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Abstract: Metal complexes of meso-arylporphyrins (Cr(III), Fe(III), and Zn(II)) were evaluated
in the coupling reaction of cyclohexene oxide (CHO) with CO2 in compressed medium, where
the Cr complexes were demonstrated to be the most active systems, leading predominantly to
copolymerisation products. It is noteworthy that no addition of solvent was required. To improve the
catalytic activity, and to simultaneously increase the solubility in compressed CO2, a new fluorinated
catalyst, tetrakis(4-trifluoromethylphenyl)porphyrinatochromium(III) chloride (CrCl-pCF3TPP), was
applied to this reaction. The alternating copolymerisation of CHO with CO2, using the Cr(III)
fluorinated porphyrin catalyst, required the use of a co-catalyst, bis(triphenylphosphine)iminium
chloride (PPNCl), with the best yields of copolymers being obtained at 80 ◦C, and CO2 pressures
in the range of 50–110 bar, over a period of 24 h, with a low catalyst/substrate molar ratio (0.07%).
The polycarbonate’s structure was analysed by 1H NMR, 13C NMR, and MALDI-TOF spectroscopy,
which demonstrated high carbonate incorporations (98–99%). Gel permeation chromatography
revealed number-average molecular weights (Mn) in the range of 4800–12,800 and narrow molecular
weight distributions (Mw/Mn ≤ 1.63).

Keywords: compressed CO2; solventless reaction; epoxide; copolymerisation; polycarbonates;
metalloporphyrin; chromium; fluorinated catalyst

1. Introduction

Carbon dioxide in compressed form is an attractive green alternative to organic solvents in
synthetic chemistry due to its intrinsic low toxicity and availability. Particularly, the coupling of carbon
dioxide (CO2) with epoxides [1–5] is a topic of great interest due to the economic and environmental
benefits arising from the utilisation of renewable sources for the preparation of polycarbonates
or cyclic carbonates [6–9], and the growing concern on the greenhouse effect [10–15]. There is
substantial literature on catalyst development for CO2 insertions into epoxides, most of which consist
of transition-metal complexes modified with N-donor ligands [16–27]. However, the low polarity of
CO2 often generates insolubility problems when transition-metal complexes are employed as catalysts.
To address this issue, the introduction of fluorinated groups in the ligands is, in general, a promising
strategy to improve the solubility of organometallic catalysts in compressed CO2 [28].
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In this context, metalloporphyrins are particularly attractive among the homogeneous catalysts,
since their aromatic heterocycle can be easily modulated by the introduction of several peripheral
substituents that may increase their solubility in compressed CO2, and also because they are able to
coordinate with a wide range of different transition metals, thus offering the possibility of fine-tuning
the catalytic activity and selectivity [29–36].

Recently, we reported the application of meso-phenyl Mn(III) porphyrins as highly efficient
catalysts for coupling the reactions of epoxides with CO2, showing that the introduction of electron
withdrawing halogen atoms in the ortho positions of meso-tetraphenylporphyrin manganese(III)
complexes strengthens the Lewis acidity of the metal centre, thereby increasing their catalytic
activity [37]. Earlier, in 2000, Holmes reported the use of tetrakis(pentafluorophenyl)porphyrinato
chromium(III) chloride (6) in the copolymerisation reaction of cyclohexene oxide with CO2 under
supercritical conditions [20]. However, these catalysts originated polycarbonates with a low
number-average molecular weight (Mn ≈ 3500). In addition, the preparation of such a catalyst
involves the use of an expensive perfluorinated reagent and low synthetic yield is obtained, resulting
from its laborious purification procedure. So, we hypothesised that a convenient alternative could be
achieved by the introduction of trifluoromethyl groups in the meso-aryl porphyrin’s backbone. Such
electron withdrawing groups would not only promote the catalyst’s solubility in compressed CO2,
but could also increase the Lewis acidity of the metal centre and consequently improve its catalytic
properties for CO2/epoxide couplings.

In this paper, we present the catalytic evaluation of metal complexes of meso-arylporphyrins
(Cr(III), Fe(III), and Zn(II)) in the coupling reaction of epoxides with compressed CO2, in the absence
of added solvent. For the Cr(III) catalysts, the effect of the fluorine atoms on the meso-aryl porphyrins
are appraised regarding catalytic activity and selectivity for the alternating copolymerisation of
cyclohexene oxide and CO2. We further describe the synthesis of the fluorinated Cr(III)-porphyrin
catalyst, tetrakis(4-trifluoromethylphenyl)porphyrinatochromium(III) chloride (7), whose potentialities
are explored in this reaction.

