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Abstract: Photocatalytic water splitting is one of the ideal methods for solving the global energy crisis
and its associated environmental problems. In this study, the effect of altering the molecular structure
of porphyrins was investigated to improve the water splitting activity of Zr-doped KTaO3 (KTa(Zr)Os3)
modified with porphyrin dyes. UV-vis spectra indicated that porphyrins with long alkoxy chains
tended to form well-developed H-aggregates on the KTa(Zr)O3 surface. The photocatalytic activity of
Pt-loaded KTa(Zr)O3 was improved by using porphyrins with longer alkoxy chains because of the
improvement in the charge migration between porphyrin dye molecules. While the charge transfer
between the inorganic semiconductor and porphyrin dye interface is important, it was found that
the formation of H-aggregation was more effective in improving the water splitting activity of the
porphyrin-modified photocatalysts.
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1. Introduction

Photocatalytic water splitting is one of the most promising strategies for renewable and clean
production of hydrogen. This method of hydrogen production has attracted much attention not
only for the conversion of light energy but also from a scientific viewpoint, because photocatalytic
water splitting is regarded as an artificial photosynthetic system. In photosynthesis, two photons
are required to facilitate NADPH synthesis from NADP* and water [1]. This two-step excitation
process, the so-called “Z-scheme”, has been widely studied in both fundamental and applied fields of
research [2-5]. In the past decade, various systems capable of Z-scheme water splitting (Figure 1b), such
as Pt or Ru/SrTiOs:Rh-Fe3* /Fe2*~-WOj3, BiVOy, or Bi,MoOy [6,7], Pt/ TaON-IO5;~ /I~ -PtOx/WOj3
or RuO, /TaON [8,9], Pt/ZrO, /TaON-105~ /I~ -Ir/TiO, / TazN5 or RuO,/TaON [10,11], and other
systems [12-15], have been reported. Our research group has also reported Z-scheme water splitting
using porphyrin-dye-modified inorganic semiconductors, such as KTa(Zr)O3 [16-18], GaN:ZnO [19]
and TaON [20]. In these dye-modified photocatalysts, the dyes used for modification improve the
utilization efficiency of visible light and increase the charge separation lifetime owing to the electron
transfer between the excited inorganic semiconductors and the dyes, as shown in Figure 1c. In our
previous results, it was found that 5,10,15,20-tetrakis(tetraphenyl)porphyrin-Cr(III) chloride (Cr-TPPCI,
Dye 1 in this study) had a positive effect on the photocatalytic activity of KTa(Zr)O3 for overall
water splitting [17]. Cr-TPPCI formed aggregates on the surface of KTa(Zr)O3, which is similar to the
structure of the chlorophyll special pair in the naturally occurring photosynthetic reaction center [21].
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Thus, we have an interest in the relation between the aggregation states of porphyrins and their
effects on the photocatalytic activity of the Cr-TPPCl/KTa(Zr)O3 system. Therefore, in this study, we
have synthesized various porphyrins that contain chromium-coordinated porphyrin structures with
different alkoxy chain lengths and used these compounds as modification dyes for the KTa(Zr)O3
photocatalyst. The aggregation states of the porphyrins were investigated by using UV-vis absorption
spectroscopy; photocatalytic water splitting on KTa(Zr)Os; modified with various porphyrins was
also demonstrated.
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Figure 1. Various heterogeneous photocatalyst systems for water splitting reaction. (a) A one-photon
system; (b) the Z-scheme system; and (c) the Cr-TPPCl-modified KTa(Zr)O3 system.

2. Results and Discussion

Various porphyrins (Figure 2), including 5,10,15,20-tetrakis(tetraphenyl)porphyrin-Cr(III)
chloride (Dye 1), 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin-Cr(IlI) chloride (Dye 2),
5,10,15,20-tetrakis(4-(propoxy)phenyl)porphyrin-Cr(Ill) chloride (Dye 3), 5,10,15,20-tetrakis
(4-(hexyloxy) phenyl)porphyrin-Cr(Ill) chloride (Dye 4), 5,10,15,20-tetrakis(4-(dodecyloxy)phenyl)
porphyrin-Cr(IlI) chloride (Dye 5) and 5,10,15,20-tetrakis(4-(hexadecyloxy)phenyl)porphyrin-Cr(III)
chloride (Dye 6), were used to investigate the effect of molecular structure on the photocatalytic
activity of KTa(Zr)O3. The 'H NMR, 13C NMR and CSI-MS spectra of the porphyrins are summarized
in the Supplementary Materials (Figures S1-59). From these results, we could confirm that the
porphyrins were successfully synthesized.
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Figure 2. Molecular structures of the porphyrin dyes used for the modification of KTa(Zr)O3.

