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Abstract: Ionic polymolybdate compounds (IPOM) possessing the anions [Mo8O26]4− and [Mo3O10]2−,
and cyclohexylammonium (Cy6N) or anilinium (Anil) as organic cations, namely cyclohexylammo-
nium β-octamolybdate dihydrate (1), cyclohexylammonium trimolybdate hydrate (2), anilinium β-
octamolybdate dihydrate (3), anilinium trimolybdate tetrahydrate (4) and anilinium trimolybdate
dihydrate (5), were synthesized via simple, eco-friendly one-pot routes. New crystal structures of 1, 2
and 5 were discovered. IPOM compounds with different structural dimensionality, density and ratio
of the number of terminal oxo groups/molybdenum atoms (n(oxo)/Mo) were developed. The IPOM
compounds promoted the epoxidation of biobased olefins such as the fatty acid methyl esters methyl
oleate and methyl linoleate with tert-butylhydroperoxide as oxidant, leading to conversions of at least
81% at 4 h, 70 ◦C and the corresponding epoxides. The reaction scope of applications for the IPOM
catalysts covered cyclooctane oxidation.

Keywords: ionic; polymolybdate; epoxidation; fatty acid methyl esters; anilinium; cyclohexylammonium

1. Introduction

In the transition to a bio-based economy, the epoxidation of olefins such as fatty
acid methyl esters (FAMEs) has attracted much attention because the epoxidized FAMEs
(EFAMEs) have broad application profiles, e.g., for plasticizers, lubricants, polyurethanes,
painting, coatings and adhesives, and improving the oxidation stability of biodiesel [1–6].

Moreover, EFAMEs can be sustainably produced from waste and non-edible sources
such as waste cooking oil and agricultural or industrial residues [7]. For example, crude
tall oil is a by-product of the wood pulp industry with an average production of 30–50 kg
per 1000 kg of processed wood. This oil contains ca. 30–50 wt.% of free fatty acids, which
are mainly oleic acid and linoleic acid, and has high iodine value, i.e., many -C=C- double
bonds for epoxidation. Prominent players in the EFAMEs market include DOW Chemical
Company and KH Chemicals [8]. The industrial production of epoxidized vegetable oils
based on the Prilezhaev peracid process involves percarboxylic acids, e.g., peracetic acid
or performic acid, which may be formed via the reaction of the corresponding carboxylic
acid with hydrogen peroxide [2,9–11]. These routes suffer from several drawbacks such as
low epoxide selectivity, significant waste generation, safety, and corrosion issues associated
with the strongly acidic media. This has led to research efforts in the fields of catalysis to
develop efficient and less-hazardous epoxidation processes.

Molybdenum-based homogeneous catalysts reached industrial implementation in
the 20th century for large-scale liquid phase epoxidation using tert-butylhydroperoxide
(TBHP) as an oxidant [9,12]. The recognized effectiveness of molybdenum-based catalysts
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for liquid phase epoxidation has led to the development of Mo catalysts with different
architectures to meet superior performances in diverse reactions systems [13–15]. The
ionic polymolybdates family of compounds has impressive structural diversity. They
may be designed with different structural dimensionalities, types of anion and cations,
etc. The primary units of the anions are {MoOn} coordination polyhedra (e.g., distorted
{MoO6} octahedra or [MoO4} tetrahedra), which assemble in different fashions, leading
to different nuclearities and types of metal and oxygen sites (e.g., internal or terminal
sites, low high coordinate sites, different metal–oxygen distances and angles) [16]. On the
other hand, the type of cations may influence the structural and chemical features such
as interlayer distances and solubility properties of the ionic polymolybdates [17,18]. The
different physicochemical properties of ionic polymolybdates may determine the catalytic
performances [19,20].

Although there are relatively few literature studies on the topic, ionic polymolybdates
with organic cations (IPOM) may be effective catalysts for upgrading FAMEs [19,21–23],
and they may be designed to meet superior catalytic performances. For example, a 2-D
bis(anilinium) pentamolybdate, which possessed the simplest anilinium (Anil) cation, was
a stable catalyst, although it possessed inferior activity to other 0-D and 1-D compounds,
partly due to the presence of fewer accessible active sites in the 2-D structure [19]. Hence,
the development of lower dimensionality Anil IPOM catalysts may lead to improved perfor-
mances. On the other hand, IPOMs possessing the aliphatic counterpart of (aromatic) Anil,
namely cyclohexylammonium (Cy6N), have not been reported to date, to the best of our
knowledge. Cy6N may be less acidic than Anil [24] and influence the catalytic properties.

In this work, 0-D and 1-D IPOM compounds possessing the anions [Mo8O26]4− and
[Mo3O10]2−, and Cy6N or Anil as cations, were synthesized, characterised, and studied
for liquid phase epoxidation systems, including FAMEs conversion (Scheme 1). The
IPOMs were cyclohexylammonium β-octamolybdate dihydrate (1), cyclohexylammonium
trimolybdate hydrate (2), anilinium β-octamolybdate dihydrate (3), anilinium trimolybdate
tetrahydrate (4) and anilinium trimolybdate dihydrate (5). The crystal structures of the
new compounds 1, 2 and 5 were identified. The selected compounds possessed identical
anions and different cations (e.g., 1/3, or 2/(4, 5)) or vice versa (1-2, or 3-6), and, on the
other hand, include two pseudo-polymorphs (different hydrates) of anilinium trimolybdate
(4, 5). The previously reported (stable) 2-D compound anilinium pentamolybdate (6) was
included for comparative studies. The prepared compounds promoted olefin epoxidation
with TBHP. To the best of our knowledge, 1 and 2 are the first molybdenum compounds
with a cyclohexylamine-type organic component reported for catalytic epoxidation. The
reaction scope of applications of the IPOM catalysts included cyclooctane oxidation.
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2. Results and Discussion

2.1. Structures of the IPOM Catalysts

Table 1 summarises the structural dimensionality and chemical formulae of the IPOM
compounds 1–5, and, for comparison, 6. The most important crystallographic data for the
new compounds 1, 2 and 5, based on single crystal methods, are indicated in Table 2, and
further details are given in Tables S1–S3.

Table 1. Structural dimensionality and chemical formulae of compounds 1-6.

