catalysts MoPY

Article

Practical Pd(TFA),-Catalyzed Aerobic [4+1]
Annulation for the Synthesis of Pyrroles via
“One-Pot” Cascade Reactions

Yang Yu 1'f, Zhiguo Mang 1'*, Wei Yang 2, Hao Li I* and Wei Wang 13*

1 State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design,
y y g g g y y g g

and School of Pharmacy, East China University of Science and Technology, 130 Mei-long Road,
Shanghai 200237, China; yuyang92pharmacy@163.com (Y.Y.); 13761648979@163.com (Z.M.)
2 Shanghai Institute of Materia Medica, Shanghai 201203, China; yangwei5690836@163.com
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque,
NM 87131-0001, USA
*  Correspondence: hli77@ecust.edu.cn (H.L.); wwang@unm.edu (W.W.);
Tel.: +86-21-6425-3299 (H.L.); +1-505-277-0756 (W.W.)
1t These authors contributed equally to this work.

Academic Editor: Xiao-Feng Wu
Received: 21 September 2016; Accepted: 21 October 2016; Published: 31 October 2016

Abstract: The Pd(TFA),-catalyzed [4+1] annulation of chained or cyclic x-alkenyl-dicarbonyl
compounds and unprotected primary amines for “one-pot” synthesis of pyrroles is reported
here. Enamination and amino-alkene were involved in this practical and efficient tandem reaction.
The annulation products were isolated in moderate to excellent yields with O, as the terminal oxidant
under mild conditions. In addition, this method was applied to synthesize highly regioselective
aminomethylated and di(1H-pyrrol-3-yl)methane products.

Keywords: Pd(TFA),; [4+1] annulation; «-alkenyl-dicarbonyl compounds; unprotected primary
amines; one-pot; tandem reaction; regio-selective

1. Introduction

Pyrrole is one of the most significant N-containing heterocycles, and is the component of numerous
biologically active molecules [1-3], natural products [4-6] and functional materials [7-9]. For example,
atorvastatin A [10,11], which is one of the world’s best-selling drugs, was first introduced to the
market in 1997 by Pfizer as an effective HMG-CoA reductase inhibitor for lowering blood cholesterol.
Prodigiosin B [12,13], isolated from Serratia marcescens has been continuously investigated for medically
relevant properties including antimalarial activity and anticancer activity. Corrole C [14,15] and
its derivatives have been used to detect environmental pollutants or biologically important species.
In addition, 6,7-dihydro-1H-indol-4(5H)-one and their derivatives also play a more and more important
role because of their extensive application as versatile building blocks in organic synthesis. For instance,
HSP90 was a therapeutic target for cancer treatment, and compound D [16] possessed a modest level
of HSP90 o/ 3 isoform selectivity. R-Ondansetron E [17] is a synthetic drug used to prevent nausea
and vomiting caused by cancer chemotherapy, radiation therapy, and surgery. Compound F [18] is an
antiproliferative compound that has been reported containing antitumor activity (Figure 1).
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Figure 1. Bioactive compounds containing pyrroles.

There has been a long-standing interest in the development of efficient methods for the preparation
of highly substituted pyrroles due to their widely biological activities. The classical synthetic methods
include Barton—Zard [19], Paal-Knorr [20,21], and Hantzsch reactions [22,23].

However, they suffer from several drawbacks such as harsh reaction conditions, sophisticated
operations, and poor availability of the starting materials and functional group tolerance [24]. In recent
years, efficient synthetic approaches to construct organic frameworks containing pyrroles have
been developed [25-35]. On the other hand, the transition-metal-catalyzed sp?> C-H amination
reaction is one of the most demanding procedures to form C-N bonds [36,37]. In recent years,
various late transition metal catalysts such as Pd [38—41], Ru [42], Rh [43], Ir [44], and Cu [45] have
been applied in sp?> C-H bond amination. Within this methodology, Pd-catalyzed intramolecular
aza-Wacker-type oxidative reactions represent one crucial route to produce a range of 5-membered
N-containing heterocycles [46-51]. However, intermolecular aza-Wacker-type oxidative amination has
been rarely reported and protection of the amine nitrogen is often required in the reaction because
palladium species would be deactivated via coordination of the unprotected amine to the metal
center in most cases [41,52-54]. Furthermore, benzoquinone, Cu(OAc), and other inorganic salt
have often been used in Wacker oxidative reactions as oxidative reagents [55-57]. However, large
numbers of organic oxidants or inorganic salts have not been able to meet the requirements of green
chemistry and sustainable development. Aiming to deal with these problems, we described the first
palladium-catalyzed intermolecular aza-Wacker-type cyclization in 2013, which gave highly substituted
pyrroles from 2-alkenyl-1,3-dicarbonyl compounds with unprotected primary amines in a “one-pot”
reaction [58]. According to the deuteration studies of the annulation reaction (see supplementary
information), a probable mechanism is proposed as shown in Figure 2. Enamine 3 takes place with loss
of TFA to generate the Pd-alkyl intermediate II. Then II undergoes 3-hydride elimination and Pd-H
reinsertion to form IV. The second 3-hydride elimination gives pyrrole 4. The Pd(0) is then oxidized
by O; to regenerate catalyst Pd(II).

