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Abstract: Organochalcogen-bearing heterocycles are important scaffolds in compounds under the
spotlight of scientific interest in optoelectronic fields and for biological applications. The use of
transition metals has been a versatile and reliable way to carry out the synthesis of these molecules
efficiently, delivering products in high yields and with a wide functional diversity. In the last
10 years, many classes of heterocycles have been synthesized under the cyclization reaction of acyclic
alkenes and alkynes with the incorporation of a chalcogen atom on its structure. Transition metal
catalysts including Cu, Co, Pd, Ni, In, Ag, and Fe salts have been used in the development of new
methodologies, the expansion of substrate scope, and mechanistic studies. This review provides an
overview of these recent approaches with the aim of being a useful resource for interested researchers
in this area.
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1. Introduction

The use of transition metal-catalyzed carbon-carbon and carbon-heteroatom bonds has
long been considered a powerful and efficient tool in heterocycle synthesis. This strategy en-
ables the efficient construction from simple to complex heterocyclic structures starting from
acyclic materials [1,2]. In this context, the use of cheap, clean, and efficient catalytic systems
to access heterocyclic compounds is always desired to design new bioactive compounds,
functional materials, agrochemicals, or to synthesize naturally occurring molecules [3,4].
Transition metals have enabled the preparation of heterocyclic structures bearing a broad
range of functionalities, in high selectivity and high yields [5–7]. Conventional metals
used for this purpose include palladium, copper, iron, and ruthenium, which facilitate key
transformations, including C-H or C-heteroatom bond activation, coordination to double
and triple bond facilitating cyclization, and functional group manipulations [8–10]. The
earliest traditional methods involving metals for the construction of new chemical bonds
experienced several drawbacks, such as the need for stoichiometric amounts, low selec-
tivity and efficiency, limited scope, and many side reactions. Over the past years, several
advances have been reached to overcome these problems, further expanding the synthetic
utility of catalytic systems. The development and use of innovative ligands, optimization
of the reaction conditions, and the use of continuous methods or alternative energy sources
are recent contributions in this area [11,12].

The preparation of organic chalcogenide compounds has experienced considerable
breakthroughs in recent years. These compounds exhibit interesting physical, chemical, and
biological properties which motivate studies from synthetic organic chemists and the phar-
maceutical industry [13]. In addition, due to their unique physical and chemical properties,
many of these compounds have been used as versatile building blocks in the synthesis of
complex organic molecules, biologically active compounds, pharmaceuticals, and natural
products [14–16]. From the viewpoint of biological activities, organochalcogen compounds
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are known by their antioxidant [17,18], antitumoral [19–21], antimicrobial [22,23], and
anti-inflammatory activities [24]. Several are heterocyclic systems containing sulfur on its
structure available as FDA-approved drugs [25,26]. On the other hand, organoselenium
and organotellurium derivatives display unique reactivity profiles, making them valuable
as catalysts, ligands, and intermediates in synthetic methodologies [27–29]. In sum, the
interesting properties presented by organochalcogen compounds offer wide research op-
portunities, considering the design of small molecules presenting pharmacological activity
and toxicological safety to new materials.

The heterocyclization of alkenes and alkynes by using halogen- [30–33] or chalcogen-
based electrophiles [34,35], or under photocatalysis and electrochemistry conditions involv-
ing radical intermediates, has been well documented [36,37]. Traditionally, these cyclization
reactions are conducted for alkenes and alkynes neighboring nucleophilic substituents at
an appropriate position, which can limit the applicability as most of them are not readily
available starting materials, owing to its obtaining of a transition-metal catalysis in at least
one reaction step. Although most of them are reliable methodologies, the unique reactivity
and capacity of transition-metals to form C-C and C-Heteroatom bonds have not yet been
overcome by the metal-free approaches. So, this review article intends to provide the read-
ers with a comprehensive overview on the recent approaches to transition metal-catalyzed
chalcogenative heterocyclization reactions, covering research articles published in the last
ten years. The most common chalcogen-containing heterocycles explored in this review
belong to five, six, and seven membered rings including N-, O-, S-, and Se-heterocycles
(Scheme 1). This manuscript is organized into reactions catalyzed by transition metals, in-
cluding copper, cobalt, iron, palladium, silver, indium, and nickel. Synthetic methodologies
for the chalcogenative cyclization of alkenes and alkynes carried out with stoichiometric
amounts of these substances are not covered in this review.
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Scheme 1. Overview of transition metal-catalyzed chalcogenative heterocyclization reactions.

2. Transition Metal-Catalyzing Chalcogenative Heteroannulation
2.1. Using Copper as Catalyst

The chemistry of copper in organic synthesis is extremely rich and abundant, repre-
senting a significant field of research that is under constant development. The low cost, high
abundance, high functional group tolerance, and capacity of copper to vary its oxidation
state may represent attractive aspects involved in the application as a catalyst in cyclization
reactions. The synthesis of a plethora of heterocyclic compounds by the copper-catalyzed
chalcogen-chalcogen bond cleavage of disulfides or diselenides and the subsequent transfer
of the ensuing chalcogen species to activated alkenes or alkynes is described. In this way,
the use of copper catalysts represents a powerful synthetic tool to afford different classes of
N-, O-, and Chalcogen-based heterocycles bearing an organochalcogen group.

