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Abstract: Pt-containing catalysts are currently used commercially to catalyze the conversion of carbon
monoxide (CO) and hydrocarbon (HC) pollutants from stationary chemical and petroleum plants.
It is well known that Pt-containing catalysts are expensive and have limited availability. The goal of
this research is to find alternative and less expensive catalysts to replace Pt for these applications. This
study found that niobium oxide (Nb2O5), as a carrier or support for certain transition metal oxides,
promotes oxidation activity while maintaining stability, making them candidates as alternatives to Pt.
The present work reports that the orthorhombic structure of niobium oxide (formed at 800 ◦C in air)
promotes Co3O4 toward the oxidation of both CO and propane, which are common pollutants in
volatile organic compound (VOC) applications. This was a surprising result since this structure of
Nb2O5 has a very low surface area (about 2 m2/g) relative to the more traditional Al2O3 support,
with a surface area of 150 m2/g. The results reported demonstrate that 1% Co3O4/Nb2O5 has
comparable fresh and aged catalytic activity to 1% Pt/γ-Al2O3 and 1% Pt/Nb2O5. Furthermore,
6% Co3O4/Nb2O5 outperforms 1% Pt/Al2O3 in both catalytic activity and thermal stability. These
results suggest a strong interaction between niobium oxide and the active component—cobalt
oxide—likely by inducing an oxygen defect structure with oxygen vacancies leading to enhanced
activity toward the oxidation of CO and propane.

Keywords: cobalt on Nb2O5 catalyst; CO and propane oxidation; promoting effects of Nb2O5

1. Introduction

Carbon monoxide (CO) is produced by incomplete combustion of carbon-containing fuels. When
this deadly toxic gas combines with hemoglobin in blood, oxygen (O2) cannot be delivered to vital
organs essential for life. Propane (C3H8) is produced during the process of combusting liquefied
petroleum gas, but can also be considered a model of volatile organic compounds (VOCs). An active
low-temperature oxidation catalyst has attracted immense attention to meet ever-changing stringent
environmental regulations for oxidation of volatile organic compounds in chemical plants, petroleum
refineries, pharmaceutical plants, automobile manufacturing, etc. [1,2].

Volatile organic compounds are toxic and mainly contribute to the formation of photochemical
smog with a with a negative impact on air quality [3]. Catalytic oxidation is a main technology used
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commercially in their reduction [4,5]. The basic catalytic oxidation reactions of CO (1) and hydrocarbon
(CxHy) (2) are shown as follows [2]:

CO + 1/2O2
Catalyst→ CO2 (1)

CxHy + (x + y/4)(O2)
Catalyst→ xCO2 + y/2H2O (2)

Many environmental abatement catalysts are precious metals, such as Pt and Pd, due to their
excellent performance and superior life in abating real exhausts. However, their high price is a
disadvantage, and therefore alternative materials are always being sought. However, this is very
challenging. For low temperature applications, such as VOCs removal in indoor air, transition metal
oxides have been proposed as replacements for precious metals [6]. Among transition metal oxides,
cobalt oxide (Co3O4) shows very high CO oxidation activity in CO/O2 mixtures even at ambient
temperature [7]. Co3O4 is also highly effective for the total oxidation of propane under conditions
relevant for VOC emission control [8]. Moreover, the evasive “holy grail” for catalytic applications is a
precious metal–free catalyst for three-way automobile gasoline exhaust catalysts [9].

It is an essential to disperse the catalytic components on a carrier with a high surface area,
such as Al2O3, TiO2, SiO2, ZrO2, or SiO2-Al2O3, in order to maximize active sites available for
reactants. Furthermore, supported catalysts are deposited (as washcoats) on high cell density monoliths
(ceramic and metal) to minimize pressure drop and volume relative to packed beds [2]. Niobium
pentoxide (Nb2O5) has been reported to show strong metal support interaction (SMSI) with certain
metals [1,10,11]. However, no commercial VOC applications that include Nb2O5 are known.

