

Suplementary Materials: Polycyclic Ketone Monooxygenase (PockeMO): A Robust Biocatalyst for the Synthesis of Optically Active Sulfoxides

Gonzalo de Gonzalo ^{1,*}, Maximilian J. L. J. Fürst ² and Marco W. Fraaije ²

- ¹ Departamento de Química Orgánica, Universidad de Sevilla, c/Profesor García González 1, 41012 Sevilla, Spain
- ² Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; m.j.l.j.furst@rug.nl (M.J.L.J.F.), m.w.fraaije@rug.nl (M.W.F.)
- * Correspondence: gdegonzalo@us.es; Tel.: +34-95-455-9997

Received: 12 August 2017; Accepted: 21 September 2017; Published: date

S.1. Study of the Thioanisole Concentration Effect on the PockeMO-Catalytic Properties

Thioanisole **1a** (10, 50, 100 or 200 mM) was added to 1.0 mL Tris/HCl 50 mM (pH 8.0) containing NADPH (0.2 mM), sodium phosphite (1.0 equivalent) and PockeMO (1.0 μ M). The reactions were stirred at 25, 45 or 60 °C at 220 rpm for the times established. Once finished, the reactions were extracted with EtOAc (2 x 0.5 mL) and dried onto Na₂SO₄. The samples were directly analysed by GC/MS and HPLC in order to determine, respectively, the level of conversion, the percentage of chiral methyl phenyl sulfoxide (*R*)-**1b** and methyl phenyl sulfone **1c**, as well as the enantiomeric excesses of sulfoxide (*R*)-**1b**. Results are summarized in Table S.1.

Table S1. Enantiomeric excesses, conversions and space time yields obtained in the PockeMO-catalyzed sulfoxidation of thioanisole at different concentrations and temperatures.

[1a] (mM)	T (°C)	t (h)	conversion (%)ª	Space time yield (mmol L ⁻¹ h ⁻¹)	ee (R)- 1b (%)
10	25	16	>97	61.9	88
50	25	16	45	140.6	89
100	25	30	13	43.3	86
200	25	48	7	29.2	85
10	45	8	>97	123.8	87
50	45	20	96	240.0	86
100	45	24	43	179.2	86
200	45	24	17	141.7	84
10	60	7	>97	138.1	82
50	60	24	92	191.7	80
100	60	24	35	145.8	80
200	60	24	11	91.7	79

^a For all the reactions studied, the amount of sulfone **1c** was below 5%.

S.2. GC Analyses

GC Analyses were performed on a HP-5MS cross-linked methyl siloxane column (30 m × 0.25 mm × 0.25 μ m, 1.0 bar N₂) and were used for the determination of the conversions and the amount of both sulfoxides **1-12b** and sulfones **1–12c** (Table S2). For all the compounds, the following program was employed: 50 °C (5 min), 10 °C/min, 200 °C (3 min).

Table S2. Determination of conversions and amounts of sulfoxides and sulfones by employing GC.

Substrate	tr (min) Sulfide	tr (min) Sulfoxide	tr (min) Sulfone
1	11.0	15.1	15.7

Catalysts 2017, 7, x; doi:

Catalysts **2017**, 7, x

2	12.2	16.2	16.9
3	15.4	18.7	19.5
4	16.5	18.9	19.5
5	14.9	18.6	19.3
6	14.1	17.1	17.7
7	14.1	17.2	17.7
8	13.9	16.6	17.0
9	12.5	17.0	17.7
10	18.9	21.8	22.3
11	19.5	21.9	22.5
12	12.8	15.8	16.6

S.3. HPLC Analyses

For the determination of the enantiomeric excesses of compounds **1–12b** (Table S3), the following columns were employed: column A: Chiralcel OB (0.46 cm × 25 cm), column B: Chiralcel OD (0.46 cm × 25 cm) and column C: Chiralcel OJ-H (0.46 cm × 25 cm), all three from Daicel.

Substrate	Column	Flow rate (mL min ⁻¹)	T (⁰ C)	Eluent ^a	Retention time (min)
1b	В	1.0	30	<i>n</i> -hexane-IPA 9:1	10.2 (<i>R</i>); 12.0 (<i>S</i>)
2b	В	1.0	30	n-hexane-IPA 95:5	12.9 (<i>R</i>); 16.5 (<i>S</i>)
3b	В	1.0	30	n-hexane-IPA 95:5	16.9 (<i>R</i>); 18.2 (<i>S</i>)
4b	С	1.0	30	n-hexane-IPA 9:1	47.1 (R); 52.3 (S)
5b	В	1.0	30	n-hexane-IPA 9:1	14.1 (<i>R</i>); 15.2 (<i>S</i>)
6b	А	1.0	30	n-hexane-IPA 9:1	13.5 (S); 20.7 (R)
7b	А	1.0	30	<i>n</i> -hexane-IPA 9:1	12.8 (S); 18.8 (R)
8b	А	1.0	30	n-hexane-IPA 9:1	15.4 (S); 22.6 (R)
9b	В	1.0	30	n-hexane-IPA 9:1	17.0 (<i>R</i>); 18.7 (<i>S</i>)
10b	В	1.0	30	n-hexane-IPA 95:5	26.1 (<i>R</i>); 29.0 (<i>S</i>)
11b	В	0.5	30	n-hexane-IPA 9:1	22.1 (<i>R</i>); 26,7 (<i>S</i>)
12b	А	0.5	30	n-hexane-IPA 9:1	14.7 (S); 17.1 (R)

Table S3. Determination of enantiomeric excesses by HPLC.

^a All the experiments were performed with isocratic eluent.

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).