2.1.1. N-Based Heterocycles

The synthesis of spiro[4.5]trienones 1 via sequential C-Chalcogen bond formation,
ipso-cyclization, and dearomatization of N-(p-methoxyaryl)propiolamides catalyzed by
CuCl2 (10 mol%) has been reported (Scheme 2) [38]. The optimal conditions still include the
use of O2 atmosphere and H2O (2 equiv.) in DMF as solvent at 100 ◦C for 24 h. The substrate
scope covered diverse N-arylpropiolamides and diaryldisulfides containing halogen, alkyl,
alkoxy, and nitrile as substituents, providing the spirocycles in yields ranging from 41% to
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95%. Despite the broad scope and group compatibility, limitations on product formation
were observed for alkyl-substituted terminal alkyne and in the presence of a free N-H group.
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The synthesis of 2-(chalcogenyl)indolizines 2 by copper-catalyzed chalcogenative cy-
clization of propargyl pyridines has been reported by Zeni and coworkers (Scheme 3) [39].
This protocol demonstrated the reaction of propargyl pyridines with diorganyl dichalco-
genides via copper(I) iodide (20 mol%) catalysis in the presence of Na2CO3 as a base,
and DMF as a solvent at 60 ◦C. This strategy was compatible with several propargyl
pyridines bearing both acetate and carbonate groups directly bonded to the propargylic
carbon, providing 2-chalcogenylindolizines 2 via 5-endo-dig cyclization by copper seleno-
late species activating the C-C triple bond to the anti-attack of the nitrogen atom of the
pyridine nucleus. Moreover, differently substituted diorganyl diselenides and ditellurides
were used, which delivered the target products in moderate to excellent yields. Excep-
tionally, when a terminal propargylpyridine was used to react with diphenyl diselenide,
the coupling of two phenylselanyl groups at positions 2 and 3, in the indolizine struc-
ture was observed. In addition, the synthetic applicability of the Csp2-tellurium bond on
some 2-(butyltellurenyl)indolizines has been successfully evaluated in palladium-catalyzed
Suzuki-type cross-coupling reactions.
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A novel copper-catalyzed oxidative alkene chalcogenofunctionalization starting from
alkenyl N-Ts-protected amines and diorganyl dichalcogenides in the presence of CuBr2
(10 mol%) as a catalyst was reported by Zhong and co-workers (Scheme 4) [40]. The
substrate scope covered the synthesis of diverse indolines, tetrahydroquinolines, pyrrolines,
and piperidines highly functionalized 3 in good to excellent yields. Furthermore, diorganyl
disulfides and diselenides were used as a stable and highly available chalcogen source,
which were well tolerated under optimal conditions and produced N-heterocycles 3 by
exo-trig cyclization form. Still, the highlight of this methodology is the use of an inexpensive
catalytic system based on copper(II) bromide and air oxygen as the oxidant.
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Scheme 4. Chalcogenative cyclization of alkenyl amines catalyzed by CuBr2.

In 2019, Reddy and co-workers described the open-air synthesis of organochalcogeny-
lated nicotinate derivatives by Cu-catalyzed intramolecular chalcogenamination reac-
tion [41]. The one-pot aza-annulation of (E)-2-en-4-ynyl azides—which are readily prepared
from the corresponding Morita–Baylis–Hillman acetate of acetylenic aldehydes—in the pres-
ence of diorganyl diselenides or disulfides and CuCl2 (5 mol %) as the Cu(II) catalyst source
provided direct access to a series of twenty-three structurally diverse 5-selanyl/sulfenyl
nicotinates 4 in moderate to excellent yields (44–98%) (Scheme 5). Both electron-donating
and electron-withdrawing groups were well-tolerated, demonstrating the versatility of this
mild protocol.
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complex promotes electrophilic regioselective addition to the alkyne moiety followed
by intramolecular nucleophilic azide attack I (Scheme 6). Subsequent deprotonation of
intermediate II leads to the desired nicotinate product 4 and seleno- or thiophenol, which
promptly oxidizes to its corresponding diselenide/disulfide, completing the catalytic cycle.
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Scheme 6. Proposed mechanism for the synthesis of 4.

A series of selenium-containing fIuorinated γ-lactams 5 were synthesized by Sun,
Zhang, and co-workers through Cu(I)-catalyzed radical cascade selenodifluoromethyla-
tion of N-allylphenylacetamides [42]. Using CuI/phenantroline as the catalytic system
and diaryl, dialkyl, or diheteroaryl diselenides as the organochalcogen source, nineteen
selenium-containing α,α-difluoro-γ-lactams 5 were prepared in moderate to excellent yields
(46–91%) (Scheme 7).
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Based on control experiments, a possible radical cascade cyclization mechanism was
proposed. First, Cu(I) and N-allylphenylacetamide react via an SET (single-electron transfer)
process producing Cu(II) species and the fluoroalkyl radical intermediate III (Scheme 8).
Then, the cycle proceeds toward a 5-exo-trig cyclization, leading to the radical intermediate
IV, which is captured by the diorganyl diselenide to yield the desired product 5 and a
selanyl radical. The latter is eventually reduced to selanyl bromide (RSeBr) and Cu(II) to
Cu(I) to re-enter into the catalytic cycle.
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A series of polysubstituted 3-chalcogenated indoles 6 were synthesized by Liu and
co-workers (2019) via a Cu-catalyzed multicomponent one-pot reaction involving Sono-
gashira coupling reaction, N-cyclization, and electrophilic sulfenyl/selanyl substitution [43].
Using N-(2-bromophenyl)trifluoroacetamides, an aryl or alkyl alkyne, diorganyl dise-
lenide/disulfide, and CuI/proline as the catalyst system, the indole target products 6 were
obtained in 65–96% yield (Scheme 9).
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Two possible catalytic routes were proposed for this reaction (Scheme 10). First, the
Cu-acetylide intermediate V is formed by the reaction of terminal alkyne with copper
complex. Then, the in situ generated copper-acetylide reacts with aryl bromide to form the
transition state VI leading to the key coupling intermediate VII, while the dichacolgen is
oxidized to the corresponding cationic species. For pathway A, trifluoroacetyl-promoted
annulation leads to the target 3-chalcogenated indole product 6. For pathway B, the
coupling intermediate VII undergoes intramolecular cyclization to afford an indole anion
that traps the cationic chalcogen species, leading to the N-heterocycle product 6.
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Scheme 10. Proposed mechanism for the synthesis of polysubstituted 3-chalcogenated indoles 6.

In 2020, Sarkar and co-workers developed an interesting two-component Cu(I)-catalyzed
regioselective cyclization cascade strategy for the synthesis of diorgano-chalcogenyl-substituted
indolizinones 7 from a wide variety of substituted pyridine homologated ynones [44].
All reactions were carried out at room temperature and open-air atmosphere using CuI
(10 mol %) as the catalyst and diorganyl dichalcogenides as the chalcogen source. Under
these conditions, the desired chalcogen-decorated indolizinones 7 were obtained in high to
excellent yields (80 to 96%) (Scheme 11).
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Scheme 11. Synthesis of diorgano-chalcogenyl-substituted indolizinones 7.

The proposed reaction mechanism starts with formation of the dinuclear
diorganochalcogen-Cu(III) complex, which is the species involved in the activation of
starting ynone. The intramolecular 5-exo-dig ring annulation followed by the reductive
elimination of VIII furnishes the mono-organochalcogen-indolizinone intermediate IX,
which had the acidic hydrogen exchanged by iodine with the aid of base, affording X.
Finally, subsequent oxidative addition of the Cu(III)−organochalcogen species followed by
reductive elimination leads to the target product 7 (Scheme 12).
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Scheme 12. Proposed mechanism for the synthesis of 7.