The goal of this study was to investigate Nb2O5’s promoting effects on base metal catalysts for CO
and propane oxidation. Nb2O5 has the ability to form defect structures with oxygen vacancies when
combined with base metal oxide materials to enhance catalytic activity [12,13]. The active oxidation
state for cobalt is +3 in Co3O4 and has been reported to be a prime candidate for precious metal
replacement in VOC applications due to its high catalytic activity [14,15]. Retaining Co in the active
+3 state will enhance its thermal stability. The current study was designed to further explore the
performance of Co supported on Nb2O5 and to investigate whether other transition metal oxides
combined with Nb2O5 could also have a beneficial effect for VOC applications. This feasibility study
compared the oxidation performance of Co3O4/Nb2O5 with traditional Co3O4/Al2O3. Furthermore,
the study expanded to evaluate other base metal oxides such as iron oxide (Fe2O3), copper oxide
(CuO), and nickel oxide (NiO), all of which were deposited on Nb2O5 relative to Al2O3 with the aim
to broaden the understanding of the promoting effects of Nb2O5 in VOC applications. Finally, the
catalytic performance of Co3O4/Nb2O5 was compared to that of Pt/γ-Al2O3.

The catalytic protocols used in establishing performance characteristics were fresh and aging
activity tests. Thermal gravimetric analysis (TGA) was used to establish minimum time and
temperature necessary for complete decomposition of precursor to the respective oxides.

2. Result and Discussion

2.1. TGA Results for Precursor of Cobalt (Co)

Thermal gravimetric analysis (TGA) measures the weight change of a material upon heating
in various gaseous environments. Figure 1 shows the TGA results of three samples: the
precursor Co(NO3)2·6H2O, the impregnated precursor on carriers, 6% Co(NO3)2/Nb@800 (the term
Nb@800 = pre calcination temperature of Nb2O5 at 800 ◦C in air for 2 h), 6% Co(NO3)2/Al@800 (pre
calcination of Al2O3 in air for 2 h). The precursor Co(NO3)2·6H2O decomposes completely to Co3O4 at
about 300 ◦C where no additional weight loss occurs [16] upon continued heating as shown in Figure 1.
The impregnated catalysts also achieve constant weight at 300 ◦C. Thus, all impregnated catalysts
were calcined at 300 ◦C. The cobalt oxide content was 6% by weight on supported carriers.
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Figure 1. Thermal gravimetric analysis (TGA) tests for the decomposition of the Co(NO3)2·6H2O and 
impregnated catalysts Co(NO3)2/Nb@800 and Co(NO3)2/Al@800. Both Nb2O5 and Al2O3 were pre-
calcined at 800 °C for 2 h in air. The supported catalysts were prepared to give 6% cobalt oxide.  

2.2. Preparative Details of Co/Nb and Co/Al  

2.2.1. Pre-Calcination Temperature of Carriers Nb2O5 and Al2O3 

Nb2O5 has different crystal phases at different temperature [17]. The pre-calcination temperature 
affects the crystal phase of Nb2O5, which in turn affects the chemical and physical properties of Nb2O5. 
The structure of Al2O3 is similarly affected. The monohydrate and tri-hydrate alumina structures 
change as a function of the temperature (°C) in air [18]. The impact of pre-calcination temperature on 
carriers and final catalysts were therefore explored.  

All carriers were pre-calcined at specified temperatures for 2 h in air. After pre-calcination of the 
carriers, Co(NO3)2·6H2O was deposited on each carrier and calcined at 300°C in air for 2 h to give 6% 
Co@300/Nb and 6% Co@300/Al. This nomenclature indicates 6% cobalt oxide calcined at 300°C after 
deposited on Nb2O5 or Al2O3.  

Table 1 demonstrates catalytic performances of fresh catalysts of 6% Co/Nb with different pre-
calcination temperatures of Nb2O5. In Table 1, all carriers were Nb2O5 pre-calcined from 500°C to 
900°C. T20, T50 and T90 values (temperature for 20%, 50% and 90% conversion) are compared. T20 and 
T50 are indicative of chemical kinetic control, while T90 often reflects some pore diffusion control. It is 
clear that Co on Nb@700 and Nb@800 show better catalytic performance of CO oxidation with the 
Nb@800 showing the best performance.  

