

Supplementary Materials: Genetically Fused T4L Acts as a Shield in Covalent Enzyme Immobilisation Enhancing the Rescued Activity

Matteo Planchestainer, David Roura Padrosa, Martina Letizia Contente and Francesca Paradisi *

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; matteo.planchestainer@nottingham.ac.uk (M.P.); pcxdr1@exmail.nottingham.ac.uk (D.R.P.); martina.contente@nottingham.ac.uk (M.L.C.)

* Correspondence: francesca.paradisi@nottingham.ac.uk; Tel.: +44-(0)115-74-86267

2.2. Halomonas elongata Aminotransferase

Figure S1. SDS-gel (12%) electrophoresis of T4L-HEWTs. M marker (NEB Broad Range 10-200 kDa); 1 and 2 respectively the soluble crude fraction and the purified T4L-HEWT_L1; 3 and 4 respectively the soluble crude fraction and the purified T4L-HEWT_L2.

Figure S2. HEWTs immobilisation at different incubation times (room temperature, in 50 mM phosphate buffer pH 8). HEWT (dark columns), and T4L+HEWT_L1 (light columns), immobilisation varying the time of contact between the enzyme and the solid support (Sepabeads EC-EP/S (pore ø 10-20 nm)). Immobilisation performed using a 5 mg_{enzyme}/g_{resin}.

Figure S3. Reusability profile of the immobilised T4L-HEWT_L1 (circle) and T4L-HEWT_L2 (square) after ten reaction cycles. The experiment was conducted repeating the activity assay ten times; every time the imm-HEWT was isolated from the exhausted mixture and used in the following run. In this assay, a resin Sepabeads EC-EP/S (pore ø 10-20 nm) loaded with 1 mg_{enzyme}/g_{resin} was used.

Figure S4. Stability of HEWTs in different organic co-solvents. HEWT (light grey columns), imm-HEWT (dark grey columns), imm-T4L+HEWT_L1 (chess columns), and imm-T4L+HEWT_L2 (dash columns) at 10 and 20% co-solvent concentration in 50 mM phosphate, pH 8.0 buffer, after 24 hours incubation at 4 °C. In this assay, a resin Sepabeads EC-EP/S (pore ø 10-20 nm) loaded with 1 mgenzyme/gresin was used.

2.3. Bacillus subtilis Esterase

Figure S5. SDS-gel (12%) electrophoresis of T4L-BS2ms. M marker (NEB Broad Range 10-200 kDa); 1 and 2 respectively the soluble crude fraction and the purified T4L-BS2m_L1; 3 and 4 respectively the soluble crude fraction and the purified T4L-BS2m_L2.

2.4. Horse Liver Alcohol Dehydrogenase

Figure S6. SDS-gel (12%) electrophoresis of T4L-HLADHs. M marker (NEB Broad Range 10-200 kDa); 1 and 2 respectively the soluble crude fraction and the his-tag purified of T4L-HLADH_L1; 3 and 4 respectively the soluble crude fraction and the his-tag purified of T4L-HLADH_L2.

4. Materials and Methods

4.1. T4L- HEWT, T4L-BS2m, and T4L-HLADH Constructs Generation

T4L-HEWT_L1:

MRGS<u>HHHHHH</u>GMASMTGGQQMGRDENLYFQGDPNIFEMLRID**Q**GLRLKIYKDTEGYYTIGIGHLLTKSPSL NAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVA GFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAY**LEICSWYHG**MQTQDYQALDRA HHLHPFTDFKALGEEGSRVVTHAEGVYIHDSEGNRILDGMAGLWCVNLGYGRRELVEAATAQLEQLPYYNTFFK TTHPPAVRLAEKLCDLAPAHINRVFFTGSGSEANDTVLRMVRRYWALKGQPDKQWIIGRENAYHGSTLAGMSL GGMAPMHAQGGPCVPGIAHIRQPYWFGEGRDMSPEAFGQTCAEALEEKILELGEEKVAAFIAEPVQGAGGAIM PPESYWPAVKKVLAKYDILLVADEVICGFGRLGEWFGSQHYGLEPDLMPIAKGLSSGYLPIGGVLVGDRVAETLIE EGGEFFHGFTYSGHPTCAAVALKNLELLEAEGVVDRVRDDLGPYLAERWASLVDHPIVGEARSLGLMGALELVA DKTTGQRFDKSLGAGNLCRDLCFANGLVMRSVGDTMIISPPLVIRREEIDELVELARRALDETARQLTQVPHTQE EPTA