Chemical Name Chemical Formula Structural Features Dim a Dx/
DC b n(oxo)/Mo c

1 Cyclohexylammonium
β-octamolybdate dihydrate (C6H14N)4[Mo8O26]·2H2O isolated clusters 0-D 2.264/

4 1.75

2 Cyclohexylammonium
trimolybdate hydrate (C6H14N)2[Mo3O10]·H2O polymeric 1-D 2.056/

3 2

3 Anilinium β-octamolybdate
dihydrate (C6H8N)4[Mo8O26]·2H2O isolated clusters 0-D 2.520/

4 1.75

4 Anilinium trimolybdate
tetrahydrate (C6H8N)2[Mo3O10]·4H2O polymeric 1-D 2.180/

3 2

5 Anilinium trimolybdate
dihydrate (C6H8N)2[Mo3O10]·2H2O polymeric 1-D 2.399/

3 2

6 Anilinium pentamolybdate (C6H8N)2[Mo5O16] layered 2-D 2.850/
5 0.8

a Dim. = structural dimensionality. b Dx = calculated density (by X-ray diffraction technique) and DC = degree of
condensation, which, for isopolymolybdates, equals (number of Mo atoms)/(0.5 × (cluster charge)); DC represents
the number of Mo atoms in the polymolybdate formula written in the form M(I)2O.xMoO3, where M(I) represents
a monovalent metal cation. c Number (n(oxo)) of oxo groups (terminal oxygen atoms) per Mo atoms of the anion.

A search into the crystallographic database for 1 indicated that it is a new polymorphic
modification of cyclohexylamine β-octamolybdate. In comparison to a previously reported
monoclinic C-centred structure [25], a much smaller triclinic structure was obtained for
1 (i.e., it is not a simple subgroup of the previously reported monoclinic compound, as
may be confirmed by the Checkcif reports). An essential building unit (with labelling
scheme) and packing of the molecules are presented in Figure 1a and b, respectively, and
a simplified representation of how the structure is built is presented in Figure 1c. The
β-octamolybdate anion can be summarized as a polyoxometalate ion (IPOM) formed by
8 Mo atoms and 26 O atoms, among which there exist 14 terminal O atoms (Mo=O with
~1.707(8) Å length), 6 O atoms of µ2 type, 4 O atoms of µ3 type and 2 O atoms of µ5 type.

Table 2. Summary of crystal data of the new compounds 1, 2 and 5.

Compound
(XRD Technique)

1
(Single Crystals)

2
(Powder Data)

5
(Powder Data)

Chemical formula C24H60Mo8N4O28 C12H30Mo3N2O11 C12H20Mo3N2O12
MW (g/mol) 1620.27 666.20 672.12
T(K) 100 293(2) 293(2)
Wavelength, [Å] MoKα: 0.71073 CuKα: 1.54187 CuKα: 1.54187
Crystal system, space group triclinic, P-1 Orthorhombic, P nma Monoclinic, P 21/c
Cell parameters
a [Å] 8.7255(2) 8.763(3) 14.711
b [Å] 10.5278(2) 7.645(3) 7.578
c [Å] 14.4778(4) 32.114(4) 17.852
α [◦] 75.019(2) 90 90
β [◦] 76.273(2) 90 110.81
γ [◦] 69.550(2) 90 90
V (Å3) 1187.79(5) 2151.4(4) 1860.31
Z, calculated density
(g/cm3) 1, 2.264 4, 2.056 4, 2.399

Absorption coefficient
(mm−1) 12.775 14.627 16.959 na

F(000) 792 1200 996
2Theta range 5.04–31.9363.86 3.5–80 3.5–70

Limiting indices −12 ≤ h ≤ 12; −15 ≤ k ≤ 15;
−20 ≤ l ≤ 21 7; 6; 26 10; 5; 13

Reflections collected 7841 524 526



Catalysts 2024, 14, 251 4 of 19

Table 2. Cont.

Compound
(XRD Technique)

1
(Single Crystals)

2
(Powder Data)

5
(Powder Data)

Completeness to theta(max) 95.5% 100% (xrpd) 100% (xrpd)

Absorption correction Multi-scan const. (Bragg-Brentano
geom.)

const.
(Bragg-Brentano geom.)

Maximum and minimum
transmission n.a. (powder sample)

Refinement method wR2 Rietveld Rietveld
Data/restraints/parameters 7841/0/321 3824/36/25 3325/30/20
Goodness of fit on F2 1.23 8 11
Final R indices
wR2 (I > 2σ) or Rp/Rwp

8.70 22.8/26.0 15.1/20.9

RF (all data) 3.15 14.29 19.11
Largest difference peak and
hole (eA−3) 1.612/−1.447 PD PD

CCDC 2,320,511 PD−1 PD−1

PD Usually not reported in XRPD studies. PD−1 Submitted to ICDD to supplement deposited data.
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(c) simplified representation how the structure is built for 1.

Compound 2 is a new trimolybdate of cyclohexylammonium, which is crystallized
(fibrillar crystals) in an orthorhombic system. Polymeric anionic chains of Mo3O10 stoi-
chiometry (monomers) are built of distorted {MoO6} octahedra, linked together by edges
and vertices. By sharing one edge, the two octahedra form Mo2O10 groups, and by sharing
the vertices, these groups form infinite double chains of Mo2O8 units. This ribbon is joined
by alternate MoO6 octahedra (on both sides of it). The resultant composition is Mo3O10,
and the length of the identity period along the polymer axis is equal to two heights of
the MoO6 octahedron (2 × 3.8 = 7.6 Å). In each octahedron, there exist two terminal O
atoms, and four O of µ3 type. Between chains running along the [010] direction, there exist
molecules of protonated amines, and water. The essential building unit (with labelling
scheme) and packing of the molecules for 2 are presented in Figures 2a and 2b, respectively,
and a simplified representation of how the structure is built is presented in Figure 2c.

For the new 1-D compound 5, a similar arrangement of inorganic polymeric chains to
that of compound 2 was obtained; the molecular packing is given in Figure 3. However,
the monoclinic structure of 5 was slightly denser than the orthorhombic structures of 2 and
4 (Table 1). The calculated density (Dx) equals 2.399 for 5 versus 2.180 and 2.056 for 4 and 2,
respectively (Table 1). Based on a comparison for all IPOM compounds, the Dx was highest
for the 2-D 6, which is a layered material with infinite anionic layers [(Mo5O16)2−]n formed
by distorted MoO6 octahedra [26].
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The variable temperature X-ray powder diffraction (XRPD/temp) and thermal analyses
(TG/DSC) results for 1, 2 and 5 are given in the Supporting information (Figures S1–S3 and S4–S6).
The corresponding data for the remaining compounds was previously reported by some of us [26].
In general, octamolybdates (0-D) seem slightly more thermally stable than the trimolybdates
(1-D), and layered (2-D) pentamolybdates appeared to be the most stable. Through prolonged
heating, the anilinium trimolybdate tetrahydrate 4 (which was synthesized in aqueous conditions)
converted completely to a solid with same crystal structure as that of 5. Importantly, compounds
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1–6 are thermally stable in the temperature range of the catalytic studies reported in this work (up
to 120 ◦C).

