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Abstract:



Rh(III)-catalyzed regioselective alkylation of indoles with diazo compounds as a highly efficient and atom-economic protocol for the synthesis of alkyl substituted indoles has been developed. The reaction could proceed under mild conditions and afford a series of desired products in good to excellent yields.
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1. Introduction


A major goal for the advancement of modern organic chemistry is the development of highly efficient and atom economical synthetic strategies that allow the rapid construction of structurally complex and functionally diverse molecular architectures [1,2]. Indoles are an important heterocyclic motif and widely found in numerous natural products, pharmacophores, and synthetic building blocks [3,4]. Therefore, direct functionalization of indoles has attracted much attention from synthetic chemists. With the development of transition-metal-catalyzed C–H bond activation, it has become the most straightforward approach for functionalization of indoles in a step- and atom-economical fashion [5,6,7,8,9,10,11,12]. Nevertheless, compared with C3–H functionalization, the methods that allow for the C2–H functionalization of indoles are still rare due to the weak reactivity of the C–H bond at the C2-position of an indole [13,14]. In this context, some excellent studies on selective arylation [15], alkenylation [16], alkynylation [17], cyanation [18], and acylation [19] of the C2–H bond of indoles have been conducted. However, the methods that allow for direct C2–H alkylation of indoles are still rare. In 2011, the group of Bach documented a Pd(II)-catalyzed direct C2-alkylation reaction of free (N–H)-indoles and primary alkyl bromides [20,21]. This reaction relied on a norbornene-mediated cascade process. Shortly after, Shibata developed a cationic iridium-catalyzed C2-alkylation for efficient synthesis of C2-alkyl substituted indoles with various alkenes [22]. Later, Glorius described a Rh(III)-catalyzed C–H alkylation of indoles with allylic alcohols with an excess amount of Cu(OAc)2 as an oxidant, while stoichiometric amounts of salt waste are generated as a byproduct [23,24]. Very recently, Li reported the Rh(III)-catalyzed direct alkylation of indoles using commercially available alkyltrifluoroborates in the presence of 2.8 equiv of AgF at 100 °C [25]. Despite these advances, there are still some limitations, such as high catalyst loading, excess metal oxidant, high temperature, and toxic medium.



Recently, diazo compounds have been widely employed as a class of versatile alkylation reagents in metal catalyzed C–H alkylation [26,27,28,29]. In 2010, Yu reported a highly regioselective approach for C2 alkylation of free (N–H)-indoles and aryldiazoesters catalyzed by Ruthenium catalyst [30]. In 2014, Yi and coworkers disclosed a Rh(III)-catalyzed C2-selective carbenoid functionalization with diazotized Meldrum’s acid, while the catalyst loading of 5 mol % was required for high catalytic efficiency [31]. As part of an ongoing research program on the C–H functionalization of indoles [32,33,34,35], we describe herein a facile and mild Rh(III)-catalyzed highly selectively direct C–H alkylation of indoles with diazo compounds. During the preparation of this manuscript, a similar work was published by Wang and coworkers [36].




2. Results and Discussion


We began our initial exploration by using N-pyrimidyl indole 1a and diazo compound 2a as starting materials, and the reaction was carried out in EtOH at 60 °C in the presence of [RhCpCl2]2 (2 mol %). To our delight, the reaction proceeded smoothly to afford product 3a with an 86% yield. Encouraged by this preliminary result, the effect of temperature on this catalytic system was investigated. We observed that there was no change in yield even when the temperature was decreased from 60 °C to 50 °C (Table 1, Entries 1 and 2). When the C–H alkyaltion process was carried out at room temperature, a lower yield was obtained, even with a longer reaction time (Table 1, Entry 4). Next, a variety of additives, such as AgO2CCF3, AgSbF6, AgF, AgOTf, and Ag2O were tested to improve the yield of product (Table 1, Entries 5–9). Gratifyingly, AgSbF6 was proved to be the most effective, and the desired product was obtained with the highest yield at 92% (Table 1, Entry 6). When the C–H alkylation was performed without additives, the desired product could be obtained with a 36% yield (Table 1, Entry 10). Afterward, we studied different media, such as MeOH, i-PrOH, t-AmOH, CH3CN, DCE, and THF (Table 1, Entries 11–16). It was noted that the reaction proceeded in all solvents with different degrees of conversion, and the results showed that EtOH was still the best choice. The control experiment confirmed that this transformation would not occur in the absence of [RhCp*Cl2]2 (Table 1, Entry 17). Finally, we were pleased to find that the reaction could also be performed on a 6.0 mmol scale under the optimized conditions without a significant decrease in efficiency (Table 1, Entry 18).