He, Wu, and co-workers (2021) developed an efficient copper(I)-catalyzed multi-
component radical cascade cyclization of 1,6-enynes, diorganyl diselenides, DABCO·(SO2)2
and cycloketone oxime esters for the regio- and chemoselective synthesis of cyanoalkylsul-
fonylated pyrrolidines 8 in moderate to good yields (34–92%) (Scheme 13) [45]. This mild
protocol provided direct access to twenty-eight organoselenated pyrrolidines 8 employing
CuOAc (10 mol%) as Cu(I) source and DCE as the solvent at 80 ◦C, demonstrating high
functional group compatibility.
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The suggested mechanism for this selenosulfonylation reaction starts with a single-
electron transfer from Cu(I) to cycloketone oxime ester to form an iminyl radical XI
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(Scheme 14). In the sequence, C–C bond cleavage results in the formation of a carbon
radical intermediary, which is promptly captured by DABCO·(SO2)2 to produce the sul-
fonyl radical XII. Addition of XII to 1,6-enyne forms an alkyl radical intermediate that
undergoes 5-exo-dig cyclization to provide vinyl radical XIII. Finally, the reaction between
radical species XIII and diphenyl diselenide affords the target pyrrolidine 8.
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2.1.2. O-Based Heterocycles

In 2013, Wang and co-workers reported the synthesis of 2-chalcogenyl-benzofurans
9 by reacting 2-(gem-dibromovinyl)phenols with diorganyl dichalcogenides and using
copper(I) iodide (10 mol%) as a catalyst (Scheme 15) [46]. The optimal conditions still
consist of using tBuOLi as a base and metallic Mg as an additive in DMSO as solvent
at 110 ◦C. The most striking feature of this protocol was the tolerance of both electron-
donating and electron-withdrawing groups directly attached to the phenol moiety without
apparent sensitivity to the electronic features of the substituents. Diorganyl disulfides and
diorganyl diselenides were found to be efficient reagents to this reaction, affording the
products 9 in good yields.
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Scheme 15. Synthesis of 2-chalcogenyl-benzofuran 9.

Based on detailed control experiments and the related literature, the authors proposed
the following mechanism (Scheme 16). Initial Ullmann-type reaction catalyzed by copper
furnishes 2-bromobenzofuran XIV. In parallel, reaction of diorganyl dichalcogenide with
Cu(0), generated in situ from the reduction in Cu(I) with Mg(0), provides copper(II) and
copper(I) intermediates, which reacts with XIV via oxidative addition, giving XV. Finally,
the reductive elimination step regenerates the transition-metal and furnishes product 9.
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Scheme 16. Proposed mechanism for the synthesis of 2-chalcogenyl-benzofuran 9.

In 2015, Buchwald and Zhu depicted the enantioselective radical cyclization of 4-
arylpent-4-enoic acids to synthesize functionalized chiral lactones 10 via copper-catalyzed
reaction (Scheme 17) [47]. Reactions were conducted using sulfonyl chlorides as sulfur
sources in a catalytic system based on Cu(MeCN)4PF6 (10 mol %), (S,S)-tBuBox (10 mol%)
as ligand, and Ag2CO3 as base and chloride scavenger in ethyl acetate as solvent at room
temperature. Under optimal conditions, enantiomerically-enriched sulfonyl-substituted
lactones were obtained in high yields and good enantioselectivity. Finally, this key enan-
tioselective lactonization still covered oxyazidation, oxyarylation, diacyloxylation, and
oxyalkylation reactions.
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Scheme 17. Synthesis of sulfonyl-substituted lactones 10.

A series of sulfonated cyclic ethers 11 were depicted via heterocyclization of enols
with sodium sulfinates as an organic sulfur source that is readily accessible and stable
(Scheme 18) [48]. The best reaction conditions involved the use of copper(II) bromide
(10 mol%) in DMF as solvent at 120 ◦C under air for 24 h. The reactions were conducted
using terminal and internal enols, which enabled the preparation of a series of four to
seven membered cyclic ethers, including dihydrobenzofuran, lactone, and a norbornene
derivative. Furthermore, the reaction conditions were compatible with several aryl and
alkyl sulfinates bearing both bulky, electron-donating and electron-withdrawing groups at
orto, meta, and para positions, which furnished the desired products 11 in good yields.
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mol%) as catalyst, Na2CO3 as the base, and DMF as the solvent resulting in the selanyl 
methylene 4-chromanol 12 and selanyl aurone 13 products with an up to 96% yield 
(Scheme 20). The attempts to employ diorganyl ditellurides and disulfides as the chalco-
gen sources were unsuccessful. 

 
Scheme 20. Cu-catalyzed regioselective synthesis of selanyl methylene 4-chromanol 12 and aurone 
derivatives 13. 

Scheme 18. Synthesis of sulfonated cyclic ethers 11.

After screening several experiments, a radical mechanism was proposed. Initially,
sodium sulfinate is reduced by Cu(I) resulting in Cu(II) species and reactive sulfur radical
species via disulfide intermediate. Thereafter, addition of sulfur radical species to the enol
double bond provides the alkyl radical species XVI which undergoes oxidation, resulting in
a carbocation-type intermediate XVII. Subsequently, species XVII suffers an intramolecular
nucleophilic attack of the neighboring oxygen atom, furnishing 11 and regenerating Cu(I)
to the next catalytic cycle (Scheme 19).
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Scheme 19. Proposed mechanism for the synthesis of 11.

The same research group developed a mild protocol for the regioselective synthesis of
selanilated cromanol 12 and aurone 13 derivatives from homo-propargyl and propargyl al-
cohols, respectively [49]. The optimal reaction conditions involved the use of CuI (10 mol%)
as catalyst, Na2CO3 as the base, and DMF as the solvent resulting in the selanyl methylene
4-chromanol 12 and selanyl aurone 13 products with an up to 96% yield (Scheme 20). The
attempts to employ diorganyl ditellurides and disulfides as the chalcogen sources were
unsuccessful.
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The proposed reaction mechanism proceeds through a similar pathway shown pre-
viously in Scheme 12, with the initial copper-organochalcogen complex formation. This
dinuclear species is responsible for activating the starting ynol, which suffers a 6-exo-dig
(Scheme 21A) or a 5-exo-dig (Scheme 21B) ring annulation, followed by a reductive elimina-
tion leading to the desired selanyl-substituted chromanols 12 and aurones 13, respectively.
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2.1.3. Chalcogen-Based Heterocycles

An efficient synthetic approach to the synthesis of highly functionalized selenophenes
14, 15, and 16 via Cu(II)-catalyzed reaction between several (E,E)-1,3-dienyl bromides and
KSeCN as selenium source has been reported by Ranu and co-workers (Scheme 22) [50].
The standard condition uses 20 mol% of CuO Nps as catalyst and DMF as solvent, at
110 ◦C for 3 h to 12 h. Initially, a diversity of substituted 1,3-dienyl bromide derivatives
underwent selanylation/cyclization reaction, producing the corresponding selenophenes
14 in 75% to 95% yields. Moreover, when 1,3-di-gem-dibromides were employed under
optimal conditions in the presence of 3 equiv. of KSeCN, 2-selanyl bisselenophenes 15 were
obtained as product. In addition, under the same conditions, the selanylation followed
by cyclization reaction was extended to a 3-bromo-1,3-dienyl bromide which gave the
3-selanyl bisselenophene 16 in 85% yield. To complete the investigation, the synthesis of
five differently substituted thiophenes 17 was explored in the presence of thiourea as a
sulfur source under similar optimized reaction conditions obtaining the expected products
in 80% to 90% yields. Particularly, KSCN was inefficient in providing the desired products.
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Scheme 22. Synthesis of chalcogenophene derivatives 14–17.

