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Abstract

A series of porous carbons (PPC) derived from pomegranate peel were synthesized as
catalyst supports for Pd/PPC catalysts via hydrothermal-carbonization and incipient
wetness impregnation in an acetylene hydrochlorination reaction. The optimal Pd/PPC
(500) catalyst with more than 99% of acetylene conversion and vinyl chloride monomer
(VCM) selectivity was obtained using an orthogonal experimental design (OED) and
single-factor experiments. Based on the catalytic performance and characterization of the
Pd/PPC catalyst, the deactivation mechanism of the catalysts, which was attributed to
carbon deposition on the catalysts” surface, and the loss of active Pd species have been
studied, which provides insights for the rational design of high-performance biomass-based
acetylene hydrochlorination catalysts.

Keywords: pomegranate peel; porous carbon; Pd catalysis; acetylene hydrochlorination

1. Introduction

Polyvinyl chloride (PVC) is widely used in industry, agriculture, national defense,
building materials and other important fields, and vinyl chloride monomer (VCM) is one
of the key chemical intermediates produced by the acetylene hydrochlorination method for
industrial PVC production, especially for China, which has abundant coal, scarce oil, and
limited natural gas [1]. However, the widely used activated carbon (AC)-supported mer-
cury chloride (HgCl,) catalysts in industry face significant challenges, including mercury
pollution, scarcity of mercury resources, and constraints imposed by mercury restriction
policies such as the Minamata Convention [2]. Consequently, the development of highly
efficient and stable mercury-free catalysts is crucial for achieving sustainable development
in the PVC industry [3]. Additionally, given the presence of highly corrosive media such as
hydrogen chloride and metal chlorides in the reaction environment, carrier materials must
exhibit excellent corrosion resistance [4—-6]. Compared with zeolites, halloysites, Al,O3, and
similar materials, carbon-based materials have emerged as the preferred catalyst carriers
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for acetylene hydrochlorination owing to their inherent advantages, including porous struc-
tures, exceptional chemical stability, and cost-effectiveness [7]. The commercial AC carrier
is cheap but will consume a lot of fossil energy and add difficulties to emission reduction
under the double carbon policy, so it is of great significance to prepare sustainable carbon
sources for the development of efficient mercury-free catalysts with better performance.

Biomass-derived carbon materials (BCMs) with hierarchical pore structures, large spe-
cific surface areas and tunable surface functional groups sourced from abundant renewable
resources (including forest residues, agricultural residues, municipal solid wastes, urban
refuse, energy crops, and animal manure, etc.), have obtained extensive research interest
in energy storage and catalysis [8,9]. However, the challenge of the large-scale disposal of
agricultural waste has become increasingly prominent [10]. In the case of pomegranate,
it has a large cultivation area and is one of the most popular fruits in China (especially
XinJiang) [11]; however, generated pomegranate peel waste of superior quality (adjustable
structure, inherently high carbon content, abundance of surface functional group, etc.)
of the char formation can lead to environmental pollution [12]. The conversion of such
pomegranate peel waste into functionalized biochar materials can reduce carbon emissions
but also provide a raw material foundation for the development of high-value-added
materials, aligning with the strategic needs of carbon neutrality and the circular econ-
omy [13-15]. Therefore, a surge of research of the biomass biochar from pomegranate peel
has been reported in various fields, such as catalysis, adsorption, electrochemical energy
storage, etc. [16,17]. Zarroug et al. [18] converted microwave-heated pomegranate peel
into activated carbon via phosphoric acid activation, achieving a material with a high
specific surface area and adsorption capacity for pharmaceutical applications. Li et al. [19]
synthesized high-performance capacitor electrode materials through the carbonization and
alkali activation of pomegranate peel. Recently, some researchers utilized biomass-derived
carbon prepared from biomass sources (such as soybeans [20], walnut shells [21], wheat
flour [22], etc.) for acetylene hydrochlorination reactions, although the catalytic perfor-
mance was unsatisfactory. Combining with the problems of poor stability of carbon-based
catalysts for acetylene hydrochlorination and our previous research [23-30], we considered
whether there is a possible way to convert pomegranate peel waste into carbon materials
with high-value utilization and in PVC production. Therefore, in this work, we prepared a
series of pomegranate peel carbons (PPCs) from pomegranate peel waste and studied the
PPC-supported Pd-based catalysts for acetylene hydrochlorination using an incipient wet-
ness impregnation strategy. The optimal catalyst was obtained by orthogonal experimental
design and single-factor experiment and its catalytic process during the reaction process
was discussed, and the possible reaction mechanism was predicted as well, providing a
new insight for advancing the rational design of high-performance biomass-based catalysts
for acetylene hydrochlorination.