Figure 3 shows the UV-vis spectra of the synthesized porphyrins dissolved in CH,Cl,. In all
spectra, the Soret and Q-band absorptions, which are typical porphyrin absorption bands, were
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observed at 450 and 560-610 nm, respectively. Compared with the spectrum of Dye 1 (Figure 3a), the
absorption peaks of Dyes 2-6 were slightly shifted to longer wavelengths because of electron donation
from alkoxy groups. The peak intensities in the absorption spectra of Dyes 2—-6 appeared at the same
positions; thus, it appears that the porphyrin dyes 2-6 exhibit similar energy states. To investigate
the energy states of the porphyrin dyes, cyclic voltammetry was performed (Figure S510). The first
oxidation-reduction potential was observed at —1.48 V (vs. Ag/Ag™) for Dye 1, while the potentials
for Dyes 2-6 were observed at —1.51 V (vs. Ag/Ag"). The small difference between Dye 1 and the
other dyes was also attributed to electron donation from the alkoxy groups. The ability of the alkoxy
chain to donate electron density to the porphyrin ring appears to be similar, regardless of the length of
the chain.

~ 30000 - 448  (a)Dye1(X:-H) 1 ~30000F 451 (d)Dye 4 (X: -OCgH,,) T
§ 15000 {1 515000+ .
v r 39 564 602 v 400 572 610
s 0 s 0
g 300007 451 (b)Dye2(x:-OCH,) 7 ¢ 300001 451 (¢)Dye 5 (X: -OC:;Hz)
& 15000 | { &15000} 1
= =
2 400 569 609 g 400 568 608
o 0F 3] 0F
5 30000 - 4o (©Dye3(x-0Cy,)| S 30000 451" (f) Dye 6 (X: -OCgHyy) -
(8] 1 (8]
< 15000 |- 4 £ 15000 -
w - 400 571 610 i 400 570 609

0 . 1 P — " 1 n 0 . 1 . 1 N 1 n

300 400 500 600 700 300 400 500 600 700

Wavelength /nm Wavelength /nm

Figure 3. UV-vis spectra of Dyes 1-6 in CH,Cl,.

The morphology of the prepared samples was determined using FIB-SEM. Figure 4 shows
SEM images of the various KTa(Zr)O3; photocatalysts modified with Dyes 1-6. All the samples
exhibited small particles of various size distributions (<10 nm) deposited on the surface of larger
KTa(Zr)Os particles. These smaller particles appear to be Pt co-catalyst and/or aggregates of porphyrin
dyes loaded on the KTa(Zr)O3 surface. The particle size of KTa(Zr)O; was approximately 1 pm,
which corresponded well with the results of a laser diffraction analysis of the particle diameters
(Figure S11). TEM images of the dye-modified KTa(Zr)O3 samples are shown in Figure 5. In all images,
the Pt-co-catalysts were observed as black small particles loaded on the larger KTa(Zr)Os3 particles.
The average diameter of Pt-co-catalysts was approximately 2-3 nm. Compared to a TEM image of
KTa(Zr)O5; without dye modification (Figure S12), the dye-modified KTa(Zr)Os surface seemed to be
dappled, which suggested that the porphyrin dyes partially coated the KTa(Zr)Os surface.

Figure 4. Cont.
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Figure 4. SEM images of Pt/KTa(Zr)O3 modified with (a) Dye 1, (b) Dye 2, (c) Dye 3, (d) Dye 4,
(e) Dye 5 and (f) Dye 6.

@

Figure 5. TEM images of Pt/KTa(Zr)O3 modified with (a) Dye 1, (b) Dye 2, (c) Dye 3, (d) Dye 4,
(e) Dye 5 and (f) Dye 6.