2. Results and Discussion

2.1. Synthesis of the Catalysts

The preparation of metalloporphyrin complexes 1–6 (Figure 1) was accomplished based on
recently developed methods by Coimbra’s group [38,39] through the condensation of pyrrole with the
desired aldehydes, followed by metal insertion through the reaction of free-base porphyrins with the
appropriate metal salts [40,41].
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The metalloporphyrin 7, previously reported in [42–45] was synthesised, in high yields,
by the reaction of equimolar amounts of pyrrole with 4-(trifluoromethyl)benzaldehyde in a
nitrobenzene/acetic acid mixture, using NaY zeolite as solid catalyst [39], followed by the complexation
of p-CF3TPP with CrCl2 and in situ air oxidation [40] in refluxing DMF (Scheme 1).
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2.2. Coupling Reactions of Cyclohexene Oxide with CO2

2.2.1. Effect of the Metal

The effects of the metal (M) and co-axial ligand (X) on the catalytic activity and selectivity in the
coupling reaction of cyclohexene oxide (CHO) and CO2 using tetraphenylporphyrin (TPP) as a model
N-donor ligand (Figure 1) were first appraised. The reactions were performed in the absence of solvent,
under previously optimised conditions (50 bar CO2, 80 ◦C), using a 0.07 mol % catalyst [37], with and
without bis(triphenylphosphine)iminium chloride (PPNCl) as a co-catalyst. The results are presented
in Table 1.

Table 1. Metal effect on the selectivity of coupling reactions of CO2 with cyclohexene oxide. a
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systems 1 and 2 (either with Cl or OAc as co-axial ligands) presented the highest activity, with high
selectivity for the formation of copolymerisation products (Table 1, entries 1–3). On the other hand, the
iron(III) and zinc(II) complexes were less active, but highly selective for the cycloaddition reaction,
producing exclusively the cyclohexane carbonate (CHC).

2.2.2. Effect of the Fluorinated Groups in Cr(III)-Porphyrin Catalysts

The catalytic performance of fluorinated Cr(III)-porphyrin catalysts was then investigated in
cyclohexene oxide/CO2 copolymerisation. For the sake of comparison, the three catalysts 5, 6, and
7 were tested under the same reaction conditions (50 bar CO2, 80 ◦C), to evaluate the effects of the
meso-arylporphyrin’s different fluorinated groups (Table 2).

Table 2. Effect of meso-arylporphyrin’s fluorinated groups on catalytic activity and selectivity. a
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From the results presented in Table 2, we see that catalyst 7, in the presence of PPNCl as co-catalyst,
has efficiently catalysed the ring-opening copolymerisation of CHO and CO2, which proceeded
with 86% conversion along 24 h, with practically exclusive formation of copolymers (99%) (Table 2,
entry 1). A slightly lower conversion of 79% was obtained with catalyst 5, based on 2,6-difluorophenyl
porphyrin, and the selectivity for copolymerisation products was 92%, also slightly lower than with
catalyst 7 (Table 2, entry 2). However, the application of perfluorinated catalyst 6 under the same
conditions has led to a significantly lower conversion (only 50% in 24 h), with 91% of selectivity
for copolymers (Table 2, entry 3). Therefore, under these conditions, the trifluoromethyl containing
catalyst 7 appears to be the most effective, both in terms of activity and selectivity.