To continue our research on C-N bond forming reactions [59-65], we sought to broaden dicarbonyl
scope and study the application of the cycloaddition products found as key intermediates in the
synthesis of biologically active compounds. Herein, we present a full account of our recent work on
the Pd-catalyzed [4+1] annulation reaction.
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Figure 2. Proposed mechanism of Pd(TFA),-catalyzed [4+1] annulation.

2. Results and Discussion

2.1. Optimized Synthesis of 4a

In the initial attempt on the formation of pyrroles, when a mixture of 1a and 2a in toluene was
heated at 80 °C, enaminone derivative 3a was formed. The reaction mixture was then directly treated
with a catalytic amount of Pd(OAc); (20 mol %) and was stirred at 60 °C for 16 h. The reaction formed
the desired product pyrrole 4a in 48% yield.

Encouraged by the outcome, the solution of 1a (2.0 eq) and 2a (1.0 eq) in toluene was stirred
at 60 °C for 16 h in the presence of Pd(OAc); (20 mol %). The desired product 4a was obtained
in 45% yield (Table 1, entry 1). Next, the reaction conditions were optimized to improve reaction
yields (Table 1). The solvent screening revealed that polar aprotic solvents such as dimethylacetamide
(DMA), dimethyl sulphoxide (DMSO), and dimethylformamide (DMF) afforded the products in
poor yields (entries 2—4). 1,2-Dichloroethane (DCE) gave a slightly higher yield than CH3CN and
tetrahydrofuran (THF) (entries 5-7). The results showed that toluene was the most suitable solvent for
the reaction. When different oxidants were screened, it was found that air, Cu(OAc);, and AgOAc were
less effective than O; (entries 8-11). What is more, when Pd(TFA); was used as the catalyst, the yield
of product 4a was improved to 82% (entry 12). Then other Pd species were screened, and PdCl,,
PdCl,(PPhs),, PACI(CH3CN);, and Pd(PPhs)s were found to afford the products in poor reaction
yields (entries 13-16). Additionally, when the reaction was carried out for 1.5 h, a slightly higher yield
was achieved (86%, entry 17). Lower catalyst loading needed longer reaction time without any yield
sacrifice (entries 18 and 19).
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Table 1. Optimized Synthesis of 4a ?.

o}

o o 20 mol% cat. %\
/©/NH2 oxidant N
. -
MeO solvent, 16 h ©

OMe
1a 2 4a
Entry Solvent Catalyst Oxidant Yield ® (%)
1 toluene Pd(OAc), air 45
2 DMA Pd(OAc), air 18
3 DMSO Pd(OAc); air 12
4 DMF Pd(OAc), air 32
5 DCE Pd(OAc), air 40
6 CH;CN Pd(OAc), air 23
7 THF Pd(OAc), air 25
8 xylenes Pd(OAc), air 50
9 xylenes Pd(OAc), Cu(OAc), 21
10 xylenes Pd(OAc), AgOAc trace
11 xylenes Pd(OAc), O, 58
12 xylenes Pd(TFA), O, 82
13 xylenes PdCl, Oy 28
14 xylenes PdCl,(PPh;3), O, 14
15 xylenes PdCl,(CH3CN), O, trace
16 € xylenes Pd(PPh3), O, 17
174d toluene Pd(TFA), 0, 86
18¢ toluene Pd(TFA), O, 85
19f toluene Pd(TFA), 0, 88

2 A solution of 1a (1.2 mmol) and 2a (0.6 mmol) with catalyst (0.03 mmol) in the solvent (2 mL) was stirred at
60 °C for 16 h. P Tsolated yield. ¢ The reaction time is 2 h. 4 The reaction time is 1.5 h. ¢ 10 mol % catalyst was
used with the reaction time of 9 h. f 5 mol % catalyst was used with the reaction time of 16 h.