The structural dimensionality seems to be essentially related to the type of anion:
0-D for [Mo8O26]4−, 1-D for [Mo3O10]2− and 2-D for [Mo5O16]2. On the other hand,
depending on the type of anion, the IPOMs possess different amounts of terminal oxygen
atoms (Mo=O) per total amount of molybdenum atoms (n(oxo)/Mo), which equals 2
for trimolybdates (1-D), 1.75 for octamolybdates (0-D) and 0.8 for pentamolybdates (2-D)
(Table 1). For each family of IPOMs, the n(oxo)/Mo ratio increased with decreasing density
Dx (Figure 4).
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2.2. Catalytic Studies

2.2.1. Olefin Epoxidation

Impact of IPOM Features

The IPOM catalysts were firstly compared based on the model reaction of cis-cyclooctene
(Cy) with tert-butyl hydroperoxide (TBHP) at 70 ◦C. The initial molar ratios of Mo:olefin
and Mo:TBHP were kept constant in all catalytic tests, i.e., the catalytic performances were
compared on the basis of the same amount of molybdenum in the reactors. Cyclooctene
oxide (CyO) was the only product formed for all catalytic tests (Scheme 1). Blank reactions
without catalyst and/or without TBHP led to negligible Cy conversion at 24 h, indicating the
need for both a molybdenum catalyst and TBHP for the epoxidation reaction to occur. It is
consensual from the literature that molybdenum-catalysed epoxidation of olefins occurs via a
heterolytic mechanism which may be initialised via the coordination of the hydroperoxide
oxidant (TBHP) to the Lewis acid metal centre, leading to active oxidising species. The latter
species are responsible for the oxygen atom transfer to the olefin, giving the corresponding
epoxide product plus tert-butanol, which is the coproduct of TBHP [27–30]. The types of
active oxidising species may possess a {Mo(OH)(OOtBu)} (tBu = tert-butyl) moiety, and its
formation involves a oxomolybdenum (Mo=O) group [27–30].

Figure 5 compares the catalytic results for the IPOM compounds based on Cy con-
versions at different reaction times. The catalytic results were similar for the pseudo-
polymorphs (different hydrates) of anilinium trimolybdate (4 and 5); 100% Cy conversion
at 1 h. These results were correlated with the identical anions and cations (independently
of the extent of hydration) of 4 and 5. On the other hand, a comparative study of the IPOMs
with the same type of anion (and structural dimensionality) but different cations suggested
that the anilinium (Anil) family (3, 4, 5) was more active than the cyclohexylamine (Cy6N)
one (1, 2). Specifically, the Anil IPOMs led to 100% Cy conversion within 1 h, whereas for
the Cy6N ones (1, 2), the reaction was complete only after 4 h (1 vs. 3, and 2 vs. 4 and 5).
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selectivity was always 100%.

Catalysts 3, 4 and 5 remained very active at the lower reaction temperature of 55 ◦C;
63, 87 and 100% Cy conversion was achieved, respectively, at 1 h (Figure S14). Catalyst 5
led to superior results (based on Cy conversion at 1 h, 55 ◦C) to literature data for IPOMs
possessing different anilinium type cations, namely 1-D (C8H12N)2[Mo3O10] (91%) and 1-D
(C7H10N)2[Mo3O10] (71%) (Table S6) [19].

The reaction mixtures were biphasic solid–liquid. High Cy conversions were reached
in the initial stages (38–100% within 30 min reaction, in the presence of 1–5). The recovered
solids 1–5 were reused and led to roughly comparable catalytic results to the respective
original catalysts (Figure 6). The characterisation studies of the used catalysts suggested
that the chemistry (ATR FT-IR spectroscopy) and crystalline structures (XRPD) seemed to
be preserved (similar characterisation results were obtained for the fresh and used catalysts,
Figure S16). This parallels that reported for compound 6 [19]. Hence, the constituent ions
seem to withstand the catalytic reaction conditions. Nevertheless, one cannot exclude
contributions of dissolved metal species. Contact tests were carried out for 1–6, which
suggested that the catalytic reactions were essentially homogeneous (details in experimental
section; Figure S15). Attempts to precipitate dissolved species (please see details in the
experimental section, for 1–5) did not lead to measurable (or visible) amounts, suggesting
that the dissolved fractions were very soluble.

The catalytic performances may depend on the interplay of several factors, such as
the type of organic cation, ratio (n(oxo)/Mo), and/or catalyst solubility. Based on the
above mechanistic considerations, more available Mo=O groups may favour the epoxi-
dation reaction kinetics, since the reaction begins with the coordination of the oxidant
to a metal centre (of the anion) with the concomitant protonation of an oxomolybdenum
group (Mo=O) [27–30]. On the other hand, one cannot exclude the possibility of the struc-
tural properties of the IPOMs (e.g., Dx) influencing the kinetics of dissolution of metal
species, and consequently the overall epoxidation reaction kinetics (which is essentially
homogeneous). In this sense, Figure S17 shows the kinetic constants (Table 3;
Supplementary Materials for kinetic modelling details) as a function of Dx or n(oxo)/Mo ra-
tio. For the Anil family, 4 and 5, which possessed lower Dx (and higher n(oxo)/Mo, Table 1)
than 3, led to faster reaction kinetics (kCy = 11.5946 and 10.9802 h−1 for 4 and 5, respectively,
and kCy = 6.3279 for 3, Table 3). Compound 6, with the highest Dx (and lowest n(oxo)/Mo,
Table 1), led to the slowest reaction kinetics (kCy = 0.5565 h−1 for 6 versus 1.0774–11.5946 h−1

for the remaining catalysts). However, the opposite was verified for the Cy6N family.



Catalysts 2024, 14, 251 8 of 19

Specifically, 1, with higher Dx (and lower n(oxo)/Mo), led to faster reaction kinetics than 2
(kCy = 1.3989 and 1.0774 h−1, respectively). Hence, Dx does not solely explain the observed
differences of reaction kinetics. Another possible factor is the different structural dimension-
alities of the IPOMs, since a lower structural dimensionality may facilitate dissolution of
metal species, and consequently the overall reaction. This could partly explain the catalytic
differences between 1 (0-D) and 2 (1-D) but does not explain the differences observed for all
compounds. The above results suggest that the (yet unknown) soluble active metal species
may be structurally different for the different IPOMs, contributing with different intrinsic
activities to the overall reaction.
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Figure 6. First (■) and second (▲) catalytic runs of cis-cyclooctene (Cy) epoxidation with TBHP, in
the presence of 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e), at 70 ◦C. Epoxide selectivity was always 100%.