T4L-HEWT_L2:

MRGSHHHHHHGMASMTGGQQMGRDENLYFQGDPNIFEMLRID**Q**GLRLKIYKDTEGYYTIGIGHLLTKSPSL NAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVA GFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAY**LHG**MQTQDYQALDRAHHLHPF TDFKALGEEGSRVVTHAEGVYIHDSEGNRILDGMAGLWCVNLGYGRRELVEAATAQLEQLPYYNTFFKTTHPPA VRLAEKLCDLAPAHINRVFFTGSGSEANDTVLRMVRRYWALKGQPDKQWIIGRENAYHGSTLAGMSLGGMAP MHAQGGPCVPGIAHIRQPYWFGEGRDMSPEAFGQTCAEALEEKILELGEEKVAAFIAEPVQGAGGAIMPPESYW PAVKKVLAKYDILLVADEVICGFGRLGEWFGSQHYGLEPDLMPIAKGLSSGYLPIGGVLVGDRVAETLIEEGGEFF HGFTYSGHPTCAAVALKNLELLEAEGVVDRVRDDLGPYLAERWASLVDHPIVGEARSLGLMGALELVADKTTG QRFDKSLGAGNLCRDLCFANGLVMRSVGDTMIISPPLVIRREEIDELVELARRALDETARQLTQVPHTQEEPTA

T4L-BS2m_L1:

MRGS<u>HHHHHH</u>GMASMTGGQQMGRDENLYFQGDPNIFEMLRID**Q**GLRLKIYKDTEGYYTIGIGHLLTKSPSL NAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGET GVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAY**LEICSWYHG**MTHQIVTT QYGKVKGTTENGVHKWKGIPYAKPPVGQWRFKAPEPPEVWEDVLDATAYGSICPQPSDLLSLSYTELPRQSEDC LYVNVFAPDTPSKNLPVMVWIHGGAFYLGAGSEPLYDGSKLAAQGEVIVVTLNYRLGPFGFLHLSSFNEAYSDNL GLLDQAAALKWVRENISAFGGDPDNVTVFGESAGGMSIAALLAMPAAKGLFQKAIMESGASRTMTKEQAASTS AAFLQVLGINEGQLDKLHTVSAEDLLKAADQLRIAEKENFFQLFFQPALDPKTLREEPEKAIAEGAASGIPLLIGTT RDEGYLYFTPDSDVHSQETLDAALEYLLGKPLAEKVADLYPRSLESQIHMMTDLLFWSPAVAYASAQSHYAPV WMYRFDWHPKKPPYNKAFHALELPFVFGNLDGLERMAKAEITDEVKQLSHTIQSAWITFAKTGNPSTEAVNWP AYHEETRETLILDSEITIENDPESEKRQKLFPSKGEGS

T4L-BS2m_L2:

MRGS<u>HHHHHH</u>GMASMTGGQQMGRDENLYFQGDPNIFEMLRID**Q**GLRLKIYKDTEGYYTIGIGHLLTKSPSL NAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGET GVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAY**LHG**MTHQIVTTQYGKVK GTTENGVHKWKGIPYAKPPVGQWRFKAPEPPEVWEDVLDATAYGSICPQPSDLLSLSYTELPRQSEDCLYVNVF APDTPSKNLPVMVWIHGGAFYLGAGSEPLYDGSKLAAQGEVIVVTLNYRLGPFGFLHLSSFNEAYSDNLGLLDQ AAALKWVRENISAFGGDPDNVTVFGESAGGMSIAALLAMPAAKGLFQKAIMESGASRTMTKEQAASTSAAFLQ VLGINEGQLDKLHTVSAEDLLKAADQLRIAEKENFFQLFFQPALDPKTLREEPEKAIAEGAASGIPLLIGTTRDEGY LYFTPDSDVHSQETLDAALEYLLGKPLAEKVADLYPRSLESQIHMMTDLLFWSPAVAYASAQSHYAPVWMYRF DWHPKKPPYNKAFHALELPFVFGNLDGLERMAKAEITDEVKQLSHTIQSAWITFAKTGNPSTEAVNWPAYHEET RETLILDSEITIENDPESEKRQKLFPSKGEGS

T4L-HLADH_L1:

MRGS<u>HHHHHH</u>GMASMTGGQQMGRDENLYFQGDPNIFEMLRID**Q**GLRLKIYKDTEGYYTIGIGHLLTKSPSL NAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGET GVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAY**LEICSWYHG**MSTAGKVI KCKAAVLWEEKKPFSIEEVEVAPPKAHEVRIKMVATGICRSDDHVVSGTLVTPLPVIAGHEAAGIVESIGEGVTTV RPGDKVIPLFTPQCGKCRVCKHPEGNFCLKNDLSMPRGTMQDGTSRFTCRGKPIHHFLGTSTFSQYTVVDEISVA KIDAASPLEKVCLIGCGFSTGYGSAVKVAKVTQGSTCAVFGLGGVGLSVIMGCKAAGAARIIGVDINKDKFAKAKE VGATECVNPQDYKKPIQEVLTEMSNGGVDFSFEVIGRLDTMVTALSCCQEAYGVSVIVGVPPDSQNLSMNPMLL LSGRTWKGAIFGGFKSKDSVPKLVADFMAKKFALDPLITHVLPFEKINEGFDLLRSGESIRTILTF

T4L-HLADH_L2:

MRGS<u>HHHHHH</u>GMASMTGGQQMGRDENLYFQGDPNIFEMLRID**Q**GLRLKIYKDTEGYYTIGIGHLLTKSPSL NAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGET GVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAY**LHG**MSTAGKVIKCKAAV LWEEKKPFSIEEVEVAPPKAHEVRIKMVATGICRSDDHVVSGTLVTPLPVIAGHEAAGIVESIGEGVTTVRPGDKVI PLFTPQCGKCRVCKHPEGNFCLKNDLSMPRGTMQDGTSRFTCRGKPIHHFLGTSTFSQYTVVDEISVAKIDAASP LEKVCLIGCGFSTGYGSAVKVAKVTQGSTCAVFGLGGVGLSVIMGCKAAGAARIIGVDINKDKFAKAKEVGATEC VNPQDYKKPIQEVLTEMSNGGVDFSFEVIGRLDTMVTALSCCQEAYGVSVIVGVPPDSQNLSMNPMLLLSGRTW KGAIFGGFKSKDSVPKLVADFMAKKFALDPLITHVLPFEKINEGFDLLRSGESIRTILTF

4.2. *Expression, Purification, and Characterization of the HEWT, BS2m, HLADH, and T4L Proteins in E. coli*

Protein	MW (kDa)	ε (mM ⁻¹ cm ⁻¹)
HEWT	54.2	61.4
T4L-HEWT_L1	73.3	93.8
T4L-HEWT_L2	72.5	86.7
BS2m	55.0	81.9
T4L-BS2m_L1	77.1	115.9
T4L-BS2m_L2	76.3	108.9
HLADH	43.8	19.3
T4L-HLADH_L1	62.8	51.7
T4L-HLADH_L2	62.0	44.7
T4L	25.8	39.4

Table S1: computed molecular weight (MW) and molar extinction coefficients (ϵ) [1].

Reference:

 Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press 2005, 571-607.