In 2018, Zeni and co-workers described straightforward strategies to synthesize highly
substituted selenophene scaffolds by direct incorporation of halogen and chalcogen as
substituents (Scheme 23) [51]. Among them, the reaction of butylselanyl propargylic alco-
hols with diphenyl diselenide catalyzed by copper(I) iodide (20 mol%) was successfully
employed to obtain diverse 3-(phenylselanyl)selenophenes 18 in moderate to good yields.
Interestingly, simple electrophilic selenium sources, such as PhSeBr or (PhSe)2/HCl or
(PhSe)2/FeCl3, as promoters were inefficient, furnishing the expected product in satisfac-
tory yields. In contrast, the formation of a copper π-complex favors the intramolecular
cyclization, selanylation, and dehydration reaction of the starting propargylic alcohols.
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Another notable example comes from a recent report by Wu and coworkers on the
chemo- and regio-selective synthesis of selenophenes 19 via Cu(I)-catalyzed [2+2+1] cy-
clization of terminal alkynes and selenium powder [52]. This strategy applied stable and
non-toxic elemental selenium as the chalcogen source, in contrast to the relatively unstable
and unpleasant odour of commonly used dialkyl diselenides. Under the optimal reac-
tion conditions, 2,5-disubstituted selenophenes 19 were prepared in 32–89% yields with a
diversity of substituents, including aryl, alkyl, and heteroaryl groups (Scheme 24).
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Scheme 24. Synthesis of 2,5-disubstituted selenophenes 19.

The suggested mechanism starts with a DBU-promoted disproportionation of ele-
mental selenium resulting in selenide anion (Se2-) and selenite (Se4+) (Scheme 25). In the
sequence, Cu0 is oxidized to Cu(I), which is responsible for catalyzing the homocoupling
of two molecules of the terminal alkyne, followed by regioselective hydroselenation and
subsequent cyclization to furnish the desired products 19.
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Scheme 25. Proposed mechanism for the synthesis of 19.

While the strategies discussed above demonstrate intermolecular relationship between
chalcogen species and unsaturated substrates, the copper(I)-catalyzed intramolecular cy-
clization of alkenes bearing a chalcogen (S or Se) group at an appropriate distance from
the carbon−carbon double bond is also a versatile way to generate chalcogen-decorated
heterocycles. The synthesis of several 2-alkynyl-benzo[b]chalcogenophenes 20 from 2-gem-
dibromovinyl aryl chalcogenides has been described (Scheme 26) [53]. The highlights
of this synthetic method are the intramolecular cyclization catalyzed by CuBr (20 mol%)
providing 2-bromobenzo[b]chalcogenophenes 21 which subsequently undergoes one-pot
palladium-catalyzed Sonogashira-type cross-coupling reaction with different terminal
alkynyl alcohols.
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Ogawa and co-workers reported a unique method for the thiolative double carbonyl-
ation of internal alkynes by using Co2(CO)8 (9 mol%) as catalyst, affording α,β-unsaturated 
γ-thio γ-lactone derivatives 22 (Scheme 28) [54]. This multicomponent reaction was con-
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Scheme 26. Synthesis of 2-substituted-benzo[b]selenophenes 20.

Mechanistically, vinyl bromide undergoes initial cyclization via copper-catalyzed
intramolecular Ullmann-type reaction, forming 2-bromochalcogenophene 21, which was
isolated and characterized by NMR spectroscopy. Then, oxidative addition of palladium
species to Csp2-Br bond generates intermediary XVIII, which undergoes transmetallation
with alkynyl cuprate, delivering the coupling product 20 after a reductive elimination step.
Notably, this methodology is selective for alcohol-containing alkynes, not being compatible
with aliphatic or aromatic alkynes (Scheme 27).
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2.2. Using Cobalt as Catalyst

The use of cobalt-catalyzing heterocyclization reactions with direct chalcogen incorpo-
ration is a field much less explored in organic synthesis. The most recent studies report the
carbonylative reaction of terminal and internal alkynes with direct sulfenylation, achieving
the synthesis of γ-lactones as product.

Ogawa and co-workers reported a unique method for the thiolative double carbonyla-
tion of internal alkynes by using Co2(CO)8 (9 mol%) as catalyst, affording α,β-unsaturated
γ-thio γ-lactone derivatives 22 (Scheme 28) [54]. This multicomponent reaction was con-
ducted in acetonitrile as solvent at 140 ◦C under 4 MPa of carbon monoxide for 17 h.
Butenolides bearing both aryl and alkyl sulfides as substituents were synthesized in mod-
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erate to good yields. The alkyl thiols reacted poorly in comparison to the aryl thiols having
both electron-withdrawing and electron-donating groups at para-position. Interestingly,
reactions conducted employing unsymmetrical internal alkynes provided moderate re-
gioselectivity to the γ-lactones obtained, in which the carbonyl group bonded mainly to
the less hindered acetylenic carbon. According to the authors, limitations were observed
for internal alkynes containing carbonyl substituents which did not provide the desired
products.
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Scheme 28. Cobalt-catalyzing synthesis of α,β-unsaturated γ-thio γ-lactone derivatives 22.

