 3.0) in a 100-mL and 500-mL flask. The sample solutions were
measured by the SDLSV method. The results are listed in Table 2. The samples were spiked with UA
standard solution at levels similar to those found in the samples. The recoveries ranged from 97.5%
to 102.8%, which indicates that this method can meet the requirements for the detection of UA in the
actual samples.

Table 2. Determination of uric acid in human serum and urine samples.

Samples a Detected/µM Added/µM Total
Found/µM Recovery/%

b Content
Detected/mM

urine 1 3.488 (±0.084) 3.0 6.527 (±0.144) 101.3 1.744 (±0.042)
urine 2 3.637 (±0.087) 4.0 7.535 (±0.165) 97.5 1.819 (±0.044)
urine 3 5.142 (±0.118) 5.0 10.046 (±0.210) 98.1 2.571 (±0.059)
serum 1 2.483 (±0.065) 2.0 4.522 (±0.108) 102.0 0.248 (±0.006)
serum 2 4.336 (±0.095) 4.0 8.446 (±0.186) 102.8 0.434 (±0.010)
serum 3 3.210 (±0.067) 3.0 6.162 (±0.142) 98.4 0.321 (±0.007)
a The results are expressed as mean value ± S.D. based on four replicates (n = 4). b The value of content is obtained
by multiplying the detected value by the dilution factor of 100 for serum samples and 500 for urine samples.

3. Experimental

3.1. Reagents and Solutions

CuSO4·5H2O, NaOH, hydrazine hydrate solution (80 wt%), graphite powder, polyvinyl
pyrrolidone (PVP) and H2O2 solution (30 wt%) were obtained from Sinopharm Chemical Reagent Co.
Ltd. (Shanghai, China). AA, DA and UA were supplied by Sigma-Aldrich Co. (St. Louis, MO, USA).
All the reagents were of analytical grade. The stock solution of 0.01 M UA was prepared by dissolving
the UA solid into a small volume of 0.1 M NaOH solution, before this was diluted to reach the desired
concentration. Doubly distilled water was used in all experiments.

3.2. Synthesis of Cu2O Nanoparticles

According to a previous report [38], Cu2O nanoparticles (Cu2O NPs) were synthesized by the
wet-chemical method. Following a typical process, 100 mg of CuSO4·5H2O and 50 mg of PVP were
added into 20 mL of H2O with stirring. After this, 4 mL of NaOH (0.2 M) was added dropwise to
form a blue precipitate. In the end, 15 µL of hydrazine hydrate solution (80 wt%) was added and
the mixture was agitated at room temperature for 20 min. The solid product was separated from the
solution by centrifugation. After this, the product was cleaned with anhydrous alcohol and water,
before being vacuum-dried at 60 ◦C overnight.

3.3. Preparation of GO and Cu2O–GO Composite

Graphene oxide (GO) was synthesized according to our previous report [34]. Typically,
concentrated H2SO4 (23 mL) was cooled to 0 ◦C, before graphite powder (0.5 g) and NaNO3 (0.5 g)
were added with mechanical stirring. KMnO4 (3.0 g) was added slowly at a control temperature below
5 ◦C, before the temperature was raised to 35 ◦C and the mixture was stirred for 2 h to form a mash.
Subsequently, 40 mL of water was slowly added into the solution at a temperature below 50 ◦C, before
the temperature was increased to 95 ◦C and the mixture was stirred for 0.5 h. After 100 mL of water
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was added, the above solution was added into 20 mL of 30% H2O2 in batches. The suspension was
treated by suction filtration in time and the precipitate was washed with 150 mL of hydrochloric acid
(1:10) and 150 mL of H2O, respectively. The graphite oxide was obtained by drying under a vacuum at
50 ◦C overnight. Finally, 100 mg pf graphite oxide were dispersed in 100 mL of water and exfoliated
to GO by ultrasonication for 2 h. After this, the golden-yellow supernatant with a concentration of
about 1 mg/mL was obtained after centrifugation. A total of 1.0 mg of Cu2O NPs was added into
20 mL pf GO (1 mg/mL) and mixed under ultrasonication for 2 h. Finally, a homogeneous dispersion
of Cu2O-GO was obtained.

3.4. Fabrication of Cu2O-ErGO/GCE

First, bare GCE was polished by 0.3 µm of alumina slurry, before being rinsed by absolute
ethanol and water in an ultrasonic bath for 3 min and dried in N2 blowing. Five µL of Cu2O-GO
dispersion was dropped on the freshly prepared GCE. After drying under ambient conditions, the
Cu2O–GO/GCE was obtained. The Cu2O–GO/GCE was immersed in 0.1 M PBS (pH of 6.0), before
being electrochemically reduced at −1.2 V for 120 s to obtain Cu2O-ErGO/GCE. For comparison,
GO/GCE and ErGO/GCE were fabricated by the similar procedures.

3.5. Characterization and Measurements

The SEM photos of Cu2O NPs, GO nanosheets and Cu2O-ErGO nanocomposites were obtained
by scanning electron microscopy (FESEM, EVO10, Carl Zeiss, Jena, Germany). The electrochemical
behaviors of UA on the Cu2O-ErGO/GCE was measured by cyclic voltammetry (CV) and second-order
derivative linear sweep voltammograms (SDLSV). Both the CV and SDLSV swept at a rate of 100 mV/s.
The potential sweep ranges were 0.0–1.2 V for CV and 0.3–0.8 V for SDLSV. The supporting electrolyte
used was 0.1 M PBS (pH of 3.0) except where stated otherwise. All the electrochemical tests were
performed on a CHI 660D electrochemical workstation (Chenhua Instrument Co. Ltd., Shanghai,
China). The SDLSV were obtained from the JP-303E polarographic analyzer (Chengdu Instrument
Factory, Chengdu, China). All the electrochemical experiments were carried out with a three-electrode
system where the Cu2O-ErGO/GCE (3-mm inner diameter) served as the working electrode, while
Pt wire and saturated calomel electrode (SCE) acted as the counter electrode and reference electrode.
The pH was measured by a pH meter (Shanghai Leichi Instrument Factory, Shanghai, China). The
measurements were carried out at room temperature.

4. Conclusions

A novel electrochemical sensor based on cuprous oxide nanoparticles-electrochemically reduced
graphene oxide nanocomposites decorated electrode (Cu2O-ErGO/GCE) was developed for the
sensitive and selective detection of UA. The Cu2O-ErGO/GCE was prepared by a green and convenient
routine that combined the drop-casting method with the electrochemical reduction method. The
graphene can effectively load Cu2O NPs and promote the electron transfer between electrode and
analytes due to its specific surface area and good conductivity. The proposed sensor shows high
electrocatalytic activity towards the oxidation of UA. Moreover, the Cu2O-ErGO/GCE can selectively
detect UA even in the presence of high concentrations of DA and AA. Considering its distinct
advantages, including simplicity, rapidness, high selective and sensitive as well as good repeatability,
reproducibility and stability, the proposed Cu2O-ErGO/GCE shows great potential for the detection
of UA in the physiological samples.
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