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Abstract: The development of a new facile method for the acetylation of alcohols and
carbohydrate-derived polyols is described. This method relies on the nature of the cationic palladium
catalyst, Pd(PhCN)2(OTf)2 which is generated in situ from Pd(PhCN)2Cl2 and AgOTf to catalyze the
acetylation reaction. This new acetylation protocol is very rapid and proceeds under mild conditions
with only 1 mol% of catalyst loading at room temperature. This new method has been applied to
a variety of different alcohols with different levels of steric hindrance, as well as carbohydrate-derived
polyols to provide the corresponding fully acetylated products in excellent yields.
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1. Introduction

Manipulation of functional groups through their protection and deprotection is of prime
importance in organic synthesis, resulting in the eventual synthesis of bioactive and medicinally
important natural products. Of particular importance in this endeavor is the protection of hydroxy
functional groups in reaction intermediates during multistep organic synthesis [1,2]. Of the various
methods used to mask hydroxy groups, acetylation of hydroxy groups to the corresponding acetate
esters is the most common, due to the ease of introduction of the acetyl group as well as its removal [3,4].
The traditional and the most widely used method of acetylating alcohols involve the use of acetic
anhydride or acid chlorides in the presence of amine bases such as pyridine and trimethylamine [5].
While this traditional method of acetylating alcohols proceeds well, they usually require long reaction
times, and the removal of pyridine is also tedious.

To circumvent these problems, several methods for the acetylation of alcohols have been reported
in recent years. Some notable examples include the use of tributylphosphine [6,7], bromine [8],
p-Toluenesulfonic acid [9], alumina [10], scandium triflate [11], indium triflate [12,13], bismuth
triflate [14], trimethylsilyl triflate [15], copper triflate [16], cerium triflate [17], ruthenium chloride [18],
sulfamic acid [19], montmorillonite K-10 [20], molecular sieves [21], iron (III)chloride [22], magnesium
bromide [23], tantalum chloride [24], vanadyl acetate [25], N-bromosuccinamide (NBS) [26],
3-nitrobenzeneboronic acid [27], lithium perchlorate (LiClO4) [28], silica gel supported sodium
hydrogen sulfate [29], sodium acetate trihydrate [1], dried sodium bicarbonate [30] and Iodine [31,32].
While these methods provides viable alternative for acetylating alcohols, some of these methods
utilizes catalysts that are expensive, moisture sensitive, require long reaction times and tedious
work-up protocols and sometimes result in low yields.
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This therefore calls for the development of a new and simple acetylation protocol to complement
the existing current methods for acetylating alcohols and polyols.

As a result of the earlier reports by the Nguyen research group in employing the use of
cationic palladium (II) species to activate glycosyl trichloroacetimidates resulting in the stereoselective
formation of glycosides [33,34], we hypothesized that these cationic palladium (II) species could
equally be effective in activating acetic anhydride towards the acetylation of alcohols. This prompted
us to investigate the effectiveness of these cationic palladium (II) species as catalyst in activating
acetic anhydride towards the acetylation of alcohols. These cationic palladium catalysts are either
commercially available or easy to prepare, easy to handle and stable. To the best of our knowledge,
the use these catalysts in activating acetic anhydride towards the acetylation of alcohols has not been
studied. We report herein a novel method that utilizes cationic palladium (II) species as catalyst in the
acetylation of alcohols and carbohydrate-derived polyols.

2. Results and Discussion

To investigate the efficiency of the cationic palladium (II) species in activating acetic anhydride,
a preliminary study of this new acetylation protocol was initiated using benzyl alcohol 1 as a model
substrate and acetic anhydride 2 as the acetylation reagent (Table 1).