2.2.3. Effect of Temperature and CO2 Pressure

The CO2/CHO copolymerisation reactions were carried out along 24 h, under conditions where
the reaction mixture was initially homogeneous, i.e., a single homogeneous phase was observed in
the reactor prior to polymerisation (Figure 2a), although polymer precipitation began after just a few
hours (Figure 2b). The effects of varying reaction temperature and CO2 pressure were studied for
catalyst 7, as shown in Table 3.
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At a lower temperature (50 ◦C), the reaction proceeded with a slightly lower conversion
(77%) than that obtained at 80 ◦C, but the selectivity for copolymers and the carbonate content
was similar (Table 3, entries 1 and 2). This observation differs from the results obtained with
a CrCl-TPFPP/DMAP catalytic system under supercritical conditions [20], where the outcome of
the reaction was strongly temperature-dependent, with only oligomeric polyether formation being
observed at lower temperatures (70 ◦C), while higher reaction temperatures (95–110 ◦C) were found,
in general, to lead to higher CO2 incorporations and higher polymer yields. With the reaction
temperature set on 80 ◦C, the effect of CO2 pressure was then evaluated in the range of 10–150 bar
(Table 3, entries 2–6). We observed that, at 10 bar CO2, a conversion of 70% is achieved, with almost
full selectivity for polymers, containing 99% of carbonate content (Table 3, entry 3). This result seems
also to contrast with the results obtained with a CrCl-TPFPP/DMAP catalytic system, for which
a low-pressure CO2 atmosphere resulted in only oligomeric products (Mn ~600 g·mol−1) obtained in
poor yields and with low CO2 incorporation [20]. In the range of 50–110 bar CO2, conversions are
considerably higher (84–86%) than at 10 bar, with no significant effects being observed in this pressure
range, either in catalytic activity (TON’s = 1008–1224) or selectivity for copolymers (96–99%) (Table 3,
entries 2–5). However, a further increase of CO2 pressure to 150 bar led to a significant decrease in
polymer yield, resulting from lower catalytic activity (Table 3, entry 6). This outcome can be directly
observed from Figure 3, which illustrates the influence of CO2 pressure in the isolated yields of the
copolymer PCHC, showing a maximum value at 110 bar CO2, and a visible drop at 150 bar CO2.
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Figure 3. Effect of CO2 pressure in isolated yields of the copolymer PCHC.

This effect is probably due to the phase behaviour, since the increase of CO2 pressure leads to
variations in both the density of the reaction mixture and the molar ratio of CHO to CO2. Therefore, the
decrease in yield and molecular weight when the reaction is carried out at 150 bar CO2 pressure might
be attributed to a reduction in effective CHO concentration, which occurs when the phase boundary
for the system is crossed, in agreement with previous studies [20,46]. Moreover, a notable effect of CO2

pressure was observed in the molecular weight of the polymers, with the highest number-average
molecular weight (in the range of 12,500 g·mol−1) being obtained when the reaction is performed
at a CO2 pressure of 70 bar (Table 3, entry 4), while the lowest polydispersity value (Mw/Mn = 1.25)
is obtained when the reaction is carried out at a 50 bar CO2 pressure (Table 3, entry 2). In this case,
the molecular weight of the polymer obtained showed a monomodal distribution, while in the rest of
the other experiments bimodal distributions were obtained (see discussion in Section 2.2.4).

2.2.4. Characterisation of PCHC Copolymers

The reaction’s crude was dried in vacuum at 100 ◦C for 5 h, to eliminate unreacted CHO. After
washing with n-hexane to remove possible traces of CHC, the residue was filtered and dried under
vacuum at 100 ◦C for 12 h. Finally, the purified copolymer was characterised by 1H and 13C NMR
spectroscopy and gel permeation chromatography (GPC).

The 1H NMR spectrum of PCHC (Figure 4) shows a signal at δ = 4.64 ppm, typical of the
methine proton (H1 in PCHC) of the repeating oxycarbonyloxy unit, while a very narrow singlet
at δ = 3.57 ppm corresponding to oxy units was scarcely perceptible, which confirmed that the
polymers were comprised mostly of carbonate content (98%) and contained a diminutive percentage
of ether linkages.
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Figure 4. 1H NMR spectrum of PCHC in CDCl3 at 25 ◦C (reaction conditions of Table 3, entry 2).

The 13C NMR spectrum (Figure 5), performed in CDCl3, presents a dominant C=O signal at
δ = 153.9 ppm, which has previously been assigned to the carbonate carbon atom of m-centred
structural units ((mmm), (mmr), (rmr)), while minor resonances at δ = 153.2 and 153.4 ppm can
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be assigned to r-centered units ((rrr), (rrm), (mrm)) [47–49], suggesting that the ring-opening
copolymerisation mechanism occurs without a defined stereocontrol.Catalysts 2017, 7, 210  7 of 14 
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Figure 5. Carbonate region of 13C NMR spectrum of PCHC in CDCl3 at 25 ◦C (reaction conditions of
Table 3, entry 2).