2. Results and Discussion
2.1. Characterization of PPC

SEM and EDS results of PPC (500) (Figure 1a) reveal a small amount of irregular
pore structures with mainly C, O and N elements, verifying the successful preparation of
nitrogen-enriched carbon material from the pomegranate peel. BET results (Figure 1b,c and
Table S1) demonstrate that PPC (500) displays type-I curves and possesses a high surface
area (2295 m? g~ 1) with a large total pore volume (1.61 cm>-g~!) and an average pore size
of 2.8 nm, confirming its micro-mesoporous structure. The XRD pattern (Figure 1d) exhibits
two broad peaks at 20 = 23° and 44°, which are attributable to the (002) and (101) planes
of graphitic carbon, respectively, suggesting partial graphitization with an amorphous
structure [31]. In addition, the C1s spectrum of the PPC (500) support is shown in Figure le
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and the peaks at about 284.6 eV, 285.4 eV, 286.4 eV, 287.4 eV, 289.0 eV and 290.2 eV can be
attributed to the sp?-C, sp>-C, C-O groups, C=0 groups, COOH groups, and 7t-7* groups,
respectively [32]. It is obvious that the PPC (500) support is the mixed structure of sp2
hybridization and sp® hybridization (Table S2), resulting in a certain amount of defect sites,
which is good for enhancing electron transfer and anchoring the Pd species [33,34]. Raman
spectroscopy (Figure 1f) further reveals characteristic D-band (1340 cm~!) and G-band
(1595 cm ') peaks, indicating the coexistence of disordered defect structures and ordered
graphitic domains in the PPC (500) as well [35].

(a)

Quantity adsorbed(ch/g)

T T T T T
0.2 0.4 0.6 0.8 1.0

4
s

(c) (d) Relative Pressure(P/P,)
(101)
s 3
E d
B z
:
z E (002)
g g s e ot e B kg S0 oy i8S 10 20 30 40 50 60 70 80
Pore width (nm) 20(degree)
() ®
D G
5 ey
g 3
~— <
g z
g Z
3 =
£ 2
- 8
T T T T T T T
282 284 286 288 290 500 1000 1500 2000 2500

Binding Energy Raman shift(cm ')

Figure 1. SEM and EDS (a), adsorption/desorption isotherms (b), pore size distributions (c) XRD (d),
XPS (e) and Raman (f) results of the PPC (500).

2.2. Catalytic Performance of the Pd/PPC Catalysts

To optimize the preparation process of the Pd/PPC catalyst for acetylene hydrochlori-
nation, an orthogonal experimental design (OED) experiment was employed to evaluate
the influence of preparation conditions on catalytic performance, like hydrothermal tem-
perature (A), hydrothermal time (B), mass ratio of ZnCl, to pomegranate peel-derived
carbon (C), calcination temperature (D) and calcination time (E) (Table S3), resulting in
the identification of the most critical factors for catalyst preparation [36,37]. Then, the
influencing rule of the most critical factors was discussed by the single-factor experiment
(Figure 2). During the OED experiment, catalyst performances of the Pd/PPC catalysts
were assessed via the catalyst’s activity (represented acetylene conversion) following an 110
(4%) orthogonal array (Table S4). Based on the OED experiment design and implementation
process, the results (Table S5) using the orthogonal design-direct analysis [38] revealed that
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the sequence of influence of factors is calcination temperature (D) > mass ratio of ZnCl, to
pomegranate peel-derived carbon (C) > hydrothermal temperature (A) > hydrothermal time
(B) > calcination time (E), further confirming calcination temperature (D) as the most critical
factors for the catalytic activity of the Pd/PPC catalyst for acetylene hydrochlorination. In
addition, it is suggested that the optimal combination of preparation conditions may be
determined as A3B4C3D,E;, including hydrothermal temperature (180 °C), hydrothermal
time (12 h), mass ratio of ZnCl, to pomegranate peel-derived carbon (1:1.5), calcination
temperature (500 °C), and calcination time (0.5 h). To further verify the optimal calcination
temperature for the Pd/PPC catalyst’s preparation, the rule of the influence of calcination
temperature (D) of around 500 °C was investigated by single-factor experiment (Figure 2).
From Figure 2, it is suggested that the calcination temperature of Pd-based /PPC catalyst
has a strong impact on the catalytic performance (stability especially) of the Pd/PPC cata-
lyst for acetylene hydrochlorination. Compared with the PPC (Figure S1), all the Pd/PPC
catalysts exhibited significantly enhanced catalytic performance after Pd loading. What is
more, all the Pd/PPC catalysts showed high VCM selectivity (>95%), but their activities
were decreased with the reaction time; the order of catalysts’ stabilities is represented by
their conversion rate as Pd/PPC (500) > Pd/PPC (700) > Pd/PPC (600)> Pd/PPC (400), and
the highest acetylene conversion order is Pd/PPC (500) (99.4%) > Pd/PPC (400) (98.6%)
> Pd/PPC (600) (98.2%) > Pd/PPC (700) (98.1%) (Figure 2). It is worth noting that the
optimal Pd/PPC (500) catalyst achieved more than 99% of acetylene conversion and VCM
selectivity during 9 h, which shows that the carbon material from the pomegranate peel can
be a promising support for Pd-based catalysts in the acetylene hydrochlorination reaction.
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Figure 2. Acetylene conversion (a) and VCM selectivity (b) of the Pd-based /PPC catalysts.