Table 1. Acetylation of benzyl alcohol catalyzed by cationic palladium (II) species.
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Entry Catalyst Loading (mol %) Temperature Time (min) Yield (%) b

1 Pd(CH3CN)4(BF4)2 10 25 ˝C 30 75
2 Pd(CH3CN)4(BF4)2 5 25 ˝C 30 72
3 Pd(PhCN)2(OTf)2

a 10 25 ˝C 5 95
4 Pd(PhCN)2(OTf)2

a 7 25 ˝C 5 93
5 Pd(PhCN)2(OTf)2

a 5 25 ˝C 5 96
6 Pd(PhCN)2(OTf)2
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a 1 25 ˝C 5 95
a Pd(PhCN)2(OTf)2 was generated in situ from Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M).
b Isolated yield.

Upon treating the reacting partners 1 and 2 with 10 mol% of a commercially available cationic
palladium (II) catalyst, tetrakis(acetonitrile)palladium (II) bis tetrafluoroborate (Pd(CH3CN)4(BF4)2),
the acetylation reaction proceeded to completion within 30 minutes, as evident by TLC (Thin layer
chromatography), affording the desired benzyl acetate 3 in good yield (Table 1, entry 1).
This preliminary result was encouraging because it indicates that cationic palladium (II) catalyst
could be employed in activating acetic anhydride towards the acetylation of alcohols. Upon reducing
the catalyst loading to 5 mol%, there was no erosion of the isolated yield, and the reaction rate also
remained unchanged (Table 1, entry 2). In our quest to further increase the catalytic activity of the
cationic palladium (II) catalyst, we investigated the effect of the nature of the counter-ions used.
Earlier reports in utilizing the nature of counter-ions to influence catalytic activity [35,36], prompted us
to design a new cationic palladium (II) species Pd(PhCN)2(OTf)2 as catalyst for the acetylation reaction.
Pd(PhCN)2(OTf)2 was generated in situ from commercially available Pd(PhCN)2Cl2 and AgOTf [33].
Upon treating the reacting partners 1 and 2 with 10 mol% of the catalyst Pd(PhCN)2(OTf)2, to our
amazement, the acetylation reaction was very rapid, proceeding to completion within few minutes,
and affording the benzyl acetate 3 in excellent yields (Table 1, entry 3). With these encouraging results,
the acetylation reaction was repeated, each time using a progressively reduced catalyst loading up
until a 1 mol% catalyst loading. In all cases, the reaction was still rapid affording the benzyl acetate 3
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in excellent yields and with virtually no erosion of the isolated yields (Table 1, entry 4–7). This initial
catalyst loading of 1 mol% which resulted in the complete conversion of the benzyl alcohol 1 to the
corresponding benzyl acetate 3 (Table 1, entry 7) generated a turnover number (TON) of 100 and
a turnover frequency (TOF) of 1200 h´1.

With the optimum acetylation condition of 1 mol% catalyst loading in hand, the efficacy of this
catalyst was evaluated by comparing this protocol to other reported methods of acetylation of alcohols
using benzyl alcohol as the model substrate (Table 2).

Table 2. Comparison of some acetylation methods with benzyl alcohol as substrate.
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While all these reported methods were able to efficiently catalyze the acetylation of benzyl alcohol
to the benzyl acetate in excellent yields, the use of Pd(PhCN)2(OTf)2 resulted in a complete conversion
in relatively shorter time (Table 2, entry 5).

The efficacy of this catalyst, as well as its scope and limitations was evaluated by subjecting a wide
variety of sterically and electronically diverse alcohols to this new acetylation condition (Table 3).

Table 3. Acetylation of alcohols with acetic anhydride catalyzed by Pd(PhCN)2(OTf)2.
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         a Pd(PhCN)2(OTf)2 was generated in situ from Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in  

     CH2Cl2 (1.25M).  b  Isolated yield. 

 In all cases, the acetylation reaction proceeded smoothly and rapidly affording the 
corresponding acetates in excellent yields. Particularly interesting is the acetylation of highly 
deactivated alcohols such as 4-nitrophenol and 2,4-dinitrophenol, which were completely acetylated 
at short reaction times affording the corresponding acetate 5 and 6 in excellent yields (Table 3, entry 
3–4). 