Table 1. Six percent Co@300/Nb with the number following @ = pre-calcination temperatures of the 
carrier for CO oxidation.  

Catalyst T20 (°C) T50 (°C) T90 (°C)
6% Co@300/Nb@500 190 200 220 
6% Co@300/Nb@700 150 155 160 
6% Co@300/Nb@800 130 145 160 
6% Co@300/Nb@900 130 155 185 

Table 2. provides catalytic results of fresh 6% Co/Al with different pre-calcination temperatures 
of Al2O3. The T20, T50 and T90 indicate that Al@800, pre-calcined at 800°C, yielded the best results. 

Table 2. Six percent Co/Al with @ = pre-calcination temperatures of the carrier for CO oxidation.  

Catalyst T20 (°C) T50 (°C) T90 (°C)
6% Co@300/Al@500 205 225 245 
6% Co@300/Al@700 200 215 - 
6% Co@300/Al@800 185 205 240 

Figure 1. Thermal gravimetric analysis (TGA) tests for the decomposition of the Co(NO3)2·6H2O
and impregnated catalysts Co(NO3)2/Nb@800 and Co(NO3)2/Al@800. Both Nb2O5 and Al2O3 were
pre-calcined at 800 ◦C for 2 h in air. The supported catalysts were prepared to give 6% cobalt oxide.

2.2. Preparative Details of Co/Nb and Co/Al

2.2.1. Pre-Calcination Temperature of Carriers Nb2O5 and Al2O3

Nb2O5 has different crystal phases at different temperature [17]. The pre-calcination temperature
affects the crystal phase of Nb2O5, which in turn affects the chemical and physical properties of Nb2O5.
The structure of Al2O3 is similarly affected. The monohydrate and tri-hydrate alumina structures
change as a function of the temperature (◦C) in air [18]. The impact of pre-calcination temperature on
carriers and final catalysts were therefore explored.

All carriers were pre-calcined at specified temperatures for 2 h in air. After pre-calcination of the
carriers, Co(NO3)2·6H2O was deposited on each carrier and calcined at 300 ◦C in air for 2 h to give
6% Co@300/Nb and 6% Co@300/Al. This nomenclature indicates 6% cobalt oxide calcined at 300 ◦C
after deposited on Nb2O5 or Al2O3.

Table 1 demonstrates catalytic performances of fresh catalysts of 6% Co/Nb with different
pre-calcination temperatures of Nb2O5. In Table 1, all carriers were Nb2O5 pre-calcined from 500 ◦C to
900 ◦C. T20, T50 and T90 values (temperature for 20%, 50% and 90% conversion) are compared. T20

and T50 are indicative of chemical kinetic control, while T90 often reflects some pore diffusion control.
It is clear that Co on Nb@700 and Nb@800 show better catalytic performance of CO oxidation with the
Nb@800 showing the best performance.

Table 1. Six percent Co@300/Nb with the number following @ = pre-calcination temperatures of the
carrier for CO oxidation.

Catalyst T20 (◦C) T50 (◦C) T90 (◦C)

6% Co@300/Nb@500 190 200 220
6% Co@300/Nb@700 150 155 160
6% Co@300/Nb@800 130 145 160
6% Co@300/Nb@900 130 155 185

Table 2 provides catalytic results of fresh 6% Co/Al with different pre-calcination temperatures of
Al2O3. The T20, T50 and T90 indicate that Al@800, pre-calcined at 800 ◦C, yielded the best results.
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Table 2. Six percent Co/Al with @ = pre-calcination temperatures of the carrier for CO oxidation.

Catalyst T20 (◦C) T50 (◦C) T90 (◦C)

6% Co@300/Al@500 205 225 245
6% Co@300/Al@700 200 215 -
6% Co@300/Al@800 185 205 240
6% Co@300/Al@900 215 240 270

One can conclude that the optimal pre-calcination temperature for both Nb2O5 and Al2O3

was 800 ◦C. Therefore, both Nb2O5 and Al2O3 were pre-calcined at 800 ◦C for all experiments
conducted henceforth.