GPC analysis, performed in toluene, and calibrated against a polystyrene standard, allowed the
calculation of the number-average molecular weights (Mn) of the copolymers, which were in the range
of 4800–12,500 g·mol−1. Furthermore, the molecular weight distributions (Mw/Mn) were determined
to be in the range 1.25–1.63, which represent significant progress over distributions previously reported
for some scCO2-based systems [20,50]. GPC chromatograms of the copolymers (Figure 6) showed
elution curves with unimodal (in the case of entry 2, Table 3) or bimodal distributions (entries 1, 3–6,
Table 3), which are indicative of a chain transfer process or a different chain termination step.
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Figure 6. GPC chromatograms of PCHC in toluene, using a polystyrene standard, obtained under
the reaction conditions of: (a) PCO2 = 50 bar, T = 80 ◦C (entry 2, Table 3); (b) PCO2 = 70 bar, T = 80 ◦C
(entry 4, Table 3).

2.2.5. MALDI-TOF Analysis and Mechanistic Considerations

The matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF)
mass spectra of the polymers resulting was performed in order to analyse the chain end groups of the
polycarbonates and draw conclusions about the probable reaction mechanism.

The MALDI-TOF mass spectra of the polymers obtained present repeating units of 142 m/z
corresponding to a cyclohexylcarbonate -C6H10C(O)O- fragment (Figures S1–S6, Supplementary
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Information). In the case of the polymer obtained from entry 2 in Table 3, the main distribution
presented peaks at m/z 5981.6, 6124.1, and 6266.0 (Figure S2) that correspond to chains containing two
-OH terminal groups (a + K in Scheme 2, expected for n = 41–43 HO(C7H10O3)13C6H10OH m/z 5981.1,
6123.2, 6265.3). This suggests that the initiation step involves the epoxide opening by a nucleophilic
attack, with -OH arising from water traces present in the reactor, and water is also involved in the final
step to form a -OH chain end (Scheme 2).

Minor peaks distributions fitted with the presence of Cl– as end group as well as -OH (b, Scheme 2,
observed m/z 5963.79, 6105.63 (Figure S2); expected for n = 41, 42; m/z 5960.6, 6102.7). In this case the
presence of a main chain corresponded with the observation of a single band in the GPC analysis and
low Mw/Mn polydispersity.

In the experiments run at different pressure and temperature (entries 1,3–6, Table 3), which
presented bimodal distribution in the GPC analysis, the MALDI-TOF mass spectra showed mixtures
of three species (Figures S1, S3–S6, Supplementary Materials). The results indicated that chains a and
b were present (Scheme 2), and the third peak distribution with peaks observed at m/z 6000.91 and
6141.42 may correspond to polymers with two -Cl final groups (c + Na, Scheme 2, expected for n = 41,
42; m/z 6000.9, 6141.4).Catalysts 2017, 7, 210  9 of 14 
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Consequently, the mechanism may involve the opening of the epoxide, presumably after
coordinating to the metal center, by the Cl− from PPNCl or OH− from water. The alkoxo species
thus formed inserts CO2 and produces the cyclic carbonate by intramolecular attack, generating the
nucleophile that, in this case, may be Cl− since OH− is not a good leaving group (i, in Scheme 2).
An alternate insertion of epoxide and CO2 leads to the polycarbonate growing chain (ii, in Scheme 2).
As evidenced by the chain end group analysis, termination may occur by different pathways, including
by the combination of two growing chains or by the hydrolysis of water. The polymer obtained
under optimal reaction conditions (80 ◦C and 50 bar CO2) shows a monomodal distribution, which
suggests that the chain transfer, responsible for different length polymers, is probably a minor process.
Instead, using higher CO2 pressures, precipitation of the polymer in the compressed CO2 medium
may generate the formation of different chains’ length, which explains the bimodal molecular weight
distributions. At lower CO2 pressure (10 bar) or temperature (50 ◦C), the lower conversions obtained
may induce a similar effect.

3. Materials and Methods

3.1. Reagents

Cyclohexene oxide was purchased from Sigma-Aldrich, dried over alumina and stored under inert
atmosphere. Carbon dioxide (SCF Grade, 99.9993%, Abelló Linde, Barcelona, Spain) was previously
passed by an Agilent oxygen/moisture trap. The rest of reagents and solvents were purchased form
Sigma-Aldrich (Madrid, Spain) unless otherwise stated.