The reaction mechanism proposed by the authors shows the initial formation of a
cobalt-alkyne complex XIX, which undergoes addition of the thiol derivative generating a
sulfur–cobalt bond. After that, two subsequent CO insertions furnish the carbonyl inter-
mediate XX. Finally, intramolecular cobalt–oxygen bond formation followed by reaction
with internal alkyne provides lactone 22 and regenerates complex XIX to the next cycle
(Scheme 29).
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Later, the same group reported the use of Co2(CO)8 as a catalyst for thiolative lactoniza-
tion reactions of internal alkynes bearing a hydroxyl group with diorganyl disulfides under
carbon monoxide (2 MPa) atmosphere (Scheme 30) [55]. The reaction was conducted in
toluene as solvent at 140 ◦C for 20 h. Under these reaction conditions, nine γ- and δ-lactone
derivatives 23 bearing an exo-methylene unit functionalized with sulfur were isolated in
19% to 76% yields. It is important to emphasize that for all synthesized products, the CO
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entered regioselectively into the alkyne, and the sulfide remained preferentially located at
the cis position in relation to the carbonyl group. Alternatively, the authors demonstrated
the thiolative lactonization reaction of acetylenic alcohols catalyzed by Pd(PPh3)4 (5 mol%).
This new protocol tolerated strong electron-donating and electron-withdrawing groups
attached to both diaryl disulfides and aryl alkynes.
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2.3. Using Iron as Catalyst

Iron salts promoting cyclization processes have been widely recognized in terms of
their tolerance toward several functional groups. Moreover, reactions conducted in the
presence of iron have reported advantages in terms of relative stability, abundance, low-cost,
and low toxicity, when compared to other transition metals. The subsequent papers report
on iron-catalyzed cyclization reactions leading to heterocyclic systems such as oxazole,
isothiazolone, dihydrofuran, lactone, benzochalcogenophene, and several benzo-fused 6-
to 8-membered rings.

2.3.1. N-Based Heterocycles

Deng and coworkers have reported an elegant strategy to prepare methylsulfenyl
oxazoles 24 by the tandem annulation of N-propargylamides in the presence of diorganyl
disulfides [56]. The standard reaction condition was set under thermal conditions for 12 h,
in the presence FeBr3 (10 mol%), I2 (4 equiv.), and anhydrous MeCN (2 mL), allowing the
preparation of twenty-one methylsulfenyl oxazole derivatives 24 in poor to very good
yields. Despite the good substrate tolerance, limitations were faced when alkyl substrates
were submitted to the protocol, as well as when disulfides were replaced by diorganyl
diselenides derivatives (Scheme 31).
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In 2021, Yan and coworkers reported an ingenious synthetic approach to prepare
isothiazolone derivatives 25 through an Fe-catalyzed multicomponent annulation of cyclo-
propenones, anilines, and elemental sulfur [57]. Thus, authors have set the best reaction
condition by reacting the substrates in the presence of Fe(OTf)3 (5 mol%), Tf2O (25 mol%),
and DMSO, with the resulting mixture stirred for 4 h at 140 ◦C. Therefore, the protocol
allowed the synthesis of twenty-three isothiazolone derivatives 25 in moderate to good
yields (28–73%), presenting an acceptable electronic and steric group tolerance. A huge
limitation faced by the method is the simultaneous formation of the 4,5-diphenyl-3H-1,2-
dithiol-3-ones 26 as a minor product, which were significantly yielded (12–37%) in all
experiments. It is worth mentioning that the protocol was satisfactorily scaled-up from
0.2 mmol to 3 mmol, yielding the desired product 25a in 60%. Additionally, the authors
expanded the protocol for the synthesis of iso-1,2-selenazolones 27 by employing elemental
selenium as reagent, in the presence of FeCl2 (10 mol%) as a catalyst and DMSO as solvent.
After being stirred for 3 h at 140 ◦C, six iso-1,2-selenazolones 27 were accessed in moderate
yields (51–57%) (Scheme 32).
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Based on control experiments, authors have proposed a plausible reaction mecha-
nism which initially involves the Fe-catalyzed ring opening of the cyclopropenone, driven
by the nucleophilic attack of the nitrogen lone electron pair. This step furnishes the α,β-
unsaturated amide intermediate, which promotes the cyclooctasulfur activation by another
ring opening event, generating the intermediate XXI. Thus, an intramolecular cycliza-
tion process releasing elemental sulfur to the reaction medium provides the cyclic ionic
intermediate XXII, which is finally oxidized towards the desired product 25a (Scheme 33).
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2.3.2. O-Based Heterocycles

In 2015, Zeni and coworkers reported a fashioned synthetic approach to construct
3,4-bis(organoselanyl)-2,5-dihydrofurans 28 by reacting 1,4-butyne-diols and diorganyl
diselenides [58]. The optimized reaction condition was established by employing catalytic
amounts of FeCl3·6H2O (20 mol%) and DCE as solvent, and the transformations were
conducted from 0.5 h to 24 h to deliver a library of thirty-seven chalcogen-functionalized
2,5-dihydrofurans 28. The protocol demonstrated excellent substrate tolerance once many
1,4-butyne-diol derivatives could be smoothly employed as substrates. Besides, electron-
rich and electron-deficient diorganyl diselenides reacted efficiently to give the respective
product 28 derivatives, as well as diphenyl disulfides, which were employed to prepare
three sulfur-decorated 2,5-dihydrofuran 28 analogues (Scheme 34). In addition to these
important results, authors also have expanded the reaction scope by employing pentyne-
1,5-diol and 4-amino-butynol as substrate to prepare 4,5-bis(organoselanyl)-3,6-dihydro-
2H-pyran 29 and 3,4-bis(organoselanyl)-2,5-dihydro-1H-pyrrole 30 derivatives, respectively.
A total of four selenium-decorated 3,6-dihydro-2H-pyrans 29 were prepared in poor to
moderate yields (48–74%), while five selenium- and sulfur-decorated dihydro-1H-pyrroles
30 were accessed in poor to very good yields (35–85%). It is worth mentioning that
authors also have employed the 3,6-dihydropyran 29a as a substrate to perform a Kumada-
type coupling reaction using Pd(PPh3)4 (10 mol%) as catalyst, with the coupling product
obtained in a yield of 57%.

The authors proposed that the transformation is mainly triggered by the in situ
formation of a reactive complex by the reaction between the Fe(III) species and diorganyl
diselenides [57]. This species can coordinate with the benzyl hydroxyl unit, allowing the
formation of a highly stabilized benzyl carbocation XXIII, which is quickly converted into
the allene intermediate XXIV. Then, the product 28a is reached by sequential events, e.g., a
nucleophilic addition followed by an electrophilic annulation (Scheme 35).