Further, Figure 2 compares the activity of cobalt catalysts as a function of the pre-calcination
temperature of the two carriers. Clearly, 6% Co@300/Nb@800 yielded the best performance of all for
CO oxidation.
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fractional conversion approaching of 1.0 (100% conversion). Catalytic performance of each catalysts 
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Co@300/Nb@800 outperformed its counterpart however, both catalysts suffered some deactivation 
after aging. Six percent Co@300/Nb@800 seemed to experience some reaction rate limited by pore 

Figure 2. Six percent Co@300/Nb@800, 6% Co@300/Nb@500, 6% Co@300/Al@800 and 6%
Co@300/Al@500 for CO oxidation. Both Nb@800 and Al@800 were pre-calcined at 800 ◦C for 2 h in air,
and both Nb@500 and Al@500 were pre-calcined at 500 ◦C for 2 h in air. All four impregnated catalysts
were calcined at 300 ◦C for 2 h in air. Gas composition: CO 1.5 vol %; O2 14.5 vol %, N2 84 vol %.
Catalysis volume: 0.1 mL; GHSV: 64,800 (h−1).

To further quantify the advantages offered by fresh 6% Co@300/Nb@800 relative to fresh
6% Co@300/Al@800 turn over frequencies (TOF) are presented in Table 3 for different temperatures.

T =

( gram
hr o f CO

)
•( f ractional conversion o f CO)

gram o f Co3O4

Table 3. Turnover Frequencies (TOF) for CO oxidation for fresh 6% Co@300/Nb@800 relative to fresh
6% Co@300/Al@800.

Catalyst TOF@150 ◦C
(h−1 × 105)

TOF@170 ◦C
(h−1 × 105)

TOF@190 ◦C
(h−1 × 105)

TOF@210 ◦C
(h−1 × 105)

6% Co@300/Nb@800 897.8 1508 1508 1508
6% Co@300/Al@800 53.48 129.9 496.6 1241
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2.2.2. Catalytic Performance of Fresh and Aged Co Catalysts for CO Oxidation

Based on the data in Tables 1–3, the pre-calcination temperature of carriers was set at 800 ◦C with
the precursor decomposition at 300 ◦C for 2 h in air.

Figure 3 shows that fresh 6% Co@300/Nb@800 outperforms fresh 6% Co@300/Al@800 for
CO oxidation over the entire conversion-temperature profile including the kinetic control regime
up to fractional conversion approaching of 1.0 (100% conversion). Catalytic performance of each
catalysts aged at 400 ◦C for 12 h in reaction gases is also shown in this figure. This temperature
is approximately the maximum experienced in abating VOC from some stationary chemical plants.
Clearly, 6% Co@300/Nb@800 outperformed its counterpart however, both catalysts suffered some
deactivation after aging. Six percent Co@300/Nb@800 seemed to experience some reaction rate limited
by pore diffusion (slightly lower slope at T50 region), while the chemical kinetic control region (T20)
was not affected. For 6% Co@300/Al@800 both kinetic control (T20 region) and pore diffusion control
(T50 region) were negatively affected as evidenced by the large shift to higher temperature and the
decrease in their respective slopes. One can speculate that the shift to higher temperature and a slightly
lower slope reflects a loss of accessibility to the Co active sites due to its reaction rate limited by
pore diffusion.
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Figure 3. Fresh 6% Co@300/Nb@800, aged 6% Co@300/Nb@800, fresh 6% Co@300/Al@800 and aged
6% Co@300/Al@800 for CO oxidation. Aging was conducted at 400 ◦C for 12 h with reaction gases
flowing. Gas composition: CO 1.5 vol %; O2 14.5 vol %, N2 84 vol %. Catalysis volume: 0.1 mL; GHSV:
64,800 (h−1).