To investigate the aggregation states of Dyes 1-6, UV-vis absorption spectra were measured.
Figure 6 shows the UV-vis spectra of the KTa(Zr)O3 photocatalyst modified with Dyes 1-6. As
shown in Figure S13, KTa(Zr)O3; absorbed UV light at wavelengths shorter than 350 nm. Broad
absorption peaks corresponding to Dyes 1-6 were observed in the visible region from 420 to 700 nm.
In comparison with the absorption spectra of the dye solutions (Figure 3), the Soret band absorption
peaks of Dyes 1-6 became broad and blue-shifted (626 nm), while the Q-band absorption peaks were
red-shifted (11-38 nm). This tendency was most obviously observed in the porphyrins bearing longer
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alkoxy chains, such as Dye 5 and Dye 6. These peak shifts in the absorption spectra occurred as a result
of the differences in the aggregation states of the dye compounds. In general, a red-shift is assigned
to J-aggregations and a blue-shift to H-aggregations [22]. The peak-shift of |- and H-aggregates are
dependent on the differences in transition dipoles: transition dipoles of J-aggregates are aligned
parallel, while those of H-aggregates are aligned perpendicular. In the case of porphyrin derivatives, it
has been reported that the aggregation state of the porphyrins can be determined by the shift direction
of the Soret band [23,24]. Thus, all porphyrins used in this study appear to form H-aggregates on the
KTa(Zr)Os3 surface. Furthermore, the porphyrins that have longer alkoxy chains formed well-developed
H-aggregates. In comparison with amorphous aggregates, dye aggregates have an advantage when
transporting photogenerated charge carriers.
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Figure 6. UV-vis absorption spectra of Pt (0.2 wt. %)/porphyrin dye (0.8 wt. %)/KTa(Zr)Os.

Figure 7 shows the time course for water splitting on Pt-loaded KTa(Zr)Os modified with Dye 2.
A 1-2 hinduction period was observed after starting photoirradiation, and then the amounts of Hy
and O, formed linearly increased with time. This tendency was observed in all samples (Figure S14).
This behavior might be attributed to state changes of the photocatalysts, such as changes in the Pt
co-catalysts” oxidation states or oxidative dye decomposition. The results of a recycle test of the
photocatalyst are also shown in Figure 7. The circulating Ar gas was evacuated and exchanged
every 5 h. Liner gas formation was observed during each run, and formation rates were slightly
decreased over the 15 h period of the experiment. After the photocatalytic reaction, the amount of
Dye 2 remaining on the KTa(Zr)O; surface had decreased to 40% of the original loading (Figure S15).
Although the porphyrin dyes remained in the reaction mixture for at least 15 h under the photocatalytic
water splitting conditions, improving porphyrin stability to allow for their use in prolonged reactions
is necessary.
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Figure 7. Time course for water splitting on Pt (0.2 wt. %)/Dye 2 (0.8 wt. %)/KTa(Zr)Os.
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Table 1 shows Hy and O, formation rates for photocatalytic water splitting on Pt-loaded
KTa(Zr)O3; modified with Dyes 1-6. In comparison with the result observed for the unmodified
Pt-loaded KTa(Zr)O3, the photocatalytic activity of the KTa(Zr)O3 catalysts was improved by using the
porphyrins. In all cases, the gas formation ratio is slightly different from the expected stoichiometry.
The errors in the values of formation rates were evaluated using the Pt/Dye 2/KTa(Zr)O3 photocatalyst.
As shown in Figure 516, the error observed in the oxygen formation rate was larger than that of the
hydrogen formation rate. This difference may come from the low sensitivity for oxygen detection in
gas chromatography with an Ar carrier and the hole consumption by oxidative dye decomposition.
From the viewpoint of dye structure, the porphyrins which have small functional groups (Dye 1
and 2) tended to have a larger positive influence on photocatalytic activity. The porphyrins with
small alkoxy groups closely adsorbed onto the KTa(Zr)Oj3 surface; thus, the charge transfer between
the photo-excited electrons in KTa(Zr)O3 and the porphyrin dyes occurred easily compared with
the porphyrins that contained large and bulky alkoxy groups. In our previous study, it was found
that efficient electron transfer between the inorganic semiconductor surface and a porphine ring
(or its central metal) is important for prolonging the charge separation lifetime and improving the
water splitting activity of dye-modified photocatalysts [17,18]. Therefore, Dye 2-modified KTa(Zr)Os3,
containing a methoxy group, showed the highest photocatalytic activity for water splitting in this
study. On the contrary, the gas formation rates gradually increased with increasing alkoxy chain length
(i.e., from Dye 3 to Dye 6). As mentioned above, the porphyrins with longer alkoxy chains formed
well-developed H-aggregates on the KTa(Zr)O3 surface. The photogenerated electrons (holes) are
transported via redox of the porphyrin units; thus, the porphyrin aggregations have great advantages
for charge migration because of their overlapping 7t electron clouds. Improvements in the electronic
conductivity of the dye aggregates lead to an increase in photogenerated charges that reach the
reaction sites on the photocatalyst surface. Therefore, the photocatalytic activity of KTa(Zr)O3; was
improved by using the porphyrins with longer alkoxy chains. As a result of these two different factors,
the modification effects of Dyes 1-6 were observed, as shown in Table 1. Although the porphyrin
H-aggregates effectively improved the water splitting activity of the KTa(Zr)O3 photocatalyst, the
charge transfer between the inorganic semiconductor and porphyrin dye interface appears to be the
most important factor for achieving efficient water splitting.