Table 1. Optimization of reaction conditions a.
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Entry

	
Additive

	
Solvent

	
Temp.

	
Yield b






	
1

	
AgOAc

	
EtOH

	
60

	
86




	
2

	
AgOAc

	
EtOH

	
50

	
86




	
3

	
AgOAc

	
EtOH

	
40

	
84




	
4

	
AgOAc

	
EtOH

	
25

	
70




	
5

	
AgO2CCF3

	
EtOH

	
50

	
85




	
6

	
AgSbF6

	
EtOH

	
50

	
92




	
7

	
AgF

	
EtOH

	
50

	
82




	
8

	
Ag2O

	
EtOH

	
50

	
56




	
9

	
AgOTf

	
EtOH

	
50

	
75




	
10

	
-

	
EtOH

	
50

	
36




	
11

	
AgSbF6

	
MeOH

	
50

	
90




	
12

	
AgSbF6

	
i-PrOH

	
50

	
83




	
13

	
AgSbF6

	
t-AmOH

	
50

	
80




	
14

	
AgSbF6

	
CH3CN

	
50

	
42




	
15

	
AgSbF6

	
DCE

	
50

	
54




	
16

	
AgSbF6

	
THF

	
50

	
21




	
17 c

	
AgSbF6

	
EtOH

	
50

	
0




	
18 d

	
AgSbF6

	
EtOH

	
50

	
90








a Conditions: 1a (0.2 mmol), 2a (0.24 mmol), [RhCp*Cl2]2 (2.0 mol %), Ag(I) additive (10.0 mol %), solvent (2.0 mL), 12 h; b Isolated yields; c without [RhCp*Cl2]2; d Performed on a 6.0 mmol scale.








Having established the optimal reaction conditions, the scope of the indoles was explored. As shown in Table 2, indoles containing electron-donating and electron-withdrawing groups (Me, OMe, CO2Me, F, Br, Cl), regardless of substituent position on the aromatic ring, were found to be favored in the C–H alkylation reaction to afford the corresponding products in high to excellent yields. The reaction showed good functional group compatibility. For instance, the ester group on the aryl ring was compatible with this catalytic process, and the desired alkylated products were obtained in an excellent yield (Table 2, Entries 3 and 11). Perhaps more importantly, this protocol could also be successfully applied to the substrates with a methyl or bromo group on the pyrimidine ring to provide the corresponding products with 87% and 88% yields, respectively (Table 2, Entries 14 and 15).



Table 2. Indole scope a.
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Entry

	
R1

	
R2

	
3

	
Yield (%) b






	
1

	
4-Me

	
H

	
3b

	
93




	
2

	
4-OBn

	
H

	
3c

	
92




	
3

	
4-CO2Me

	
H

	
3d

	
91




	
4

	
4-Cl

	
H

	
3e

	
87




	
5

	
5-Me

	
H

	
3f

	
86




	
6

	
5-OMe

	
H

	
3g

	
90




	
7

	
5-OBn

	
H

	
3h

	
94




	
8

	
5-Br

	
H

	
3i

	
93




	
9

	
5-Cl

	
H

	
3j

	
92




	
10

	
6-Me

	
H

	
3k

	
90




	
11

	
6-CO2Me

	
H

	
3l

	
90




	
12

	
6-F

	
H

	
3m

	
89




	
13

	
6-Cl

	
H

	
3n

	
89




	
14

	
H

	
Me

	
3o

	
87




	
15

	
H

	
Br

	
3p

	
88








a Conditions: 1 (0.2 mmol), 2a (0.24 mmol), [RhCp*Cl2]2 (2.0 mol %), AgSbF6 (10.0 mol %), EtOH (2.0 mL), 50 °C, 6–18 h; b Isolated yields.