2.3. Various Loadings of Co3O4 Supported on Nb2O5

2.3.1. Catalysts with Various Co3O4 Loadings: Propane Oxidation

Various Co3O4 loadings were studied to optimize Co3O4 content. The oxidation of propane
was used as the metric because it is more difficult to oxidize than CO. In Figure 4 (left), three fresh
catalysts with cobalt contents, 1%, 3%, and 6% are compared. All three completed propane oxidation
up to 400 ◦C. Not surprisingly 6% Co@300/Nb@800 shows the best catalytic performance. The
sensitivity of performance to cobalt loading confirms that the activity is in the kinetic regime suitable
for activity comparison.

In Figure 4 (right), all cobalt oxides on niobium oxide were aged at 400 ◦C for 12 h in reaction
propane gas.

Detailed information of these Co@300/Nb@800 are provided in Table 4. It is clear that
6% Co@300/Nb@800 presents the lowest T20, T50, and T90 over the entire conversion profile.
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Figure 4. Fresh Co@300/Nb@800 with loadings of 1%, 3%, and 6%, for propane oxidation (left); aged
Co@300/Nb@800 for propane oxidation (right). Aging was conducted at 400 ◦C with reaction gases for
12 h. Gas composition: C3H8 0.1 vol %, O2 18.9 vol %, N2 81 vol %. Catalysis volume: 0.1 mL, GHSV:
64,800 (h−1).

Table 4. Co@300/Nb@800 with various cobalt loadings for propane oxidation: fresh and aged.

Catalyst T20 (◦C) T50 (◦C) T90 (◦C)

Fresh 6% Co@300/Nb@800 250 280 305
Aged 6% Co@300/Nb@800 290 310 340
Fresh 3% Co@300/Nb@800 260 270 310
Aged 3% Co@300/Nb@800 285 320 360
Fresh 1% Co@300/Nb@800 290 315 345
Aged 1% Co@300/Nb@800 315 355 390

2.3.2. Propane Oxidation with and without Moisture

Results for both fresh 6% Co@300/Nb@800 and 6% Co@300/Al@800, are presented in Figure 5.
Once again, the superiority of fresh 6% Co@300/Nb@800 relative to the baseline 6% Co@300/Al@800
is demonstrated.
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Figure 5. Fresh and aged 6% Co@300/Nb@800 and 6% Co@300/Al@800 for propane oxidation. Aging
was conducted at 400 ◦C with reaction gases for 12 h. Gas composition: C3H8 0.1 vol %, O2 18.9 vol %,
N2 81 vol %. Catalysis volume: 0.1 mL, GHSV: 64,800 (h−1).

Moisture (from upstream combustion) is always present and typically has a poisoning or
inhibiting effect on the performance of the catalyst. Tests were conducted with a feed containing 5%
H2O (steam) for both 6% Co@300/Nb@800 and 6% Co@300/Al@800. In Figure 6, fresh and aged
6% Co@300/Nb@800 and 6% Co@300/Al@800 are compared for propane oxidation with 5% H2O
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present. 6% Co@300/Nb@800 retains much of its activity, and is far more resistant to deactivation than
6% Co@300/Al@800. However, moisture does inhibit 6% Co@300/Nb@800, but far less than for the
6% Co@300/Al@800.Catalysts 2017, 7, 144 7 of 12 
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Figure 6. Fresh and aged 6% Co@300/Nb@800 and 6% Co@300/Al@800 for propane oxidation with
moisture. Aging test was conducted at 400 ◦C with reaction gases for 12 h. Gas composition with H2O
5 vol %, C3H8 0.1 vol %, O2 17.85 vol %, N2 77.05 vol %. Catalysis volume: 0.1 mL, GHSV: 64,800 (h−1).

This figure also demonstrates the obvious advantage of 6% Co@300/Nb@800 over
6% Co@300/Al@800 when both catalysts were aged for 12 h in feed gas containing H2O at 5 vol %.
The aged 6% Co@300/Al@800 lost the majority of its active sites achieving only about 40% (0.4)
conversion at 400 ◦C. Aged 6% Co@300/Nb@800 showed significant catalytic activity even after being
aged in steam containing reaction gas at 400 ◦C for 12 h.