Table 1. Photocatalytic activity of porphyrin-modified KTa(Zr)Os for water splitting *.

Gas Formation Rate/pmol h—1

Dye X Amount of dye/umol
H, 02
1 —H 0.57 40.0 22.7
2 —OCH;j; 0.49 53.7 294
3 —0OC3Hy 0.43 26.8 12.8
4 —0OCgHj3 0.36 30.3 14.9
5 —0OC12Hps 0.28 34.7 19.1
6 —0C4Hs3 0.24 43.1 23.9
None - 0.0 7.8 4.6
1 Photocatalyst: Pt (0.2 wt. %)/Dye (0.8 wt. %)/KTa(Zr)O3 (50 mg), Light: Xe lamp (Full arc, 620 mW), Reaction
time: 5 h.

3. Materials and Methods
3.1. Photocatalyst Preparation

3.1.1. Zr-doped KTaO3 Preparation

All reagents were used without further purification. KTa(Zr)O3 was synthesized by a solid-state
reaction method, as reported elsewhere [17]. Tay;O5 (Kojundo Chemical Lab., Tokyo, Japan), K,CO3
(Wako, Osaka, Japan) and ZrO(NOs),- 2H,0O (Nacalai tesque, Kyoto, Japan) were mixed in pure water.
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The water was evaporated to dryness with stirring. The resultant mixture was ground in an alumina
mortar for 10 min and calcined in an alumina crucible at 900 °C for 10 h under an air atmosphere.
The crystal structure of the resultant sample was determined by using powder X-ray diffraction
(Figure S17).

3.1.2. Porphyrin Dye Synthesis

The 5,10,15,20-Tetraphenylporphyrin (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) was
purchased and used without further purification. The 5,10,15,20-Tetrakis(4-methoxyphenyl)porphyrin
and 4,4',4” 4""~(porphyrin-5,10,15,20-tetrayl) tetraphenol were synthesized according to literature
methods [25]. A mixture of 4,4’,4” 4'”-(porphyrin-5,10,15,20-tetrayl)tetraphenol (350 mg, 0.516 mmol),
K>COj3 (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) (1.43 g, 10.33 mmol), 18-crown-6 (Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan) (0.273 g, 1.034 mmol) and DMF (Sigma-Aldrich Co.
LLC., Tokyo, Japan) (40 mL) was stirred at 60 °C under nitrogen atmosphere. After 15 min, alkyl
bromide (Tokyo Chemical Industry Co. Ltd., Tokyo, Japan) (10.33 mmol) was added in one portion,
and the reaction was stirred for additional 5 h at reflux under a nitrogen atmosphere. The reaction was
quenched with water, and the resultant precipitate was filtered. Silica gel chromatography (KANTO
Kieselgel Si 60 (40-63 mm) , Kanto Chemical Co., Inc., Tokyo, Japan) using CH,Cl, (Kanto Chemical
Co. Inc., Tokyo, Japan) as the eluent gave the desired porphyrin. The porphyrin chromium chloride
complexes were synthesized according to methods given in the literature [26] as follows: porphyrin
(1 mmol) was dissolved in dry DMF and heated to reflux. To this mixture was added an excess amount
of CrCl; (Sigma-Aldrich Co. LLC., Tokyo, Japan) (4 mmol). After UV-vis measurements showed
the complete disappearance of the free-base porphyrin, the reaction mixture was poured into ice
water. The green-colored precipitate was then filtered and washed with water. Silica gel column
chromatography using CHCl3-MeOH (Kanto Chemical Co., Inc., Tokyo, Japan)was used to purify the
product. Further details of the syntheses are summarized in Supplementary Materials.

3.1.3. Preparation of Porphyrin-Modified KTa(Zr)O3; Photocatalysts

An “evaporation to dryness” method was employed to modify the KTa(Zr)Os surface using
pyridine as the solvent at 130 °C. In this study, the dye amount was unified at 0.8 wt. %. For loading
the Pt co-catalyst onto the porphyrin/KTa(Zr)Oj3, the “evaporation to dryness” method was also used
using water as the solvent. Pt(NH3)4(NO3), (Sigma-Aldrich Co. LLC., Tokyo, Japan) was used as the
Pt co-catalyst precursor. The loading amount of the Pt co-catalyst was 0.2 wt. %.