To further evaluate the substrate scope of this reaction, a broad range of symmetric and non-symmetric diazo compounds was examined to couple with 1a. As shown in Scheme 1, diazomalonates bearing substituents such as methyl, i-propyl, and benzyl were all suitable for the reaction and gave the desired products (3q–t) in excellent yields. Notably, this catalytic process proceeded well with α-diazo acetylacetone to afford the desired product 3u with an 85% yield. Additionally, high efficiency was also obtained when one of the ester groups was replaced with a diethyl phosphonate group (3v). To our disappointment, the reaction did not provide the corresponding products when using diazoacetate or methyl phenyldiazoacetate as coupling partners (Scheme 1).



To gain an understanding of more details on the reaction, the competitive reaction between differently substituted indoles was carried out under the standard conditions. As shown in Scheme 2, a mixture of 3f and 3j in a ratio of 6.8:1.0 was obtained, which indicated that the more electron-rich indoles are kinetically favored in this catalytic system (Scheme 2).



On the basis of these observations and literature precedents, we propose a possible mechanism as illustrated in Scheme 3. Firstly, the [RhCp*Cl2]2 could be activated by AgSbF6 to generate the active cationic [Cp*Rh(III)] species. Subsequently, the C2–H bond of 1a is cleaved directly by [Cp*Rh(III)] species to afford the five-member rhodacyclic intermediate A. The coordination of intermediate A with the diazo compound 2a provides the diazonium intermediate B, followed by the formation of the cyclic Rh(III) carbene species C through the emission of N2. Rh(III) carbene C undergoes intramolecular migratory insertion, leading to rhodacyclic complex D. Finally, protonolysis of D provides the desired product 3a with regeneration of the active Rh(III) catalyst (Scheme 3).




3. Experimental Section


3.1. General Information


All chemicals were purchased from commercial suppliers and used without further purification. All solvents were treated prior to use according to the standard methods. Flash column chromatography was performed using 200–300 mesh silica gel. 1H NMR spectra were recorded on 400 MHz spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard (CDCl3: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz), and integration. 13C NMR spectra were recorded on 100-MHz spectrophotometers with complete proton decoupling spectrophotometers (CDCl3: 77.0 ppm). High-resolution mass spectral analysis (HRMS) was performed with a Bruker micrOTOF-QII. Melting points were measured with a Melting Point apparatus WPS-2. IR spectra were measured with a Bruker Tensor 27 FT-IR spectrometer. NMR spectra can be viewed in the supporting material.




3.2. Representative Procedure for the C–H Alkylation Reaction


A mixture of N-pyrimidyl indole 1a (0.20 mmol, 1.0 equiv.), diazo compounds 2a (0.24 mmol, 1.2 equiv), [RhCp*Cl2]2 (2.5 mg, 2 mol %), and AgSbF6 (6.8 mg, 10 mol %) were combined in EtOH (2.0 mL) in a dried 10-mL Schlenk tube. The mixture was stirred at 50 °C for 6–18 h and monitored by TLC. After the reaction was finished, the volatiles were removed under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the desired product 3a with a 92% yield.





4. Conclusions


In conclusion, we have developed a highly efficient and atom-economic Rh(III)-catalyzed regioselective C2–H alkylation of indoles with diazo compounds. A wide range of alkyl group substituted indoles was smoothly obtained in good to excellent yields under the optimized conditions. Beside N2 as the single byproduct, the remarkable features of this reaction included mild conditions, simple operation, high efficiency, and broad functional group tolerance.








Supplementary Materials


The following are available online at www.mdpi.com/2073-4344/6/6/89/s1. Figures S1–S60 are the NMR spectra and HRMS of compounds of 3a–v.
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Scheme 1. Diazo compound scope a. a Conditions: 1a (0.2 mmol), 2 (0.24 mmol), [RhCp*Cl2]2 (2.0 mol %), AgSbF6 (10.0 mol%), EtOH (2.0 mL), 50 °C. 
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Scheme 2. Intermolecular competition experiment. 
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Scheme 3. The proposed mechanism. 
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