Recently, Tang, Zhang, and coworkers published a process of lactonization of enoic
acids catalyzed by FeCl3 in the presence of diorganyl dichalcogenides to access chalcogen-
decorated γ-lactones and δ-lactones 31 through a simple, atom-economic, and environ-
mentally friendly protocol [59]. By the reaction optimization study, the authors set the
best reaction condition by mixing the starting materials in the presence of FeCl3 (10 mol%),
KI (0.5 equiv.), and MeCN, stirring the resulting mixture for 24 h at 80 ◦C under open-air
conditions. The developed protocol presented good substrate tolerance once a variety of
electron-rich and electron-deficient enoic acids and diorganyl dichalcogenides could be
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suitably employed as substrates. On the other hand, limitations were faced when a dialkyl
disulfide derivative (R2 = tBu) was employed as substrate, in which the desired product
was obtained in trace amounts. It is worth mentioning that the protocol was satisfactorily
scaled up to a gram-scale, without significant lack of efficiency (Scheme 36).
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Several control experiments were carried out, indicating that the process mainly
follows radical chain events. Thus, authors have proposed a reaction mechanism which
is triggered by an Fe(III)-mediated initial iodine anion (I-) oxidation to the iodo-centered
radical through an SET process. Then, the iodine radical species reacts with the S-S bond
to afford a thiyl radical species which adds in the C-C double bond, yielding the benzyl
radical intermediate XXV. Thereafter, this radical species undergoes an SET oxidation,
being converted to the benzyl carbocation, which finally is converted into the desired
lactone 31 by an intramolecular annulative process (Scheme 37).
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2.3.3. Chalcogen-Based Heterocycles

In 2017, Zhang and coworkers reported an elegant method to perform a thiocyclization
of trifluoromethylated propynyls, in the presence of diorganyl disulfides, to construct the
2-trifluoroacyl benzothiophene derivatives 32 by the sequential formation of C-S and C-C
bonds [60]. The reactions were carried out in the presence of FeCl3 (20 mol%) as catalyst,
benzoyl oxide (10 mol%) and I2 (2 equiv.) as an oxidative system, and MeNO2 as solvent,
after which the resulting mixture was stirred for up to 12 h at 120 ◦C. Under these conditions,
a library of 2-trifluoroacyl benzothiophenes 32 were satisfactorily prepared in moderate
to very good yields. The methodology presented good substrate tolerance to electron
withdrawing and donating groups, as well as to bulky and ortho-substituted substrates.
In addition, the authors demonstrated the feasibility of the protocol to employ diphenyl
diselenide as substrate, resulting in 32g of a product in a yield of 62% (Scheme 38).

Catalysts 2023, 13, 1300 22 of 36 
 

 

 
Scheme 38. FeCl3-catalyzed cyclization of propynyls with disulfides and diselenides. 

Based on control reaction experiments and on the literature, authors have proposed 
a plausible reaction mechanism which initially involves an FeCl3-catalyzed Meyer-Schus-
ter rearrangement to produce the active allenol intermediate XXVI. In parallel, the homo-
lytic cleavage of the S-S bond, mediated by BPO and I2, delivers the thiyl radical (PhS·) in 
the reaction medium, which promotes a selective addition to the allenol XXVI, reaching 
the allyl radical intermediate XXVII. Subsequently, a keto-enol tautomerism and an intra-
molecular radical electrophilic annulation affords the cyclohexadienyl radical intermedi-
ate XXVIII. Finally, a successive oxidation drives the reaction toward the formation of the 
desired aromatic product 32a through an SET and deprotonation process (Scheme 39). 

 
Scheme 39. Proposed mechanism for the synthesis of 32. 

2.3.4. Miscellaneous 
Lv, Li, and coworkers reported a regio-divergent carbochalcogenylation of inacti-

vated alkenes through an FeCl3-catalyzed annulation process in the presence of electro-
philic N-chalcogenophatalimides as sulfur or selenium source reagents [61]. The protocol 
involves the application of simple reaction conditions by mixing the starting materials and 
FeCl3 (10 mol%) in DCE and heating the resulting mixture for 12 h at 100 °C under N2 
atmosphere. The developed protocol provided the synthesis of a library of thirty-five me-
dium-sized sulfur-decorated rings (6-, 7- and 8-membered rings) 33 and 34, in addition to 
nine selenium-based derivatives 33 in poor to excellent yields. The methodology pre-
sented good scalability when scale up experiments were carried out. In general, the pro-
tocol presented good substrate tolerance to electron-rich alkenes and heteroaromatic de-
rivatives. However, limitations were found when electron deficient substrates (R1 = 4-NO2) 
and heteroaromatic systems (quinoline) were employed, suppressing the formation of the 
desired products (Scheme 40). 

Scheme 38. FeCl3-catalyzed cyclization of propynyls with disulfides and diselenides.



Catalysts 2023, 13, 1300 22 of 36

Based on control reaction experiments and on the literature, authors have proposed a
plausible reaction mechanism which initially involves an FeCl3-catalyzed Meyer-Schuster
rearrangement to produce the active allenol intermediate XXVI. In parallel, the homolytic
cleavage of the S-S bond, mediated by BPO and I2, delivers the thiyl radical (PhS·) in the
reaction medium, which promotes a selective addition to the allenol XXVI, reaching the allyl
radical intermediate XXVII. Subsequently, a keto-enol tautomerism and an intramolecular
radical electrophilic annulation affords the cyclohexadienyl radical intermediate XXVIII.
Finally, a successive oxidation drives the reaction toward the formation of the desired
aromatic product 32a through an SET and deprotonation process (Scheme 39).
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2.3.4. Miscellaneous

Lv, Li, and coworkers reported a regio-divergent carbochalcogenylation of inactivated
alkenes through an FeCl3-catalyzed annulation process in the presence of electrophilic N-
chalcogenophatalimides as sulfur or selenium source reagents [61]. The protocol involves
the application of simple reaction conditions by mixing the starting materials and FeCl3
(10 mol%) in DCE and heating the resulting mixture for 12 h at 100 ◦C under N2 atmosphere.
The developed protocol provided the synthesis of a library of thirty-five medium-sized
sulfur-decorated rings (6-, 7- and 8-membered rings) 33 and 34, in addition to nine selenium-
based derivatives 33 in poor to excellent yields. The methodology presented good scalability
when scale up experiments were carried out. In general, the protocol presented good
substrate tolerance to electron-rich alkenes and heteroaromatic derivatives. However,
limitations were found when electron deficient substrates (R1 = 4-NO2) and heteroaromatic
systems (quinoline) were employed, suppressing the formation of the desired products
(Scheme 40).