2.4. Comparison of Co3O4 and Pt for Propane Oxidation

The state of the art catalyst used in VOC abatement is typically 1% Pt/Al2O3. For the purpose of
a practical application, the behavior of 1% Co@300/Nb@800 and 6% Co@300/Nb@800 was compared
with 1% Pt/Nb@800 and 1% Pt/Al@800 for propane oxidation. The result shown in Figure 7 (left)
indicates that 6% Co@300/Nb@800 shows a performance advantage over 1% Pt@500/Nb@800 and
1% Pt@500/Al@800. Some advantage for 1% Co@300/Nb@800 is noted at both low and higher
conversions however, diffusional effects may be operative. 1% Pt@500/Nb@800 shows no advantage
over 1% Pt@500/Al@800. Figure 7 (right) shows results of 1% Co@300/Nb@800, 6% Co@300/Nb@800
and 1% Pt@500/Nb@800 subjected to aging test at 400 ◦C for 12 h in air. The 6% cobalt system
suffers slightly, relative to the Pt system, at light off but recovers its performance advantage as 100%
conversion is approached. From these encouraging results, monolith-supported catalysts will be
prepared in the future and comparison extended closer to an actual system.

Tables 5 and 6 exhibit T20, T50, and T90 of Co catalysts and Pt catalysts showed in Figure 7.
The advantages 6% Co@300/Nb@800 over 1% Pt@500/Nb@800 are clear to see.

Table 5. T20, T50, and T90 of fresh Co catalysts and Pt catalysts for propane oxidation.

Catalysts T20 (◦C) T50 (◦C) T90 (◦C)

6% Co@300/Nb@800 250 280 305
1% Co@300/Nb@800 290 315 345
1% Pt@500/Nb@800 275 325 370
1% Pt@500/Al@800 275 340 370
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Figure 7. Fresh cobalt oxide catalyst and fresh platinum catalyst for propane oxidation (left); aged
cobalt oxide and aged platinum on niobium oxide for propane oxidation (right). Impregnated platinum
catalysts were calcined at 500 ◦C. Aging was conducted at 400 ◦C with reaction gases for 12 h. C3H8

0.1 vol %, O2 18.9 vol %, N2 81 vol %. Catalysis volume: 0.1 mL; GHSV: 64,800 (h−1).

Table 6. T20, T50, and T90 of aged Co catalysts and Pt catalysts for propane oxidation.

Catalysts T20 (◦C) T50 (◦C) T90 (◦C)

6% Co@300/Nb@800 290 310 340
1% Co@300/Nb@800 315 355 390
1% Pt@500/Nb@800 290 335 375

2.5. Other Base Metal Oxides for Propane Oxidation

Based on the encouraging results with 6% Co@300/Nb@800 for both CO and C3H8 the study was
expanded to include nickel (Ni), copper (Cu) and iron (Fe) each deposited on Nb@800 and Al@800.
A comparison is shown in Figure 8 (left) for propane oxidation. All four base metal oxides were
prepared with a loading of 6% on Nb@800. It is clear that Co3O4 on Nb2O5 has lowest light-off and
full oxidation performance. Aging for 12 h at 400 ◦C in reacting gases also showed the superiority of
the cobalt system. Figure 8 (right) shows results that Nb2O5 has a much greater promoting effects on
Co3O4 than on NiO.
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Figure 8. Different metal oxides (6%) on Nb@800 for propane oxidation (left); 6% Co3O4 and 6% NiO on
different carriers for propane oxidation (right). The iron catalysts were calcined at 300 ◦C, impregnated
nickel catalysts were calcined at 350 ◦C, and impregnated copper catalysts were calcined at 400 ◦C.
C3H8 0.1 vol %, O2 18.9 vol %, N2 81 vol %. Catalyst volume: 0.1 mL; GHSV: 64,800 (h−1).
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2.6. Cobalt Oxide Catalyst Characterization

BET Tests for Catalysts and Carriers

Surface area of the carrier is among the most fundamentally important properties in catalysis
because the active sites are present or dispersed throughout the internal surface through which
reactants and products are transported [2]. Quantachrome ChemBET Pulsar TPR/TPD is used to
measure surface area of Al2O3 and Nb2O5.