Table 3. Kinetic constants (ki) and objective function (Fobj) obtained from the kinetic models for Cy,
Ole and Lin reactions, in the presence of the IPOM catalysts, at 70 ◦C.

ki
(h−1) Reaction 1 2 3 4 5 6

kCy Cy-CyO 1.3989 1.0774 6.3279 11.5946 10.9802 0.5565
Fobj 4.05 × 10−2 4.70 × 10−2 1.20 × 10−3 2.00 × 10−5 1.60 × 10−3 1.88 × 10−2

kOle Ole-OleOx 0.5356 0.3002 2.4035 3.1423 2.4031 0.3149
Fobj 5.61 × 10−2 2.27 × 10−2 4.26 × 10−4 3.33 × 10−6 6.24 × 10−4 2.76 × 10−2

kLin,1 Lin-LinOx 0.5827 0.4767 0.6392 0.7294 0.7607 0.3957
kLin,2 LinOx-LinDiOx 0.1262 0.1087 0.1888 0.2248 0.2191 0.0893
kLin,3 LinDiOx-LinFur 0.0594 0.0013 0.2527 0.2811 0.2594 0.0647
Fobj 5.20 × 10−2 7.20 × 10−2 1.36 × 10−2 7.48 × 10−2 6.70 × 10−2 7.00 × 10−2

Table 4 compares the catalytic results for 1–6 to literature data for different IPOMs
possessing anilinium derivates as organic components. To the best of our knowledge, there
are no literature studies on IPOM epoxidation catalysts possessing cyclohexylammonium
derivatives as organic components. A comparative study for the anilinium family (entries
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4, 5, 7 and 8), suggested that the 1-D catalysts are highly active, and, on the other hand, the
2-D catalysts (entries 6 and 9–11) seemed generally less active than the 1-D ones.

Table 4. Comparison of the catalytic results for 1–6 to literature data for IPOM compounds possessing
anilinium derivatives as organic components, tested for the Cy/TBHP reaction at 70 ◦C a.

# Catalyst Dim. b t (h) c Conv., CyO yield (%) d Ref.

1 1 0-D 1/2/4 83/95/100 -
2 2 1-D 1/2/4 74/88/100 -
3 3 0-D 0.5/1 98/100 -
4 4 1-D 0.5 100 -
5 5 1-D 0.5/1 97/100 -
6 6 2-D 1/4 48/86 [19]
7 (C8H12N)2[Mo3O10] 1-D 1/6 97/100 [19]
8 (C7H10N)2[Mo3O10] 1-D 1 100 [19]
9 (C8H12N)2[Mo5O16] 2-D 1/6 54/98 [19]
10 (C7H10N)2[Mo5O16] 2-D 1/6 40/94 [19]
11 (C8H12N)2[Mo5O16] 2-D 1/6 44/92 [19]

a Initial molar ratio Mo:olefin:oxidante = 1:100:153. b Dim. = Structural dimensionality. c t = Reaction time.
d Conv. = Cy conversion, CyO yield = cyclooctene oxide yield (epoxide selectivity was 100%).

Biobased Olefin Epoxidation

The synthesized IPOMs were further explored for the epoxidation of FAMEs, namely
monounsaturated methyl oleate (Ole) and double unsaturated methyl linoleate (Lin), with
TBHP, at 70 ◦C. All catalysts led to 100% Ole conversion within 24 h, and the epoxide
9,10-epoxyoctadecanoate (OleOx) was formed with 100% selectivity. Without catalyst, the
reaction was sluggish (12% Ole conversion at 24 h).

The reaction kinetics depended on the type of IPOM catalysts. The Anil family of
compounds 3–5 was more active than the Cy6N one (Figure 7), in parallel to the results
verified with Cy as the substrate (Figures 5 and S17). For the Cy6N family, 1 led to a
faster reaction than 2 (kOle = 0.5356 and 0.3002 h−1, respectively, Table 3; kinetic curves
in Figure S12). On the other hand, for the Anil family, the reaction kinetics was faster
for 3–5 (kOle = 2.4031–3.1423 h−1) than 6 (kOle = 0.3149 h−1). Ole conversion at 2 h was
95–100% for 3–5 and only 43% for 6. After 2 h reaction, the differences in kinetic profiles
were less pronounced (Figure S12), e.g., at 4 h and 24 h, 1–5 led to 81–84% and 96–100% Ole
conversion, respectively.
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Based on a literature survey for IPOM catalysts tested for the target reaction (Ole/TBHP),
it seems that, in general, 3–5 performed superiorly to other catalysts (Table 5). The 1-D com-
pound bis(3,5-dimethylanilinium) trimolybdate ((C8H12N)2[Mo3O10]) led to 84% OleOx yield
at 89% Ole conversion at 6 h (70 ◦C), which is inferior to the 1-D 3–5 IPOMs
(91–95% Ole conversion at 1 h; entry 7 vs. entries 3–5, Table 5) [19]. The introduction of alkyl
substituent groups in the anilinium cation did not seem to improve the catalytic performance,
which may be partly due to differences in catalyst solubility and/or acid–base properties
of the anilinium derivatives [31]. The 0-D pyridinium-tetrazole-based polyoxometallates
(Hptz)4[SiMo12O40]·nH2O and (tBu-ptz)2[Mo6O19] performed differently under somewhat
comparable reaction conditions, with the latter being less active (88% Ole conversion at 6 h)
than the former (97% Ole conversion at 3 h) (entries 8 and 9) [32,33]. Both compounds were
less active than 3–5. At a higher temperature (75 ◦C), the clusters (py)4[Mo8O26] and (tBu-
py)4[Mo8O26] (py = pyridine, tBu-py = 4-tert-butylpyridine) led to ca. 97%/99% OleOx yield
after 2 h/6 h reaction (entries 10 and 11) [23].

Table 5. Comparison of the catalytic results for 1–6 to literature data for IPOM compounds tested for
the Ole/TBHP reaction.