3.2. Equipment

The 1H NMR and 13C NMR spectra were recorded in a 400 MHz Mercury instrument (VARIAN,
Palo Alto, CA, USA), in CDCl3 using tetramethylsilane as internal standard. Gel permeation
chromatography (GPC) measurements (URV, Tarragona, Spain) were made in toluene, versus
polystyrene standards, on a Millipore-Waters 510 HPLC Pump device (Milford, MA, USA) using
a three-serial column system (MZ-Gel 100 Å, MZ-Gel 1000 Å, MZ-Gel 10,000 Å linear columns,
Millipore-Waters, Milford, MA, USA) with UV-Detector (ERC-7215) and IR- Detector (ERC-7515a,
Millipore-Waters, Milford, MA, USA). The software used to get the data was NTeqGPC 5.1
(Millipore-Waters, Milford, MA, USA). Samples were prepared as follows: 5 mg of the copolymer was
dissolved with 2 mL of toluene (HPLC grade). MALDI-TOF analyses were performed on a Voyager
System 4412 instrument equipped with a 337 nm nitrogen laser (Applied Biosystems, Foster City,
CA, USA). All spectra were acquired in the positive ion reflector mode. Dithranol (Sigma-Aldrich,
Madrid, Spain) was used as matrix, which was dissolved in MeOH (Panreac, Barcelona, Spain) at
a concentration of 10 mg·mL−1. The polymer (5 mg) was dissolved in 1 mL of CHCl3 (Euriso-Top,
Saint-Aubin, France). One microliter (1 µL) of the sample, 1 µL of the matrix, and 1 µL of potassium
trifluoroacetate (KTFA) solution in the case of polymers (1 mg of KTFA in 1 mL of THF) were deposited
consecutively on the stainless steel sample holder and allowed to dry before introduction into the
mass spectrometer Three independent measurements were made for each sample. For each spectrum,
100 laser shots were accumulated. Elemental analysis were done at the Serveis Tècnics de Recerca
(Universitat de Girona, Spain).

3.3. Preparation of Metalloporphyrin Catalysts

The porphyrins 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetra(2,6-difluorophenyl)
porphyrin (TDFPP), 5,10,15,20-tetra(2,3,4,5,6-pentafluorophenyl)porphyrin (TPFPP), and
5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin (p-CF3TPP) were prepared by reacting pyrrole
with the corresponding aldehydes in equimolar amounts, in a nitrobenzene/acetic acid mixture,
according to previously reported methods [38,39,51,52]. Then, the resulting free-base porphyrins were
reacted with the desired metal salt to achieve the corresponding metalloporphyrin catalysts 1–7 [53].
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Synthesis of 5,10,15,20-tetrakis(4-trifluoromethylphenyl)porphyrinatochromium(III) Chloride (7)

The free base porphyrin p-CF3TPP [51] (0.400 g, 0.45 mmol) was dissolved in 15 mL of
dimethylformamide (DMF). The mixture was stirred under reflux at 170 ◦C. After approximately
10 min, CrCl2 (0.095 g, 0.77 mmol) was added to the refluxing solution. After 30 min, an aliquot was
taken from the mixture and analysed by UV-VIS spectroscopy, which indicated that free p-CF3TPP
still remained in solution. So, a further amount of CrCl2 (0.073 g, 0.59 mmol) was added to the
solution, refluxing for another 20 min, until no free p-CF3TPP was found by UV-VIS. At the end, the
reaction mixture was allowed to cool to room temperature and poured into 400 mL of ice-cold water.
After the solid was filtered out and washed three times with water, it was dried under vacuum at
100 ◦C. The crude product was purified by column chromatography over alumina with CHCl3 as the
eluent. After solvent evaporation, the product was dried overnight under vacuum at 100 ◦C, yielding
the chromium porphyrin complex CrCl-p-CF3TPP (7) as a dark green solid, in 95% yield (0.415 g,
0.43 mmol). UV-VIS (CH2Cl2): λmax/nm (ε/dm3·mol−1·cm−1): 446 (130,930), 563 (8473), 601 (5857).
MS (ESI): m/z for C48H24F12N4CrCl [M + 2Na]+ 1018.1738. Elemental analysis (%) calculated for
C48H24F12N4CrCl·CHCl3·H2O: C 53.0, H 2.5, N 5.1; found: C 50.2, H 2.4, N 5.2.