A 50 mg sample is used for Al2O3 and 6% Co3O4/Al2O3; 200 mg sample is used for Nb2O5 and
6% Co3O4/Nb2O5. Figure 9 shows that Nb2O5 pre-calcined at 500 ◦C has a surface area of 53 m2/g.
When pre-calcined at 700 ◦C, Nb2O5 has a surface area decrease to 5 m2/g, while at 800 ◦C it, decreased
to 2 m2/g. Meanwhile, Al2O3 has a 100 times larger surface area than Nb2O5. After pre-calcined at
800 ◦C Al2O3 still has a surface area of about 120 m2/g. Nb2O5 has no surface area stability advantages
over Al2O3, indicating some other interaction of Nb2O5 and Co3O4 gives rise to the enhancement of
activity. In Figure 10 (left), when 6% Co3O4 is impregnated onto Nb2O5, the total surface area increases.
But the final surface area is still very small compared to the surface area of Al2O3. Figure 10 (right)
shows no change in surface area after Co impregnation.
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3. Materials and Methods

3.1. Carrier Preparation

Niobium Oxide Hydrate (Nb2O5·5H2O) was received from CBMM Brazil (Sao Paolo, Brazil).
Alumina (gamma-Al2O3) was provided by BASF (Iselin, NJ, USA). Both Nb2O5 and Al2O3 were
pre-calcined at various temperatures prior to deposition of cobalt nitrate hydrate (Co(NO3)2·6H2O).

3.2. Catalyst Preparation

Incipient wetness was used for metal impregnations. In order to determine the required volume
to fill the pores, water was slowly added to the calcined carrier until saturation was achieved.
The precursor salt was dissolved in this precise amount of water, which was then added to the
carrier. It was dried in air at 130 ◦C for one hour and then calcined in air to various temperatures as
shown in the Results and Discussion section.

3.2.1. Co-Containing Catalyst Preparation

The cobalt nitrate impregnated catalyst was dried at 130 ◦C for 1 h in air to remove all the water
and then calcined at 300 ◦C in air to completely decompose the precursor salt for 2 h. The heating rate
was 10 ◦C/min. Cobalt catalysts were prepared with loadings from 1%, 3% to 6% on both carriers.
Percentages are based on the metal oxide component.

3.2.2. Pt-Containing Catalysts Preparation

A water soluble platinum amine salt, which is alkali and halide free, provided by BASF (Iselin,
NJ, USA), was used for preparation of the Pt catalyst using incipient wetness. 1% Pt/Nb2O5 and
1% Pt/Al2O3 were prepared with the 800 ◦C pre-calcined carriers. Drying was accomplished 130 ◦C in
air and the final calcination at 500 ◦C for 2 h in air at a heating rate of 10 ◦C/min.

3.3. Reactor Test

3.3.1. Reactor Preparation

The 0.1 mL (about 0.08–0.09 g) of finished catalyst was uniformly mixed with about 0.75 g of
diluent quartz to maintain the bed temperature approximately constant. Air and propane (1% C3H8 in
N2 were introduced into the reactor. The reactor quartz tubing was 10.5 mm (ID) × 12.75 mm (OD)
with a length of 50 cm with XC-course quartz frit provided by Quartz Scientific, Inc. Harbor, OH, USA
to support the catalyst.

3.3.2. Reactor Gas Flow Rate

The volume of catalyst used for all experiments was 0.1 mL and the total volumetric flow rate
was 108 mL/min. Thus the GHSV was set at 64,800 h−1.

GHSV =
Flow Rate (STP)
Catalyst Volume

=
108 mL/min

0.1 mL
= 1080 min−1 = 64, 800 h−1

Reactor Gas Flow without Steam for CO Oxidation

21% O2/N2 with flow rate 75 mL/min and 4.94% CO/N2 with flow rate 33 mL/min was used
as reactant gases. Flow rates are measured at room temperature of 25 ◦C and pressure of 1 atm. The
GHSV here is: 64,800 h−1. Rotameters were calibrated with a soap film bubble meter and used to
control flow rates.
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Reactor Gas Flow without Steam for Propane Oxidation

21% O2/N2 at flow rate of 97.2 mL/min and 1% C3H8/N2 at a flow rate of 10.8 mL/min was
used as reactant gases giving C3H8 = 0.1% C3H8 or 1000 ppm. All flow rates were measured at room
temperature of 25 and pressure of 1 atm. The GHSV here was: 64,800 h−1. Rotameters were calibrated
with a soap film bubble meter and used to control flow rates.