2.3. Characterization of the Pd/PPC Catalysts

As shown in Figure 3a,d-h, elemental mapping confirms the uniform dispersion of C,
N, O (sourced from pomegranate peel), and Pd species on the fresh Pd/PPC (500) catalyst.
This homogeneity (consistent with EDS in Figure 1a) verifies the successful incorporation
of N and Pd species. Surface morphology comparison reveals significant changes: while
the fresh catalyst exhibits a smooth surface (Figure 3b), the used Pd/PPC (500) catalyst
(Figure 3c) displays roughness and aggregated particles, resulting from carbon deposition
and coating by reaction byproducts during acetylene hydrochlorination [39].
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Figure 3. TEM images (a,d) and elemental mapping images (e-i) of the fresh Pd/PPC (500) catalyst;
SEM images of the fresh (b) and used (c) Pd/PPC (500) catalysts.

Compared with results of the N, adsorption—desorption experiment of the PPC
(Table S1) support and the Pd/PPC (500) catalyst (Table S6), it is suggested that the specific
surface area (Sggr), total pore volume (V), and average pore diameter (D) of the support
have changed a lot after Pd loading. The Sggr of the fresh Pd/PPC (500) catalyst was
reduced to 2078 m2/ g, the V and D also decreased to 1.50 cm3/ g and 2.61 nm, respectively,
resulting from the pores blocking the Pd active species. After the reaction, it is noted
that the Sppr of the used Pd/PPC (500) decreased to 163 m?/ g, but the V (0.20 cm3/ g)
and D (4.84 nm) increased, which indicates that micropore blockage by carbon deposits
and/or Pd particle agglomeration has possibly occurred. To further prove the carbon
deposition occurring on the surface of the catalyst, Thermogravimetric analysis (TGA) was
performed to study the carbon deposition on the Pd/PPC (500) catalyst (Figure 4b). As
can be seen in Figure 4b, the weight loss in the range of 0 °C to 100 °C can be attributed to
the volatilization of the bound water in the catalyst; the weight loss in the range of 100 to
350 °C is due to the carbon deposition on the surface of the catalyst; the weight loss observed
after 350 °C was caused by the combustion of the support [40]. Notably, the mass loss at
the temperature ranges from 100 °C to 350 °C is due to carbon deposition on the Pd/PPC
(500) catalyst surface, and the carbon content is 4.90% [41], thereby declining the catalyst’s
long-term stability.