3.4. Synthesis and Characterisation of Copolymers

3.4.1. General Procedure of Catalytic Reactions of Epoxides with CO2

The reactions were carried out in a 100 mL Berghof stainless steel autoclave (Berghof, Eningen,
Germany). The catalyst (0.07%) and co-catalyst (0.07%) (when indicated) were placed inside the
autoclave and kept for 3 h, under vacuum, at 80 ◦C. Then, the epoxide substrate (4 mL), previously
dried over alumina, was injected into the autoclave via cannula. The autoclave was then pressurized
with CO2, and the reaction proceeded at the desired temperature. At the end of the reaction, the
autoclave was cooled and slowly depressurized. The % of conversion was determined by 1H NMR of
the crude mixture, using mesitylene as standard. Selectivity was calculated by integral ratio between
polycarbonate and cyclic carbonate. The work-up was performed only when polymeric products were
obtained, and is described below.

3.4.2. Poly(cyclohexenecarbonate) (PCHC)

The crude mixture was evaporated and the residue was dried in vacuum at 100 ◦C for 5 h.
The solid residue was then washed three times with n-hexane, filtered, and dried under vacuum at
100 ◦C overnight. The resulting polymer was dissolved in CDCl3 and analyzed by NMR spectroscopy.
The polymer yield was calculated from the mass of the isolated product relative to the weighted mass
of epoxide and the CO2 weight of the catalyst and co-catalyst [54]. The % of CO2 content was calculated
from 1H NMR data by the integral ratio between copolymer carbonate linkages (δ = 4.64 ppm) with
respect to the ether linkage signals (δ = 3.57 ppm). Typical data: 1H NMR (400 MHz, CDCl3): δ/ppm
4.64 (br s, 2H, CHOC(O)O), 2.20–1.95, 1.76–1.60 (br s, 4H,-CH2-), 1.55–1.25 (br m, 4H, -CH2-). 13C NMR
(100 MHz, CDCl3): δ/ppm 153.9, 153.2 (-C(O)), 29.7, 29.4, 28.9 (-CH2), 23.1, 22., 22.3 (-CH2).

4. Conclusions

Metal complexes of meso-arylporphyrins (Cr(III), Zn(II), and Fe(III)) have efficiently catalysed
the coupling reaction between CO2 and cyclohexene oxide, with Cr(III)porphyrin 7/PPNCl being the
most active and selective for the formation of copolymers. This trifluoromethyl-based catalytic system
is an attractive alternative to other fluorinated catalysts, considering its easy synthesis, high selectivity
for copolymerisation, and high solubility in the substrate and compressed carbon dioxide medium,
avoiding the use of any additional harmful solvent. Using this new catalytic system, the CO2 pressure
was found to affect the outcome of the reaction, with the best copolymer yield being obtained at 110 bar
CO2, the higher number-average molecular weight (12,500 g·mol−1) being obtained at a CO2 pressure
of 70 bar, and the lowest polydispersity value (1.25) at 50 bar CO2 pressure. The formed copolymers
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have shown narrow molecular weight distributions (Mw/Mn ≈ 1.2–1.6), and high carbonate contents
(up to 98% CO2 incorporation), when compared with other Cr(III)-porphyrin based catalytic systems.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/7/210/s1,
Figure S1. MALDI TOF spectra of PCHC obtained under the reaction conditions of PCO2 = 50 bar, T = 50 ◦C
(entry 1, Table 3), Figure S2. MALDI TOF spectra of PCHC obtained under the reaction conditions of PCO2 = 10 bar,
T = 80 ◦C (entry 3, Table 3), Figure S3. MALDI TOF spectra of PCHC obtained under the reaction conditions of
PCO2 = 110 bar, T = 80 ◦C (entry 5, Table 3), Figure S4. MALDI TOF spectra of PCHC obtained under the reaction
conditions of PCO2 = 150 bar, T = 80 ◦C (entry 6, Table 3), Figure S5. MALDI TOF spectra of PCHC obtained under
the reaction conditions of PCO2 = 110 bar, T = 80 ◦C (entry 5, Table 3), Figure S6. MALDI TOF spectra of PCHC
obtained under the reaction conditions of PCO2 = 150 bar, T = 80 ◦C (entry 6, Table 3).
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