# Catalyst a Dim. b

Reaction Conditions c

Conv. d

(%)
OleOx Yield

(%) Ref
Solv. T

(◦C) Mo:S:ox t
(h)

1 1 0-D TFT 70 1:100:300 ½/4 22/76/98 22/74/96 -
2 2 1-D TFT 70 1:100:300 ½/4 14/42/80 14/42/80 -
3 3 0-D TFT 70 1:100:300 ½/4 91/97/100 91/97/100 -
4 4 1-D TFT 70 1:100:300 ½ 95/100 95/100 -
5 5 1-D TFT 70 1:100:300 ½/4 92/97/98 92/97/98 -
6 6 2-D TFT 70 1:100:300 ½/4/24 14/43/83/100 14/43/83/96 -
7 (C8H12N)2[Mo3O10] 1-D TFT 70 1:100:153 1/6/24 70/89/99 66/84/92 [19]
8 (Hptz)4[SiMo12O40]·nH2O 0-D TFT 70 1:100:250 1/6/24 56/88/100 56/88/100 [32]
9 (tBu-ptz)2[Mo6O19] 0-D TFT 70 1:100:210 0.5/3 73/97 73/97 [33]

10 (py)4[Mo8O26] 0-D DCE 75 1:100:152 2/6 ~97/100 ~97/99 [23]
11 (tBu-py)4[Mo8O26] 0-D DCE 75 1:100:152 2/6 ~97/100 ~97/99 [23]

a ptz = 5-(2-pyridyl)tetrazole; tBu-ptz = 2-tert-butyl-5-(2-pyridyl)−2H-tetrazole; py = pyridine; tBu-py = 4-tert-
butylpyridine. b Dim. = structural dimensionality. c Solv. = solvent; TFT = α,α,α-trifluorotoluene, DCE = 1,2-
dichloroethane; Mo:S:ox = initial molar ratio of molybdenum:substrate:oxidant; T = reaction temperature; t = time.
d Conv. = Ole conversion.

IPOMs 1–6 promoted the epoxidation of methyl linoleate (Lin) with TBHP, leading to
98–100% Lin conversion within 24 h (Figure 8); the kinetic constants were greater for 3-5
than 1-2 (Table 3; calculated kinetic curves in Figure S13). The products were monoepoxides,
diepoxides and furan-type compounds (Scheme 1, Figure 9. The monoepoxides methyl-9,10-
epoxy-12-octadecenoate and 12,13-epoxy-9-octadecenoate (LinOx) were formed initially.
LinOx selectivity decreased with increasing Lin conversion, which was accompanied by the
formation of the diepoxides methyl 9,10-12,13-diepoxyoctadecanoate (LinDiOx) and the
furanic products methyl 10,13-epoxy-9,12-dihydroxyoctadecanoate and methyl 9,12-epoxy-
10,13-dihydroxyoctadecanoate (LinFur) (Figure 9). The LinFur products may be formed via
epoxide ring opening of LinDiOx and intramolecular cyclization [34–37]. According to the
literature, due to the proximity of the two epoxide groups (separated by a -CH2 group),
the ring opening of one of these groups may give unstable intermediates which rapidly
undergo cyclization to LinFur [34–37].
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Table 6 compares the catalytic results for 1–6 to literature data for IPOM type catalysts tested
for the Lin reaction. The 1-D bis(3,5-dimethylanilinium) trimolybdate (C8H12N)2[Mo3O10] led
to 39% LinOx yield, 39% LinDiOx yield and 16% yield LinFur at 95% Lin conversion (70 ◦C, 24 h,
molar ratio Mo:LinOle:TBHP = 1:100:250) [19]. Under somewhat similar reaction conditions to
those used for 1–6, the catalyst (Hptz)4[SiMo12O40]·nH2O (ptz = 5-(2-pyridyl)tetrazole) led to
60%/28% LinOx selectivity, 31%/33% LinDiOx selectivity and 9%/40% LinFur selectivity at
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87%/100% Lin conversion (6 h/24 h) [32]. On the other hand, only epoxides were formed for a
related ionic compound with a substituted ptz organic fragment (tBu-Hptz)2[Mo6O19], which
led to 83% LinOx and 17% LinDiOx selectivity at 85% Lin conversion, 24 h/70 ◦C [33]. For this
catalyst, the selectivity towards epoxides remained high at 90 ◦C (63% and 37% of LinOx and
LinDiOx selectivity, respectively, at 100% Lin conversion, 2 h), and no LinFur products were
formed [33].

Table 6. Comparison of the catalytic results for 1–6 to literature data for IPOM compounds tested for
the Lin/TBHP reaction.

Catalyst a
Reaction Conditions b

Conv.
(%) c

Selectivity (%)
Ref.Solv.;

T (◦C) Mo:S:ox t (h) LinOx LinDiOx LinFur

1 TFT; 70 1:100:300 1/4/24 49/83/100 92/75/23 8/25/43 0/0/34 -
2 TFT; 70 1:100:300 1/4/24 44/82/100 100/76/25 0/24/63 0/0/12 -
3 TFT; 70 1:100:300 1/4/24 55/81/100 89/64/27 11/25/43 0/11/30 -
4 TFT; 70 1:100:300 1/4/24 64/82/98 77/60/25 18/27/46 5/13/29 -
5 TFT; 70 1:100:300 1/4/24 66/84/100 76/54/16 17/25/31 7/21/53 -
6 TFT; 70 1:100:300 1/4/24 34/74/96 100/82/47 0/18/45 0/0/8 -
(C8H12N)2[Mo3O10] TFT; 70 1:100:250 24 95 41 41 17 [19]
[tBu-Hptz]2[Mo6O19] TFT; 70 1:100:210 0.5/24 36/85 100/83 0/17 0 [33]
[tBu-Hptz]2[Mo6O19] TFT; 90 1:100:210 0.5/2 80/100 81/63 19/37 0 [33]
(Hptz)4[SiMo12O40]·nH2O TFT; 70 1:100:250 1/6/24 45/87/100 100/60/28 0/31/33 0/9/40 [32]

a tBu-ptz = 2-tert-butyl-5-(2-pyridyl)−2H-tetrazole; ptz = 5-(2-pyridyl)tetrazole. b Solv. = solvent; TFT = α,α,α-
trifluorotoluene, Mo:S:ox = initial molar ratio of molybdenum:substrate:oxidant, T = reaction temperature,
t = time. c Conv. = Lin conversion.

In summary, there have been few ionic molybdenum compounds tested for Lin reac-
tion, and the results for 3–5 seem promising. Outstandingly, 5 led to the highest LinFur
yield (Table 6). The conversion of FAMEs to higher polarity products such as LinFur may
further broaden the applications profile of FAMEs [34], e.g., there is an increasing interest in
substituted tetrahydrofurans as potential plasticizers, antibiotics and antitumour, pesticidal,
antiprotozoal and antimicrobial agents [38–41].