The efficacy of this cationic palladium (II) catalyst was again evaluated using highly hindered 
alcohols such as adamantanol and diphenylmethanol. In both cases, the acetylation reaction 
proceeded well affording the acetylated products 7 and 8 in excellent yields (Table 3, entry 5 – 6). 

Since acetylation of monosaccharides is usually the first step towards the synthesis of complex 
carbohydrates [12], the efficacy of this cationic palladium (II) catalyst Pd(PhCN)2(OTf)2 in the 
acetylation of carbohydrate-derived polyol was also investigated (Table 4). 

In this acetylation, two equivalent of acetic anhydride was used for every hydroxy group. In all 
cases, the acetylation reaction afforded the acetylated sugars 16–22 in excellent yields (Table 4,  
entry 1–7). 

To determine the scope and limits of this new acetylation reaction, the tolerance of the 
Pd(PhCN)2(OTf)2 catalyzed acetylation with several acid sensitive hydroxy protecting groups were 
also investigated. While the acetonide group, TBDPS and PMP (p-methoxyphenyl) protecting 
groups were stable under the present acetylation protocol, affording the corresponding acetylated 
products in excellent yields (Table 3, entry 12; Table 4 entry 6–7), TMS and TBS groups were unstable 
and subsequently hydrolyzed, and the resulting hydroxy group acetylated. It was also noted that 
there was a gradual loss of the acetonide group when the acetylation reaction was carried out for an 
extended period. 
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a Pd(PhCN)2(OTf)2 was generated in situ from Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M).
b Isolated yield.

In all cases, the acetylation reaction proceeded smoothly and rapidly affording the corresponding
acetates in excellent yields. Particularly interesting is the acetylation of highly deactivated alcohols
such as 4-nitrophenol and 2,4-dinitrophenol, which were completely acetylated at short reaction times
affording the corresponding acetate 5 and 6 in excellent yields (Table 3, entry 3–4).

The efficacy of this cationic palladium (II) catalyst was again evaluated using highly hindered
alcohols such as adamantanol and diphenylmethanol. In both cases, the acetylation reaction proceeded
well affording the acetylated products 7 and 8 in excellent yields (Table 3, entry 5 –6).

Since acetylation of monosaccharides is usually the first step towards the synthesis of complex
carbohydrates [12], the efficacy of this cationic palladium (II) catalyst Pd(PhCN)2(OTf)2 in the
acetylation of carbohydrate-derived polyol was also investigated (Table 4).

In this acetylation, two equivalent of acetic anhydride was used for every hydroxy group.
In all cases, the acetylation reaction afforded the acetylated sugars 16–22 in excellent yields (Table 4,
entry 1–7).

To determine the scope and limits of this new acetylation reaction, the tolerance of the
Pd(PhCN)2(OTf)2 catalyzed acetylation with several acid sensitive hydroxy protecting groups were
also investigated. While the acetonide group, TBDPS and PMP (p-methoxyphenyl) protecting groups
were stable under the present acetylation protocol, affording the corresponding acetylated products
in excellent yields (Table 3, entry 12; Table 4 entry 6–7), TMS and TBS groups were unstable and
subsequently hydrolyzed, and the resulting hydroxy group acetylated. It was also noted that
there was a gradual loss of the acetonide group when the acetylation reaction was carried out for
an extended period.



Catalysts 2016, 6, 27 6 of 10

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols.

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Entry Substrate Product Yield (%) c

1

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

94

2

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

95

3

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

82

4

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

90

5

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

86

6

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

82

7

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

Catalysts 2016, 6, 27 6 of 10 

 

Table 4. (PhCN)2Pd(OTf)2 catalyzed acetylation of carbohydrate-derived polyols. 

 

 

Entry Substrate Product Yield (%) c 

1 

 

 

 

 

 94 

2 

 

 

 

 

 

 

 

 

 

 

95 

3 

 

 

 

 

 

 

82 

4 

 

 

 

 

 

90 

5 

 

 

 

 

 
86 

6 

 

 

 

 

 

82 

7 

 

 

 

 

 

85 

a  2 equiv. of acetic anhydride were used per hydroxy group. b  Pd(PhCN)2(OTf)2 was generated in 
situ from  Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c  Isolated yield. 