2.2. One-Pot Synthesis of 4

With the optimal reaction conditions in hand, we then examined the substrate scope of the
Pd(TFA),-catalyzed tandem process for the formation of pyrroles 4. As shown in Figure 3, almost all of
the tested combinations produced the desired pyrroles 4 in good to excellent isolated yields. Generally,
electron-donating groups on the benzene ring have a positive effect on the yield due to enhancement
of the nucleophilicity of the nitrogen atom. The substitution pattern of the methoxy group on the
phenyl ring of the anilines has a slight impact on the yields (4a—4c) despite a small drop due to
the steric effect. The reaction of aniline also proceeds smoothly with 77% yield (4d). Furthermore,
the anilines bearing other electron-donating groups on the phenyl ring are also suitable for this protocol
(4e—4g). Further, the substrates bearing two substituents on the phenyl ring such as 2-naphthalenamine,
3,4-dimethyaniline, and 4-methoxy-2-methylaniline are also compatible, as illustrated by the formation
of the pyrrole products 4h—4j in good yields (74%—85%).

However, the limitation of the process is also recognized; the anilines with electron-withdrawing
groups on the phenyl ring give poor yields under this reaction condition (4k and 41, 40%-50%). Besides,
we noted that the aliphatic amines could also engage in the process to afford the corresponding pyrroles
4m and 4n with high yields. Probing the diketone substrates implies that more hindered diketone
(R! = R? = Et) appears to be a good candidate for this tandem reaction (40). Moreover, the variation
of R? functionalities on 1 such as Ph and OEt groups lead to the structurally diverse pyrroles 4p—4r
in good yields. Finally, we examined the challenging non-terminal alkene substrates. Pyrrole 4s was
formed (R® = Ph) in 65% yield.
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Figure 3. Scope of Pd(TFA),-catalzyed synthesis of pyrroles 4. 2 Isolated yield. b 20 mol % catalyst
was used.

2.3. One-Pot Synthesis of 6

To further expand the scope of the reaction, cyclic diketones 5 and primary amine 2 were
investigated (Figure 4). When the reaction was carried out under the standard reaction conditions,
the yield of desired product was only 38%. However, we were pleased to find that the reaction yield
was improved to 71% in 9 h by increasing the catalyst’s loading to 20 mol % (6a). Then, other substrates
were examined under the same reaction condition. Both electron-withdrawing and electron-donating
substituents on the aniline were tolerated in this reaction. The reaction gave slightly lower yields when
R® was para-MeOPh (6b, 64%). However, when R was para-MePh or para-BrPh, the products were
formed in moderate yields (6c and 6d). When meta-CF3Ph was tested, the reaction worked with a
useful yield (6e). Furthermore, the reaction of aniline, bearing ortho-CIPh, afforded the corresponding
product in generally good yield (6f). It is worth mentioning that the reactions proceeded smoothly
when the substituted group of the 5-position of cyclic diketone was methyl or dimethyl (6g and 6h).
However, the reaction was not tolerable for 5i with phenyl at the 5-position of cyclic diketone (6i).

1 R2
R 20 mol%
d(TFA)
+  HN-R® _ PR ] R'
2 N
O (e} toluene, 60 °C ! R2
3
0, 9h R
5 2 6

Figure 4. Cont.
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Figure 4. Scope of Pd(TFA),-catalzyed synthesis of pyrroles 6. ? Isolated yield.

2.4. Synthesis of Aminomethylated and Di(1H-Pyrrol-3-yl)methane Products

1-Phenyl-6,7-dihydro-1H-indol-4(5H)-one and its derivatives are important intermediates for
the synthesis of bioactive compounds. The Cirrincione group reported the synthesis of 7a, which
has photochemotherapic activity toward cultured human tumor cells [66]. Martinez and coworkers
reported that 7d has cytotoxic activity as DNA intercalator [67] and 7h could work as cyclin-dependent
kinases (CDK) inhibitor [68]. These bioactive compounds were synthesized respectively from 6a, 6d,
and 6h (Figure 5).