2.2.2. Cyclooctane Oxidation

The prepared IPOMs were further explored for the oxidation of cyclooctane in air at
10 atm and 120 ◦C (Table 7, Scheme 2). The main products were cyclooctanone (A) and
cyclooctanol (B), and to a lower extent, suberic acid (C), which were formed in a similar
molar ratio (A + B)/(A + B + C) of 0.80–0.86, at 6 h. According to the literature, cyclooctane
oxidation in the presence of IPOMs may occur via homolytic mechanism [26].
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Table 7. Comparison of the catalytic results for 1–6 to literature data for IPOMs possessing anilinium
derivatives as organic components, tested for the cyclooctane/O2 reaction at 120 ◦C a.

Catalyst Dim
Ketone
Yield

(A) (%)

Alcohol Yield
(B) (%)

Suberic Acid
Yield (C) (%)

Conv. b

(%) A/B (A + B)/(A + B + C) Ref.

1 0-D 35 13 8 56 2.29 0.86 -
2 1-D 41 13 12 66 3.15 0.82 -
3 0-D 37 14 13 64 2.64 0.80 -
4 1-D 41 15 11 67 2.73 0.83 -
5 1-D 39 14 11 64 2.79 0.83 -
6 2-D 27 11 8 46 2.45 0.83 -

(C7H10N)4[Mo8O26]·2H2O 0-D 11 9 0 20 1.14 1.00 [26]
(C8H12N)2[Mo3O10] 1-D 30 16 0 46 1.91 1.00 [26]
(C7H10N)2[Mo3O10] 1-D 26 16 0 42 1.61 1.00 [26]
(C7H10N)2[Mo5O16] 2-D 34 11 ~5 ~50 3.16 ~0.90 [26]

(C6H7NBr)2[Mo5O16] 2-D 34 11 ~4 ~49 3.21 ~0.92 [26]
(C8H12N)2[Mo5O16] 2-D 23 15 ~2 ~41 1.53 ~0.95 [26]
(C9H14N)2[Mo5O16] 2-D 29 15 5 49 1.97 0.91 [42]

(C9H14N)4[Mo8O26]· H2O 0-D 30 18 0 48 1.69 1.00 [42]
(C9H14N)6[Mo8O26(C2H3O2)2] 0-D 28 17 0 45 1.66 1.00 [42]

a Reaction conditions: mole ratio cyclooctane:oxygen = 6.5, air atmosphere (10 bar), 6 h. b Conversion (A + B + C)
on the basis of oxygen quantity in the reaction mixture.

The molar ratio A/B was slightly higher for 2 (3.15 versus 2.29–2.79 for the remain-
ing IPOMs). The cyclooctane conversions were in the range 46–67%, being lowest for
compound 6, somewhat in parallel to the results verified for olefin epoxidation systems.
However, for cyclooctane oxidation, the catalytic results for the remaining IPOMs 1–5
were not considerably different (56–67% cyclooctane conversion at 6 h). More pronounced
differences in catalytic results were observed for the epoxidation systems. A comparative
study with the literature indicated that 3–5 led to higher cyclooctane conversions than other
0-D, 1-D and 2-D anilinium-type IPOMs tested under similar cyclooctane reaction condi-
tions (Table 7) [26,42]. For all cyclooctane reaction systems in the presence of IPOMs, the
ketone product was predominant. The compounds reported in the literature led to 41–50%
cyclooctane conversion at 6 h, which is comparable to the results for 2-D 6 (Table 7). The
IPOM tetrakis(4-methylanilinium) octamolybdate dihydrate ((C7H10N)4[Mo8O26]·H2O)
was the least active, leading to only 20% conversion [26,42].

3. Materials and Methods

3.1. Materials

For the synthesis of the compounds, MoO3, acetic acid, HCl and molybdic acid
(H2MoO4.H2O (HMO)) were acquired from AVANTOR (Gliwice, Polska) (acs purity).
Aniline and anilinium salts (99%) were acquired from Sigma/Aldrich and used as received.
For catalytic studies: cis-cyclooctene (Cy, 95%, Aldrich, St. Louis, MO, USA), methyl
oleate (Ole, 99%, Aldrich), methyl linoleate (LinOle, 95%, Alfa Aesar, Haverhill, MA,
USA), α,α,α-trifluorotoluene (TFT, anhydrous, 99.8%, Aldrich)), tert-butylhydroperoxide
(TBHP, 5.5 M in decane, Aldrich), pentane (95%, Carlo Erba, Emmendingen, Germany), 1-
butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NtF2], 99%, Iolitec,
Heilbronn, Germany) and acetonitrile (99.9%, Panreac, Heilbronn, Germany) were acquired
from commercial sources and used as received.

The syntheses of the new compounds 1, 2 and 5 are described, and the remaining
compounds were synthesized in a similar fashion.

3.2. Synthesis of the IPOM Compounds

Compound 1. Molybdic acid (HMO; 0.01 mol 1.79 g) was added to 150 mL of hot
water under reflux. Then, a mixture of 0.01 mol of cyclohexylamine with 50 mL of acetic
acid was added and boiled for 0.5 h. After filtering, the filtrate was allowed to crystallize
(room temperature). Yield: 85%. Transparent colourless crystals.

Compound 2. Molybdenum oxide (0.01 mol) was added to 15 mL of water and
0.75 mmol of cyclohexylamine. This mixture was kept in an oven for 7 days at 75 ◦C.
Every day, the solution was thoroughly mixed by shaking. The resultant (white coloured)
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precipitate was separated by filtration, washed with a water/2-propanol mixture and finally
dried in air at room temperature. Yield: ca. 100%, white-coloured, fibrillar crystals.

Compound 3. First, 0.01 mol HMO was dissolved in boiling water (150 mL) and then
added to a boiling solution mixture of 50 mL acetic acid and 0.01 mol aniline. HCl was
added and heated (reflux conditions) for ca. 1 h. The solution was left for crystallization.
Yield: 92%. The structure of anilinium β-octamolybdate dihydrate was confirmed by XRPD:
PDF-4+ card 50-2366.

Compound 4. To a boiling solution of HMO in water (0.01 mol, 150 mL), aniline was
added (0.02 mol). This mixture (which became transparent after adding aniline) was heated
(reflux conditions) for ca. 2 h, and then left for crystallization under ambient conditions.
After ca. 2–3 months, white-coloured fibrillar crystals were obtained. Yield: ca. 60%.
Crystallization can be accelerated by nucleation using previously obtained crystals (or even
crystallites of compound 5). The structure of anilinium trimolybdate tetrahydrate was
confirmed by XRPD: PDF-4+ 49-2407.