The authors performed several control experiments, including kinetic isotopic effect
and radical scavenger experiments, aiming to gain insights toward the role of iron in
the reaction. Thus, a plausible reaction mechanism was initially proposed involving
the activation of the N-sulfenylphtalimides by the FeCl3 catalyst. Therefore, the alkene
undergoes a sulfenyl addition to afford the thiiranium intermediate XXIX, as well as the
Fe(III)-based anion. This event is followed by the intramolecular ring opening reaction
by the attack of the aryl group, yielding the dearomatic intermediate XXX. It is worth
mentioning that authors drew attention to the fact that the endo/exo selectivity in the ring
opening event depends on the length of the carbon chain between the C-C double bond and
the aryl ring. Finally, the Fe(III)-based anion performs a deprotonation of the intermediate
XXX, affording the expected aromatic products 33 or 34 and releasing the FeCl3 to restart
the catalytic cycle (Scheme 41).



Catalysts 2023, 13, 1300 23 of 36Catalysts 2023, 13, 1300 23 of 36 
 

 

 
Scheme 40. Fe(III)-catalyzed carbosulfenylation of inactivated alkenes. 

The authors performed several control experiments, including kinetic isotopic effect 
and radical scavenger experiments, aiming to gain insights toward the role of iron in the 
reaction. Thus, a plausible reaction mechanism was initially proposed involving the acti-
vation of the N-sulfenylphtalimides by the FeCl3 catalyst. Therefore, the alkene undergoes 
a sulfenyl addition to afford the thiiranium intermediate XXIX, as well as the Fe(III)-based 
anion. This event is followed by the intramolecular ring opening reaction by the attack of 
the aryl group, yielding the dearomatic intermediate XXX. It is worth mentioning that 
authors drew attention to the fact that the endo/exo selectivity in the ring opening event 
depends on the length of the carbon chain between the C-C double bond and the aryl ring. 
Finally, the Fe(III)-based anion performs a deprotonation of the intermediate XXX, afford-
ing the expected aromatic products 33 or 34 and releasing the FeCl3 to restart the catalytic 
cycle (Scheme 41). 

 
Scheme 41. Proposed reaction mechanism for the carbosulfenylation of alkenes. 

2.4. Using Palladium as Catalyst 
Palladium catalysis in organic synthesis is a powerful methodology to promote sev-

eral transformations, including the C-C and carbon–heteroatom (C–N, C–O, C–S, and C–
Se) bond formation. In addition, reactions involving palladium are used to provide high 

Scheme 40. Fe(III)-catalyzed carbosulfenylation of inactivated alkenes.

Catalysts 2023, 13, 1300 23 of 36 
 

 

 
Scheme 40. Fe(III)-catalyzed carbosulfenylation of inactivated alkenes. 

The authors performed several control experiments, including kinetic isotopic effect 
and radical scavenger experiments, aiming to gain insights toward the role of iron in the 
reaction. Thus, a plausible reaction mechanism was initially proposed involving the acti-
vation of the N-sulfenylphtalimides by the FeCl3 catalyst. Therefore, the alkene undergoes 
a sulfenyl addition to afford the thiiranium intermediate XXIX, as well as the Fe(III)-based 
anion. This event is followed by the intramolecular ring opening reaction by the attack of 
the aryl group, yielding the dearomatic intermediate XXX. It is worth mentioning that 
authors drew attention to the fact that the endo/exo selectivity in the ring opening event 
depends on the length of the carbon chain between the C-C double bond and the aryl ring. 
Finally, the Fe(III)-based anion performs a deprotonation of the intermediate XXX, afford-
ing the expected aromatic products 33 or 34 and releasing the FeCl3 to restart the catalytic 
cycle (Scheme 41). 

 
Scheme 41. Proposed reaction mechanism for the carbosulfenylation of alkenes. 

2.4. Using Palladium as Catalyst 
Palladium catalysis in organic synthesis is a powerful methodology to promote sev-

eral transformations, including the C-C and carbon–heteroatom (C–N, C–O, C–S, and C–
Se) bond formation. In addition, reactions involving palladium are used to provide high 

Scheme 41. Proposed reaction mechanism for the carbosulfenylation of alkenes.

2.4. Using Palladium as Catalyst

Palladium catalysis in organic synthesis is a powerful methodology to promote several
transformations, including the C-C and carbon–heteroatom (C–N, C–O, C–S, and C–Se)
bond formation. In addition, reactions involving palladium are used to provide high
efficiency and excellent chemoselectivity. A special group of transformations is represented
by palladium π-alkyne chemistry with the direct introduction of an organochalcogen unit
into a newly formed N-heterocyclic system.

The synthesis of highly functionalized 1,2-dihydrobenzo[cd]indoles 35 was proposed
by Zhang, Zhou, and co-workers under palladium(II) chloride-catalyzed thiolation/cyclization
reaction of 8-alkynylnaphthalen-1-imines (Scheme 42) [62]. The main features of this work
raise the fact that the reaction is regioselective, enabling the intramolecular 5-exo-dig cy-
clization and stereoselective, giving the 2-(arylthio)alkylene-containing N-heterocyle in
(E)-configuration. The procedure was compatible with differently substituted sulfonyl,
acyl, and alkyl groups directly bonded to the nitrogen atom. Moreover, the use of di-
alkyl disulfides, diaryl disulfides, and diphenyl diselenide was also evaluated, giving the
corresponding products in moderate to good yields under optimal conditions.
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Scheme 42. Synthesis of (E)-2-(arylchalcogenyl)alkylene-1,2-dihydrobenzo[cd]indoles 35.

A plausible pathway for this cyclization involves the formation of a sulfenylpalladium
species, which subsequently coordinates with the Csp-Csp bond of the naphthalen-1-amine,
becoming the triple bond available to intramolecular aza-cyclization. After cyclization,
intermediate XXXI is formed, which allows the reductive elimination of palladium species,
giving product 35 and regenerating the catalyst to the next cycle (Scheme 43).
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In 2019, Li, Jiang, and co-workers reported an NHC-Pd(II) complex (0.25 mol%) catalyz-
ing three-component reaction using acetylenic oximes, aryl iodide, and Na2S2O3 as an inor-
ganic, odorless, and stable sulfur source to prepare a wide array of 4-(organylthio)isoxazoles
36 (Scheme 44) [63]. The ionic liquid [Cpmim]Cl was elected as the best solvent at 80 ◦C
under aerobic conditions. A range of 4-(organylthio)isoxazoles 36 bearing both electron-rich
and electron-poor groups were obtained in moderate to good yields. Notably, aliphatic
substituents in both terminal acetylenic position or directly bonded to the Csp2 of the oxime
were well tolerated. Moreover, the employment of O-alkyl oximes showed themselves to be
promising as reaction partners, delivering the cyclic products in moderate yields. Despite
the broad scope and group compatibility, limitations on product formation were observed
for strong electron-withdrawing groups bonded to acetylenic oximes that hampered the
sulfur-transfer to the isoxazole. Still, the use of alkyl iodides instead of aryl iodides were
not compatible with the present protocol.
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Scheme 44. Synthesis of 4-(organylthio)isoxazoles 36.