However, the current studies on 6 were focused on modifying the « position of the cyclic
ketone. It was found that C-3 of pyrrole was more active than the « position of cycloketone
in our study. An aminomethylated product was synthesized smoothly from product 6a through
the acetic acid—-promoted Mannich reaction of three-component, (CH,O),, 1-methylpiperazine
and 6a. Interestingly, the desired 3-aminocarbonyl compound was not formed, and the reaction
furnished aminomethylated product 8a at C-3 of pyrrole in 82% yield. In addition, when 6a reacted
in the presence of (CH;0), and HCI instead of 1-methylpiperazine in dioxane, the unexpected
di(1H-pyrrol-3-yl)methane derivative 9a was obtained in 78% yield (Figure 6).

H H
N N
I 2 ISR S RO
PhO,S o o
2 ‘ " 7 1 7 N NTX
< Ref 1 R' Ref. 2
NS5
B R2 1 /
) i N N
@ iRef. 3
3 : . L
DNA Inducer R ] Cét?:g;(lf ﬁf:tlwty
R',R%, R®=H; 7a o RO=H
NH Br R?=Br; Br
7d
/\
N
CDKs Inhibitor
R',R% = CHg;
R3=H;
7h

Figure 5. Synthetic transformation of 6 according to the literature.
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Figure 6. Further transformation of 6a.

3. Experimental Section

3.1. One-Pot Synthesis of 4

All the reactions were carried out under an aerobic atmosphere. To a solution of
x-alkenyl-dicarbonyl 1 (1.2 mmol) and amines 2 (0.6 mmol) in dry toluene (2 mL), Pd(TFA), (0.03 mmol,
0.05 eq) was added. The reaction mixture with an O, balloon was stirred for 16 h at 60 °C. The mixture
was filtered through celite, washed with methanol (30 mL), the filtrate concentrated, and the residue
was purified by column chromatography, hexane/EtOAc (v/v, 20/1 then 10/1) as eluent, giving the
desired pyrrole products 4 as an oil.

3.2. Synthesis of 6

All the reactions were carried out under an aerobic atmosphere. To a solution of «- alkenyl
diketones 5 (1.2 mmol), and amines 2 (0.6 mmol) in dry toluene (2 mL), Pd(TFA), (0.12 mmol, 0.2 eq)
was added. The reaction mixture with an O, balloon was stirred for 9 h at 60 °C. The mixture was
filtered through celite, washed with methanol (30 mL), the filtrate concentrated, and the residue was
purified by column chromatography, hexane/EtOAc (v/v, 10/1 then 4/1) as eluent, giving the desired
pyrrole products 6.

3.3. Synthesis of 8a and 9a

To a suspension of compound 6a (45 mg, 0.2 mmol, 1.0 eq) and polyformaldehyde (18 mg,
0.6 mmol, 3.0 eq) in glacial acetic acid (0.4 mL), N-methyl piperazine (60 mg, 0.6 mmol, 3.0 eq) was
added at 25 °C. The mixture was stirred at 25 °C overnight. Water (5 mL) was added, and the pH
was then adjusted to pH 8-9 with ammonium hydroxide. The reaction mixture was extracted with
dichloromethane. The combined organic phases were washed with water (5 mL x 3), dried over
MgSOy,, followed by concentration under vacuum, then washed with n-hexane, affording 8a as a pink
solid (55 mg, yield 82%).

A solution of 6a (45 mg, 0.2 mmol, 1.0 eq) in dioxane (1.0 mL), polyformaldehyde (18 mg, 0.6 mmol,
3.0 eq) and HCI (conc., 1 mL) was added. The mixture was stirred at 25 °C for 2 h. The solution was
concentrated, the crude product was purified by column chromatography on silica gel (PE/EA =5/1)
to give the desired compound 9a as a light yellow powder (36 mg, yield 78%).

4. Conclusions

In summary, we have developed a Pd(TFA),-catalyzed [4+1] annulation reaction of chained
or cyclic a-alkenyl-dicarbonyl compounds with unprotected primary amines. The reaction forms
highly substituted pyrroles in a cascade fashion in moderate to excellent yields, and a diverse
range of substrates are suitable. The reaction provides a new “one-pot” method for the synthesis
of pyrroles. The process uses simple 2-alkenyl-dicarbonyl compounds and primary amines to
prepare highly substituted pyrroles in a cascade fashion in moderate to excellent yields for a diverse
range of substrates. It is worth noting that unexpected highly regio-selective aminomethylated and
di(1H-pyrrol-3-yl)methane products were formed from the annulation products.
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