3.2. Photocatalytic Water Splitting Reaction

The photocatalytic activity for water splitting was evaluated using a closed-circulation-type glass
reactor with a dead volume of 450 mL (Figure S18). The catalyst (50 mg) was dispersed in 30 mL
of distilled water. A quartz reaction cell was illuminated by a 300 W Xe lamp (Cermax, PE300BUYV,
Excelitas Technologies Corp., Waltham, MA USA). The spectrum of the excitation light source is shown
in Supplementary Materials (Figure S19). Argon gas (10.67 kPa) was used as a carrier gas in the reactor.
Gas leakage was checked for 1 h in the dark prior to reaction initiation. Gas evolution amounts were
measured using a gas chromatograph (GC-8A, Shimadzu Corp., Kyoto, Japan).

3.3. Photocatalyst Characterization

TEM (JEM-2100T1, JEOL, Tokyo, Japan) and FIB-SEM (Versa 3D HiVac, FEI, Hillsboro, OH, USA)
were used to observe the surface morphology of the dye-modified KTa(Zr)Os samples. UV-vis
absorption spectra of the porphyrin-pyridine solutions and the dye-modified KTa(Zr)O3 were
measured using a spectrophotometer (U-3310, Hitachi, Tokyo, Japan). The 'H and '*C NMR spectra
were recorded on a Bruker AVANCE-400 NMR spectrometer (400 MHz). The chemical shifts are
reported as 0 values (ppm) relative to internal tetramethylsilane. The coupling constants (J) are given
in hertz. Absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. Mass spectra were



Catalysts 2016, 6, 42 8 of 10

recorded on either a Bruker Autoflex mass spectrometer or a JEOL JMS-T100LP mass spectrometer.
Silica gel 60 F254 (Merck, Frankfurt, Germany) was used for analytical thin-layer chromatography.
Cyclic voltammetry was performed using a three-electrode cell, with a glassy carbon electrode as
the working electrode, a platinum (Pt) wire as the counter electrode and 0.01 M Ag/AgNO3 in 0.1 M
tetrabutylammonium perchlorate as the reference electrode. An X-ray diffractometer (RINT-2500,
Rigaku, Tokyo, Japan) was used to determine the crystal structures of the samples.

4. Conclusions

The effect of porphyrin molecular structure on the water splitting activity of porphyrin-modified
KTa(Zr)O3 was investigated in this study. Although the surface morphologies of the Pt/porphyrin
dye/KTa(Zr)O3 photocatalysts were similar in SEM and TEM observations, UV-vis spectra indicated
that the porphyrins with long alkoxy chains formed well-developed H-aggregates on the KTa(Zr)O3
surface. The photocatalytic activity of Pt-loaded KTa(Zr)O3; was improved by the porphyrins with
longer alkoxy chains because of the improvement in the charge migration between the porphyrin dye
molecules. Although the charge transfer between the inorganic semiconductor and porphyrin dye
interface is important for water splitting, this study revealed that the formation of H-aggregates was
more effective in improving the activity of porphyrin-modified photocatalysts.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/6/3/42/s1:
Figure S1, S3, S5 and S7: 'H NMR spectra of the precursor compounds of Dyes 3, 4, 5 and 6; Figure S2, 54,
S6 and S8: 13C NMR spectra of the precursor compounds of Dyes 3, 4, 5 and 6; Figure S9: CSI-MS spectra of
Dyes 1-6; Figure 510: Cyclic voltammograms of Dyes 1-6; Figure S11: Particle size distribution of KTa(Zr)Os
measured using a laser diffraction particle size analyzer; Figure S12: TEM image of KTa(Zr)Os; Figure S13: UV-vis
spectrum of KTa(Zr)Os; Figure S14: Time course of water splitting over Pt-loaded KTa(Zr)O3 modified with
Dyes 1-6; Figure S15: UV-vis absorption spectra of Dye 2 present on KTa(Zr)O3 before and after the photocatalytic
reaction; Figure S16: Gas formation rates of water splitting on Pt/Dye 2/KTa(Zr)Os; Figure S17: XRD pattern of
KTa(Zr)Oj3; Figure S18: Schematic image of a closed-circulation type glass reactor; Figure S19: Spectrum of the Xe
lamp used in this study.
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Abbreviations

The following abbreviations are used in this manuscript:

NADPH Nicotinamide adenine dinucleotide phosphate (reduced form)
NADP* Nicotinamide adenine dinucleotide phosphate (oxidized form)
TEM Transmission electron microscopy

NMR Nuclear Magnetic Resonance

CSI-MS Cold-spray ionization mass spectroscopy

FIB-SEM focused ion beam-scanning electron microscopy

DMF N,N-dimethylformamide

SEM Scanning electron microscopy
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