Reactor Gas Flow with Steam for Propane Oxidation

Twenty-one percent O2/N2 at a flow rate of 91.8 mL/min, 1% C3H8/N2 at a flow rate of
10.8 mL/min and H2O (steam) was introduced giving a flow rate of 5.4 mL/min. This gives 0.1% C3H8

with 5% steam and balance air. Liquid water was injected into the reactor connected into a heated
transfer line. The heating tape was set at 150 ◦C; sufficiently high to generate a homogenous gaseous
mixture. The GHSV here is 64,800 h−1. Rotameters were calibrated with a soap film bubble meter and
used to control flow rate.

3.4. Data Management

3.4.1. Data Acquisition

Catalytic oxidations were carried out in a fixed-bed quartz flow reactor at atmospheric pressure.
A cold trap was placed at the outlet to condense water produced during the reaction prior to entering
the gas chromatography (GC). Effluent gases of O2, CO, CO2, C3H8 and N2 were analyzed by the
micro GC. The temperature of the catalyst bed was measured by a K-type thermocouple and controlled
by Omega CN7800 series temperature controller. An INFICON 3000 Micro GC, East Syracuse, NY,
USA was used to analyze gas composition. Five single runs were conducted at each temperature.
The GC was calibrated using 4 different certified standard gases before measurement.

3.4.2. Data Processing

Raw data from the GC was managed and analyzed in Excel to obtain plots of conversion
as a function of temperature. The inlet catalyst temperature was increased and held until steady
conversion was achieved. The temperature was controlled by a thermocouple located inside the reactor
immediately above the catalyst inlet and connected to the MELLEN TEMPERATURE CONTROLLER.
The temperature was increased in increments of 10 ◦C and the conversion measured.

Conversion of CO and C3H8 oxidation at each temperature point is as follows:

CO(Conversion)% =
CO(initial) − CO(exit)

CO(inital)
× 100% (3)

C3H8(Conversion)% =
C3H8(initial) − C3H8(exit)

C3H8(initial)
× 100% (4)

The oxidation reaction of CO and C3H8 to CO2 is as follows:

CO +
1
2

O2 → CO2 (1)

C3H8 + 5O2 → 3CO2 + 4H2O (2)

3.5. Aging Test

The aging temperature was maintained at 400 ◦C for 12 h in the reactant gases, followed by the
generation of a conversion vs. temperature profile.
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4. Conclusions

The pre-calcination temperature of the Nb2O5 carrier of 800 ◦C with cobalt calcined at 300 ◦C
gives the best fresh and aged performance for both CO and propane oxidation. Nb2O5 shows
a significant advantage over Al2O3 as the carrier. Six percent Co@300/Nb@800 has better fresh
catalytic performance, higher thermal stability and greater resistance to steam than its counterpart,
6% Co@300/Al@800. Co3O4/Nb2O5 demonstrates increasing catalytic performance with Co3O4

loading from 1% to 6%. 6% Co@300/Nb@800 outperforms 1% Pt@500/Nb@800 for both fresh and
aged states. Nb2O5 promotes Co3O4 and fresh NiO. However there is no advantage for CuO and
Fe2O3 compared to the traditional Al2O3 carrier. Additionally, 6% Ni@350/Nb@800 has poor thermal
stability relative to 6% Co@300/Nb@800. Therefore, 6% Co@300/Nb@800 is a viable candidate for
replacing 1% Pt@500/Al@800 even though some small decrease in GHSV may be necessary to insure
equal performance. However, this will not negatively affect the cost advantage of Co3O4 compared to
Pt-containing catalysts. Naturally, candidate catalysts must be deposited on monolith and subjected to
real VOC feed streams before a definitive recommendation can be made regarding replacement for Pt.
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