Compound 5. To a boiling solution of HMO in water (0.01 mol, 150 mL H2O), aniline
was added (0.02 mol) and kept under reflux for ca. 2 h. Then, the solution was cooled down
slowly and then kept at ca. 80 ◦C overnight. After ca. 12 h, the reaction mixture turned into
a white gelatinous product. Microscope observation indicated that fibrillar crystals were
formed. Yield: 66%. The structure of anilinium trimolybdate dihydrate was confirmed by
XRPD: PDF-4+ card 50-2402.

Compound 6. Molybdic acid (0.01 mol, 1.79 g) was dissolved in 150 mL water under
reflux. Then, a solution of 0.0075 mol of anilinium sulphate dissolved in 25 mL water was
added and heated (reflux conditions) for 24 h. The obtained precipitate was separated by
filtration and dried in air at room temperature. Yield: ca. 100%. Very fine, white-greyish-
coloured powder. The structure of anilinium pentamolybdate was confirmed by XRPD:
PDF-4+ 50-2221.

3.3. Characterisation of the Compounds

X-ray powder/single crystal diffraction. The X-ray powder diffraction (XRPD) inves-
tigations were performed for 2 and 5 and single crystal X-ray diffraction (XRD) for 1. The
temperature during measurements was 293(2) K in case of XRPD and 100 K for the single
crystal investigations.

The XRPD data were collected using PANalytical X’Pert Pro MPD diffractometer,
and single-crystal data using a SuperNova (Oxford Diffraction). High Score software and
the PDF-4+ [ICDD, 2022] database were used for the analysis of the XRPD data. Pow-
der diffraction studies were performed using the Expo2014 program [43] to locate Mo
and O atoms, and FOX [44] to find the position and orientation of the organic moieties.
Finally, restrained Rietveld refinement was performed with the use of Jana2006 [45].
Figures S7 and S8) present Rietveld refinement plots for 2 and 3, respectively.

Structure solution and refinement of 1 was performed using SHELXS-97 and SHELXL-
2013 programs [46]. To find the location of the hydrogen atoms, difference Fourier maps
were used. For all non-hydrogen atoms, anisotropic refinement was used.

The Diamond [47] and Mercury [48] programs were used for visualization of the
crystal structures of the obtained compounds.

The density Dx each compound was calculated as the ratio of mass/volume (deter-
mined by X-ray). For isopolymolybdates, the degree of condensation (DC) equals the ratio
of (number of Mo atoms)/(0.5 × (cluster charge)).

X-ray thermal decomposition. X-ray thermal decomposition patterns were measured
using Philips X’Pert Pro MPD. X-ray data for compounds 1, 2 and 5 was collected at the
following temperatures: 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500,
550, 600 ◦C and again at 25 ◦C. The 2θ range was 5–70◦. The heating rate was 5 ◦C min−1

and the cooling rate was 10 ◦C min−1.
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3.4. Catalytic Tests

3.4.1. Olefin Epoxidation

In this work, the substrates tested for epoxidation reactions were cis-cyclooctene (Cy),
methyl oleate (Ole) and methyl linoleate (Lin). The catalytic reactions were carried out in
10 mL borosilicate reactors equipped with a Teflon valve (for sampling), at 55 or 70 ◦C with
magnetic stirring, using an amount of catalyst equivalent to 18 µmol of Mo, 1.8 mmol of
olefin and 1 mL of α,α,α-trifluorotoluene (TFT). The mixture of catalyst/solvent/olefin
was pre-heated at the reaction temperature. Then, the oxidant TBHP (also preheated) was
added (2.75 mmol (for Cy) or 5.5 mmol (for Ole and Lin)) to the reaction mixture, and this
was taken as the initial instant of the reaction.

The reactions were monitored by gas chromatography, using an Agilent 7820A GC
equipped with a DB-5 capillary column (30 m × 0.25 mm × 0.25 µm) and an FID detector
with H2 as the carrier gas (for supportive chromatograms please see Figure S18). Quantifi-
cations were based on calibrations using undecane (for Cy reactions) or methyl decanoate
(for Ole and Lin reactions) as internal standards. The reaction products were identified by
GC-MS (Trace GC 2000 Series Thermo Quest CE Instruments GC; Thermo-Scientific DSQ
II), using He as the carrier gas. The product identifications were based on commercial mass
spectrometry databases (Wiley229, NIST147, NIST107, NIST27, NISTChemistry WebBook,
MAINLIB) and mass spectra similarities.

The reaction systems consisted of a biphasic solid–liquid mixture. The homoge-
neous or heterogeneous nature of the catalytic reaction Cy/TFT/TBHP was studied by
carrying out contact tests (ct) as follows: the mixture of catalyst/TFT/TBHP was stirred
(1000 rpm) for 1 h at 70 ◦C, and then cooled to room temperature and passed through a
PTFE membrane (0.2 µm pore size) filter. The filtrate was transferred immediately to a
separate (empty) reactor, preheated at 70 ◦C, and subsequently Cy (also preheated) was
added in an amount equivalent to that typically used (initial molar ratio Cy:TBHP = 1:1.5).
The evolution of the homogeneous phase reaction was monitored by GC as described above.
The attempts to precipitate the species from the reaction mixtures involved the addition of
solvents such as n-pentane, n-hexane and acetone, and keeping the solutions at 4 ◦C, which
unfortunately was not sufficient to precipitate measurable amounts of solid.

At the end of Cy reaction, the solids were separated from the reaction mixture by
centrifugation (5000 rpm) and thoroughly washed with pentane. The solids were dried
overnight under atmospheric conditions, followed by a vacuum drying for 1 h at 60 ◦C.
The recovered solids were used in a second batch run at 70 ◦C, keeping constant the initial
mass ratio of catalyst/olefin/oxidant used in run 1.