To further explore the changes in the crystal structure of the Pd/PPC (500) catalyst
before and after the reaction, XRD spectra of the fresh and used Pd/PPC (500) catalysts
were performed in Figure 4c and two peaks at 23° and 44° belonged to the (002) and (101)
crystal planes of graphite carbon, respectively, indicating that both the fresh and used
Pd/PPC (500) catalysts have a certain degree of graphitization [42]. In addition, Raman
results (Figure 4d) display that the Ip /I ratio of the used catalyst (1.79) was lower than
that in the fresh catalyst (1.84), indicating that the defective domain of the used catalyst
was lower than the fresh catalyst, inhibiting the dispersion of Pd species, leading to a
decrease in catalyst activity of the Pd/PPC (500) catalyst [43]. Combing with XPS results
(Figure 4e,f and Table S7), it is revealed that the coexistence of Pd” (335.8 eV, 340.1 eV) and
Pd?* (337.4 eV, 342.6 eV) species is all in the Pd/PPC (500) catalysts before and after the
reaction [44]. Compared with the fresh catalyst, the used Pd/PPC (500) catalyst exhibited
a decreased content of Pd** species and an increased content of Pd° species (Table S7),
testifying that Pd** was reduced to Pd” during the reaction, leading to a decline in catalytic
performance of the Pd/PPC (500) catalyst consequently [45]. Furthermore, ICP results
prove that the phenomenon of Pd loss is very serious and that the loss ratio of Pd species in
the Pd/PPC (500) catalyst is 76.4% (Table S7), which was one of the main reasons for the
deactivation of the catalyst.
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Figure 4. N, adsorption/desorption isotherms (a), TG (b), Raman (c) and XRD (d) characterization
results of the fresh and used Pd/PPC (500) catalysts; XPS results of the fresh (e) and used (f) Pd/PPC
(500) catalysts; HCI-TPD (g) and CoH;-TPD (h) results of the fresh and used Pd/PPC (500) catalysts.

The adsorption properties of reactants and products on the fresh and used Pd/PPC
(500) catalysts as well as the catalytic mechanism were investigated with TPD measurements
(Figure 4g,h). Generally, it is suggested that the desorption temperature can indicate
adsorption strength, and the peak areas can reflect adsorption capacity [46,47]. From
Figure 4g, it is observed that the desorption temperature on the used the Pd/PPC (500)
catalyst is lower than on the fresh one, and that the HCI desorption peak area of the used
catalyst is smaller, which indicated that the HCl adsorption capacity of the used catalyst is
weaker, decreasing the electron transfer from HCI to Pd?* species, resulting in a decrease in
the electron density around the Pd active sites. A similar rule can be observed in CoH,-TPD
results (Figure 4h) as well, and a stronger adsorptive capacity of the Pd/PPC (500) catalyst
for C;H; than for HCl in Figure 4g,h can be observed, so the possible reaction may be
the following [48]: (1) the CoHy molecule was adsorbed on the Pd species to form the
adsorption state, followed by HCI adsorption on adjacent active centers; (2) the C=C bond
in acetylene undergoes activation and reacts with adsorbed HCI to form vinyl chloride
monomer (VCM), which is eventually desorbed from the surface of the active phase. For
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the used Pd/PPC (500) catalyst, a weaker adsorption ability for HCl and C,H, is obviously
found, which restricts the electron transfer from the reactants (HCl and C,H,) to Pd%*
species and consequently leads to a decrease in the electron density around the Pd® active
sites, resulting in the catalyst deactivation.

3. Experimental Section
3.1. Catalyst Preparation

Preparation of pomegranate peel biomass-derived carbon (PPC). A total of 10 g of
pomegranate peel (Yecheng County, Kashgar, Xinjiang, China) and 40 mL deionized water
were mixed and hydrothermally treated at 170 °C for 12 h. Then the mixture and zinc
chloride (Tianjin Zhiyuan Chemical Reagent Co., Ltd., Tianjing, China), which is beneficial
for enhancing the porosity and specific surface area of PPC as a highly efficient chemical
activating agent, were mixed at a mass ratio of 1:1.5 by continuous stirring for 6 h and
calcined with nitrogen atmosphere at 5 °C/min to 500 °C for 0.5 h in a tubular furnace. The
carbonized product was transferred to a beaker with 0.1 M HCl added and stirred for 8 h at
room temperature for removing residual zinc species and other impurities. After filtration,
it was also rinsed several times with deionized water until neutral, and vacuum dried at
80 °C for 12 h to achieve PPC. The series of PPC in the OED experiment were prepared by
the same method with different preparation conditions, like hydrothermal temperature,
hydrothermal time, ZnCly-pomegranate peel mass ratio, calcination temperature and
calcination time. In addition, the PPC samples were calcined at 400 °C, 500 °C, 600 °C, and
700 °C denoted as PPC (400), PPC (500), PPC (600) and PPC (700), respectively.