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by 
extending it to the acetylation of disaccharide-derived polyols ( Scheme 1). 
  

O

HO

OH

HO
HO

OH

+
Pd(PhCN)2(OTf)2

b

CH2Cl2, rt, 5min - 1h
O

(HO)n

O
(AcO)n

1 mol%

Ac2Oa

O
OAc

OAc

OAc

AcO
AcO

16

O

HO

OH

HO
HO

OCH3

O

AcO

OAc

AcO
AcO

OCH3
17

O

HO

OHHO

HO
OH

O

AcO

OAcAcO

AcO
OAc

18

O
OH

HO
HO

HO

OH

O

OAc

OAc

AcO
AcO

AcO

19

O

HO

AcO
AcO

OH

O
OAc

OAc

AcO
AcO

20

O

OPMP

OH
HO

HO

HO O

OPMP

OAc
AcO

AcO

AcO

21

O

HO

OTBDPS

HO
HO

OCH3

O

AcO

OTBDPS

AcO
AcO

OCH322

85

a 2 equiv. of acetic anhydride were used per hydroxy group. b Pd(PhCN)2(OTf)2 was generated in situ from
Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M). c Isolated yield.

With these exciting results, the substrate scope of Pd(PhCN)2(OTf)2 was further evaluated by
extending it to the acetylation of disaccharide-derived polyols (Scheme 1).
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Scheme 1. Pd(PhCN)2(OTf)2 catalyzed acetylation of disaccharide-derived polyols.

Using sucrose, maltose and lactose as starting materials, the corresponding acetylated
disaccharides 23, 24 and 25 were isolated in good to excellent yields using only 1 mol% catalyst loading.

With these excellent conversions and catalyst turnover, we proceeded to explore the origin of the
observed catalytic activity by conducting a number of control experiments using benzyl alcohol as the
model substrate (Table 5).

Table 5. A control experiment with benzyl alcohol as substrate.
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Entry Catalyst Loading Additive Time Yield (%) c

1 No catalyst - - 5 h < 1
2 Pd(PhCN)2Cl2 1 mol% - 5 h < 1
3 AgOTf 2 mol% - 5 h 5
4 Pd(PhCN)2(OTf)2

a 1 mol% - 5 min 95
5 Pd(PhCN)2(OTf)2

a 1 mol% DTBP b 2 h 90
6 TfOH 2 mol% - 8 min 86
7 Pd(PhCN)2(OTf)2

a 1 mol% Hg(0) 5 min 93
8 Pd(CH3CN)4(OTf)2 1 mol% - 5 min 92

a Pd(PhCN)2(OTf)2 was generated in situ from Pd(PhCN)2Cl2 (1 equiv.) and AgOTf (2 equiv.) in CH2Cl2 (1.25M).
b DTBP = 2,6-Di-tert-butylpyridine. c Isolated yield.

There was virtually no product isolation when the acetylation reaction was conducted in the
absence of a catalyst and stirred for 5 hours (Table 5, entry 1).

To determine whether the observed acetylation reactions were due to the catalyst precursors
Pd(PhCN)2Cl2 and AgOTf, two separate control experiments were conducted with neutral palladium
(II) species Pd(PhCN)2Cl2 and AgOTf as catalyst at 1 mol% and 2 mol% catalyst loading respectively,
and at room temperature. In both cases, the acetylated products obtained were negligible (Table 5,
entry 2–3). These results may suggest that the observed catalytic activity was neither due to the neutral
palladium (II) species nor those of AgOTf under the present reaction conditions, but rather cationic
palladium (II) catalysts.