3.4.2. Kinetic Modelling

Kinetic models were developed considering perfectly stirred, isothermal batch reactors,
and corresponding material balance according to Equation (1):

dCi
dt

= ri (1)

where Ci is the molar concentration of species i (M), t is the reaction time (h) and ri is the
reaction rate of species i. The material balances closed in 100% for the substrates Cy (con-
sidering CyO), Ole (considering OleOx) and Lin (considering monoepoxides, diepoxides
and LinFur). Details of the kinetic models are described in the Supplementary Materials.
Three different kinetic models were firstly developed (for Cy epoxidation). The simplest
model considered irreversible, first-order reactions for all steps; the second model con-
sidered second-order reactions with the oxidant (these two models considered that the
epoxidation reaction kinetics was not governed by the rate of formation of active oxidizing
species); and the third model considered second-order reactions and the kinetics of forma-
tion of active oxidizing species (Mo+TBHP). The three models fitted the experimental data
well. Hence, the discussed kinetic models for the Cy, Ole and Lin reactions were based on
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the assumptions for the simplest model, e.g., for Cy, the equations 1, 2 and 3 with the rate
constant kCy (h−1):

dCCy

dt
= −kCy CCy (2)

dCCyO

dt
= kCy CCy (3)

3.4.3. Cyclooctane Oxidation

The oxidation of cyclooctane was experimentally performed as previously
described [26,49,50]. The experiment was carried out in a stainless-steel batch reactor
system at 120 ◦C and under an air pressure of 10 atm. The cyclooctane-to-oxygen mo-
lar ratio was 6.5. The reactor was cooled after 6 h, followed by sampling and analytic
analysis. The oxidation products cyclooctanone (A) and cyclooctanol (B) were analysed
by an Agilent 6890 N Gas Chromatograph (FID detector) equipped with an Innowax
(30 m × 0.53 mm × 1.0 µm) column, using an internal standard (chlorobenzene). The
amount of suberic acid was determined by the back titration method (the sample is mixed
with excess NaOH/KOH and stirred, followed by titration using HCl).

4. Conclusions

The ionic polymolybdate compounds (IPOM) cyclohexylammonium β-octamolybdate
dihydrate (1), cyclohexylammonium trimolybdate hydrate (2), anilinium β-octamolybdate
dihydrate (3), anilinium trimolybdate tetrahydrate (4) and anilinium trimolybdate dihy-
drate (5) were synthesized via simple, eco-friendly one-pot routes and studied as epox-
idation catalysts of olefins (cis-cyclooctene and FAMEs) using tert-butylhydroperoxide
as oxidant. Depending on the IPOM synthesis conditions and the type of molybdenum
precursor, IPOM compounds with different structural dimensionality, density Dx and ratio
of terminal oxo groups/molybdenum atoms (n(oxo)/Mo) were formed. The different com-
pounds led to different olefin epoxidation reaction kinetics, and no direct structure–activity
correlations could be established for all IPOMs. The catalytic studies indicated that the
reactions were essentially homogeneous in nature. Accordingly, the (yet unknown) types
of soluble metal species may be structurally different, contributing with different intrinsic
activities to the overall reaction kinetics.

Nevertheless, the IPOM compounds promoted the epoxidation of biobased fatty acid
methyl esters, namely methyl oleate and methyl linoleate, leading to conversions of at least
81% at 4 h, 70 ◦C, and the corresponding epoxides, as well as furan-type products in the case
of the Lin reaction. They also promoted cyclooctane oxidation, although the difference in
the catalytic performances of the catalysts seemed less pronounced than for the epoxidation
systems. Overall, for the studied substrate scope and reaction scope, 1–5 seemed more
active than 6. Insights into the factors influencing the catalytic performances may call for in
situ characterization of dissolved metal species involved in the catalytic processes, which is
challenging partly due to the complexity of the liquid–solid, multicomponent systems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal14040251/s1, Figure S1: TG/DSC study of cyclo-
hexylammonium β-octamolybdate dihydrate (1). Figure S2: TG/DSC study of cyclohexylammo-
nium trimolybdate hydrate (2). Figure S3: TG/DSC study of anilinium trimolybdate dihydrate (5).
Figure S4: XRPD/temp. study of cyclohexylammonium β-octamolybdate dihydrate (1).
Figure S5: XRPD/temp study of cyclohexylammonium trimolybdate hydrate (2). Figure S6: XRPD/
temp study of anilinium trimolybdate dihydrate (5). Figure S7: Cyclohexylammonium trimolybdate
hydrate—Rietveld refinement plots (2). Figure S8: Anilinium trimolybdate dihydrate—Rietveld
refinement plots (5). Table S1: Cyclohexylammonium β-octamolybdate dihydrate—interatomic
distances (1). Table S2: Cyclohexylammonium trimolybdate hydrate—interatomic distances (2).
Table S3: Anilinium trimolybdate dihydrate—interatomic distances (5). Figure S9: Experimental data
(markers) and calculated kinetic curves (lines) for Cy (o) and epoxide CyO (∆) concentration, based on
the model A, for catalyst 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f), at 70 ◦C. Figure S10: Experimental data

https://www.mdpi.com/article/10.3390/catal14040251/s1
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(markers) and calculated kinetic curves (lines) for Cy (o) and epoxide CyO (∆) concentration, based
on the model B, for catalyst 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f), at 70 ◦C. Figure S11: Experimental
data (markers) and calculated kinetic curves (lines) for Cy (o) and epoxide CyO (∆) concentration,
based on the model C, for catalyst 1 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f), at 70 ◦C. Table S4: Calculated
data based on kinetic models A and B, for the Cy reaction, at 70 ◦C. Table S5: Calculated data
based on kinetic model C, for the Cy reaction, at 70 ◦C. Scheme S2: Mechanistic proposal for the
reaction of the olefins, considering irreversible, first-order reactions (same as Scheme 1 of the main
text, serves as guide). Figure S12: Experimental data (markers) and calculated kinetic curves (lines)
for Ole (o) and OleOx (∆) concentration for catalyst 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f), at 70 ◦C.
Figure S13: Experimental data (markers) and calculated kinetic curves (lines) for Lin (o), LinOx (∆),
LimDiOx (×) and LinFur (+) concentration for catalyst 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f), at 70 ◦C.
Figure S14: cis-Cyclooctene epoxidation with TBHP, in the presence of the IPOM catalysts 3–5, at 55
◦C. Epoxide selectivity was always 100 %. Table S6: Comparison of the catalytic results for 3–5 to
literature data for IPOM compounds possessing anilinium derivatives as organic components, tested
for the Cy/TBHP reaction, at 55 ◦C. Figure S15: Typical epoxidation catalytic test (with catalyst)
(#) and contact tests (×) for cis-cyclooctene epoxidation with TBHP, in the presence of the IPOM
catalysts 1-6, at 70 ◦C. Figure S16: ATR FT-IR spectra (a) and powder XRD patterns (b) of the original
and recovered solids 1, 2, 3 and 5. The experimental details of the characterisation techniques are
indicated. Figure S17: Kinetic constants as a function of density Dx (left) and n(oxo)/Mo ratio (right),
for the Cy6N (a, b) and Anil (c, d) families of IPOM catalysts with different substrates (Cy (circles), Ole
(squares) and Lin (triangles); the dotted lines are trendlines). Figure S18: Examples of chromatograms
for Cy, Ole and Lin reactions.
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