Preparation of Pd-based catalysts supported on PPC. The Pd-based catalysts were
prepared by ultrasound-assisted impregnation method, and the Pd loading capacity of
all catalysts was 0.5 wt%. The general method steps are as follows: 0.033 g palladium
chloride (PdCl,) precursor was dissolved in 32.65 mL hydrogen chloride (HCl) aqueous
solution. The mixture was stirred and dissolved at room temperature, which was added
dropwise into 1.0 g PPC support with vigorous stirring, and an ultrasonic bath for 1 h. After
impregnation at about 25 °C for 12 h and drying at 120 °C for 8 h, the Pd/PPC catalyst was
obtained. The series of Pd/PPC in the OED experiment were prepared by the same method
with different preparation conditions, like hydrothermal temperature, hydrothermal time,
ZnCly-pomegranate peel mass ratio, calcination temperature and calcination time. The
Pd/PPC samples were calcined at 400 °C, 500 °C, 600 °C, and 700 °C denoted as Pd/PPC
(400), Pd/PPC (500), Pd/PPC (600) and Pd/PPC (700), respectively.

3.2. Catalyst Characterization

The morphology and elemental composition of the samples were evaluated using an
energy-dispersive spectroscopy (EDS) device (JEOL, Tokyo, Japan) coupled with scanning
electron microscopy (SEM, SU-8220, Nippon Hitachi, Tokyo, Japan). Brunauer-Emmett—
Teller (BET, Quantachrome Autosorb-iQ2, Beijing Jingwei Gaobo Science and Technology
Co., Ltd., Beijing, China) test was used to analyze catalysts’ pore structure and surface areas
with JW-BK method. X-ray diffraction (XRD, Bruker D8 ADVANCE, Nasdaq, New York,
NY, USA) irradiation with Cu-K« radiation (A = 0.15407 nm) in the 20 range of 10-80° was
conducted. Raman spectra were gathered by laser Raman spectrometer (Horiba Scientific,
LabRAM HR Evolution, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS, Thermo
ESCALAB250XI, Thermo Scientific, Waltham, MA, USA) was used to conduct analysis
with standard C1s (284.8 eV). Transmission electron microscopy (TEM) measurements by
JEM-2100F (JEOL, Tokyo, Japan) with an accelerating voltage of 200 KV were used for the
analysis. Thermogravimetric analysis (TGA, TA Q600, TA Instruments, New Castle, DE,
USA) was performed in an air atmosphere with a flow rate of 100 mL/min and a heating
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rate of 10 °C/min. Inductively coupled plasma photoemission spectroscopy (ICP-OES,
Agilent ICP-OEST30, Waltham, MA, USA) was conducted and temperature-programmed
desorption (HCI-TPD/C,H,-TPD) tests were performed using an Auto Chem II 2920
adsorber (TA Instruments Newcastle, New Castle, DE, USA).

3.3. Catalytic Performance Test

All catalysts (4 g, 60-80 mesh) were tested on a fixed-bed microreactor (inner diameter
of 10 mm) under atmospheric pressure and a reaction at 160 °C, and a gas hourly space
velocity of 120 h-L Hydrogen chloride (>99.99%, Jinhongshan Gas Co., Ltd., Urumdji,
Xinjiang, China) and acetylene (>99.99%, Jinhongshan Gas Co., Ltd.) with a volume ratio
of 1.25 were implemented to effectively reduce external diffusion restrictions. In addition,
acetylene conversion and vinyl chloride selectivity were analyzed by gas chromatography
(GC 2010 Shimadzu, Kyoto, Japan).

4. Conclusions

In conclusion, the porous carbons (PPC) derived from pomegranate peel were syn-
thesized by hydrothermal-carbonization method, and a series of Pd/PPC catalysts via
incipient wetness impregnation were prepared and applied for acetylene hydrochlori-
nation successfully. Through orthogonal experimental design (OED) and single-factor
experiments, calcination temperature as the most critical factor for the catalytic activ-
ity of the Pd/PPC catalyst for acetylene hydrochlorination and the optimal Pd/PPC
(500) catalyst achieved >99% acetylene conversion and vinyl chloride monomer (VCM)
selectivity under the following reaction conditions: 160 °C, GHSV = 120 h~!, and
V (HCI):V (C;Hp) = 1.25. In addition, it is suggested that the carbon deposition, the
depletion of active Pd?* species and weakened reactant adsorption capacity are all reasons
for the catalysts’ deactivation by catalysts’ characterization and catalytic performance tests.
The results can provide insights for the rational design of high-performance biomass-based
acetylene hydrochlorination catalysts.
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