To determine if triflic acid, which may potentially be generated from Pd(PhCN)2(OTf)2,
is the source of the observed catalysis, the acetylation reaction was performed in the presence of
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2,6-di-tert-butylpyridine (DTBP) (5 mol%). Surprisingly, the reaction was quite sluggish, affording
the desired benzyl acetate in excellent yields (Table 5, entry 5). This result may suggest that while
cationic palladium (II) catalyst Pd(PhCN)2(OTf)2 is primarily responsible for the observed acetylation
reactions, we cannot rule out the involvement of a trace side reaction due to Bronsted acid catalysis.

To probe further the origin of the observed catalysis, another control experiment was conducted
with triflic acid (2 mol%) as catalyst. Interestingly, the acetylation reaction yielded benzyl acetate in
good yields (Table 5, entry 6). This results may signal the presence of a dual catalytic process in the
acetylation reaction. A similar dual pathway was reported by the Cloninger group with In(OTf)2 [12].

To probe the nature of palladium responsible for the observed catalysis, the acetylation of the
benzyl alcohol was carried out in the presence of large excess Hg(0) (Hg drop test). In this control
experiment, the acetylation reaction was still rapid with virtually no erosion of the isolated yield of the
benzyl acetate (Table 5, entry 7). The result was very significant, and may suggest the absence of Pd(0)
or palladium nanoparticles (Pd-NPs) as the source of catalysis.

To probe further the source of the observed catalysis, another control experiment was conducted
using a commercially available cationic Pd(II) catalyst Pd(CH3CN)4(OTf)2. To our excitement, the
acetylation reaction proceeded smoothly affording the benzyl acetate in excellent yields (Table 5,
entry 8). This exciting results may suggest the significant role of cationic palladium (II) species in
effecting the acetylation of alcohols.

3. Experimental Section

3.1. Materials and Methods

All acetylation reactions were performed in an oven-dried and argon flushed round bottom flask.
Analytical thin-layer chromatography (TLC) was routinely used to monitor the reaction progress, and
was performed using a pre-coated glass plates with 230–400 mesh silica gel. The dichloromethane
used to prepare the catalyst was distilled from calcium hydride under an argon atmosphere. All other
chemicals were obtained from commercial vendors and used without further purification.

Identification of the products was carried out using IR, 1H NMR and 13C NMR. The 1H NMR
spectra were recorded on a Varian 500 MHz, 600 MHz and 700 MHz spectrometers. The 13C NMR
spectra were recorded on a Varian 125 MHz, 150 MHz and 175 MHz spectrometers using CDCl3
as reference solvent. The IR and NMR data of the products formed were consistent with those
previously reported.

3.2. Typical Experimental Procedure for Acetylation of Alcohols

An oven dried and argon flushed 10 mL round-bottom flask was charged with benzyl alcohol
(52 µL, 0.50 mmol, 1.0 equiv.) and acetic anhydride (0.19 mL, 2.0 mmol, 4.0 equiv.). To this mixture was
added a preformed solution of Pd(PhCN)2(OTf)2 (0.2 mL, 0.005 mmol, 1 mol%), which was generated
in situ from Pd(PhCN)2Cl2 (1.92 mg, 0.005 mmol, 1 mol%) and AgOTf (2.57 mg, 0.01 mmol, 2 mol%) in
anhydrous dichloromethane (0.2 mL). The reaction mixture was stirred at room temperature. When the
reaction was completed as evidenced by TLC, the excess acetic anhydride was quenched with saturated
aqueous NaHCO3 (2 mL) and stirred for 45 min. The resulting reaction mixture was directly introduced
onto a short SiO2 column and purified by flash column chromatography (4/1, hexanes/ethyl acetate)
to afford the benzyl acetate as pale yellow oil.

4. Conclusions

In summary, a novel method for acetylation of alcohols has been developed. This method is
highly efficient and proceeds under mild conditions requiring only 1 mol% of catalyst loading at room
temperature. The method is applicable to a wide variety of alcohols with different levels of steric
hindrance, and has been extended to the acetylation of carbohydrate-derived polyols.
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