Mechanistically, the authors proposed the trans-oxypalladation of oximes furnishing
the isoxazole palladium(II) complex XXXII. Subsequently, the reaction of XXXII with
sodium S-arylthiosulfate gives rise to a palladium thiosulfate intermediate XXXIII, which,
via reductive elimination, delivers product 36, releases SO3, and regenerates palladium
species to the next catalytic cycle (Scheme 45).
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2.5. Using Silver as Catalyst

Silver-catalyzed radical intramolecular cyclization reactions of unsaturated systems
in the presence of elemental selenium or sodium sulfinates have been demonstrated. This
synthetic tool has proven to be useful for the preparation of different chalcogen-containing
heterocycles including isoxazoles, spiro-cyclohexadienones, lactones, isochromenones, and
benzochalcogenophenes.

2.5.1. N-Based Heterocycles

Zhou, Liu, and co-workers reported an efficient and versatile protocol for the syn-
thesis of a wide variety of selanyl-decorated isoxazoles 37 catalyzed by AgNO2 from
o-methyloximes, selenium powder, and organoboronic acids as reagents (Scheme 46) [64].
The reaction conditions involved the use of DMSO as solvent at 120 ◦C and the O2 atmo-
sphere proved to have a key role in this reaction. Using this protocol, a series of twenty-nine
4-organoselanylisoxazoles 37 were prepared in 40% to 93% yields.
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nium powder [65]. The best reaction condition still employs AgNO2 (10 mol%) as catalyst, 
K2S2O8 (2.5 equiv.) as oxidant, and 1,4-dioxane as solvent, with the resulting mixture 
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The proposed mechanism is presented in Scheme 47. It involves the Ag-catalyzed
formation of an aryl radical which is captured by Se0, leading to the formation of an
organylselenium radical intermediate. Then, this radical is oxidized to cationic selenium
species, which reacts with the o-methyloxime, forming cationic species XXXIV and, after
hydrolysis, yields the desired Se-containing cyclic product 37 and methanol as a by-product.
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In 2022, Reddy and coworkers reported an elegant protocol to perform the simul-
taneous C-Se and C-C bond formation through Ag-catalyzed oxidative dearomatization
multicomponent process by reacting carbonylated-alkynes with boronic acids and sele-
nium powder [65]. The best reaction condition still employs AgNO2 (10 mol%) as catalyst,
K2S2O8 (2.5 equiv.) as oxidant, and 1,4-dioxane as solvent, with the resulting mixture stirred
at 120 ◦C, from 10 to 16 h. The developed protocol allowed the synthesis of forty-two
spirocyclic products 38 in an up to 90% yield. This protocol presented a good substrate
tolerance, since a wide diversity of electronic activated and deactivated boronic acids
(aryl, heteroaryl, and alkyl) were suitably employed, as well as Csp-substituted groups
(Scheme 48).
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Scheme 48. Synthesis of selenium-spirocycles 38 via Ag-catalyzed selenylative annulation reaction.

Based on control experiments and on the literature data, the authors have proposed a
plausive reaction mechanism to describe the transformation events. Initially, persulfate ion
(S2O8

−2) promotes the oxidation of Ag(I) to Ag(II), which triggers the homolytic cleavage
of the C-B bond, yielding the aryl radical intermediate, which is trapped by Se0 to produce
the selenium-centered radical intermediate. Then, a radical addition to the C-C triple
bond affords the key intermediate XXXV, which undergoes an intramolecular annulation
to be converted into the radical intermediate XXXVI. Finally, oxidation promoted by the
persulfate ion drives the reaction to the formation of the desired products 38 (Scheme 49).
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2.5.2. O-Based Heterocycles

Sulfonated α-methylene γ-lactones 39 were efficiently synthesized through silver-
catalyzed radical addition followed by intramolecular cyclization reaction of 1,6-enynes
with sodium sulfinates (Scheme 50) [66]. The protocol reports the use of AgNO3 (10 mol%)
as catalyst, K2S2O8 as oxidant, and HNO3 as additive, which is believed to accelerate
the reaction, in acetonitrile at 90 ◦C for 12 h. Under these conditions, sodium alkyl-
and arylsulfinates bearing both electron-donating and electron-withdrawing groups were
compatible, resulting in the expected sulfonated butyrolactones in moderate to good yields
and E/Z ratios higher than 20:1 in most cases. Additionally, different alkyl and aryl
substituents attached to 1,6-enynes were tolerated under optimal conditions. The reaction
scope demonstrated a good functional group tolerance and could be carried out even on a
gram scale. Notably, heterocyclic-substituted sodium sulfinate, as well as terminal alkyne,
did not undergo the reaction.
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Scheme 50. Synthesis of sulfonated α-methylene γ-lactones 39.

A reaction mechanism was proposed based on control experiments, electron spin
resonance (ESR) experiments, and mass spectrometry (ESI-MS) analysis, as demonstrated
in Scheme 51. First, the key intermediate sulfonyl-silver complex is formed by the reaction
of sodium sulfinate with AgNO3. Then, the reaction of 1,6-enyne by both sulfonyl radical
(path A) or silver(I) species (path B) generates alkyl radical species XXXVII. Subsequently,
an intramolecular radical addition/cyclization reaction provides the lactone-containing
vinyl radical, which is reduced via Ag(II)-promoted SET process, producing XXXVIII.
Finally, protonation of XXXVIII affords the desired lactone 39.
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Soon after, the same group reported the efficient synthesis of sulfonated
3-carbonylbenzofurans 40 starting from alkynyl vinyloxy benzenes and sodium sulfinates
(Scheme 52) [67]. The starting materials, AgNO3 (20 mol%) as catalyst and K2S2O8 as oxi-
dant, were placed to react in acetonitrile at 85 ◦C for 6 h. The most striking features of this
protocol are the wide tolerance for alkyl, electron-deficient, and electron-rich substituents
attached to both 1,6-enynes and sulfinates, for the preparation of highly functionalized-
benzofurans under mild conditions and in a step-economic process.
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A concise methodology for the synthesis of Se-containing benzofurans and benzothio-
phenes 41 by Ag-catalyzed radical cyclization of 2-alkynyl(thio)anisoles, Se powder, and
arylboronic acids was developed by Zhou, Liu, and co-workers in 2019 (Scheme 53) [68].
Under the optimal reaction conditions, which included AgNO2 (20 mol %) as catalyst and
DMSO as solvent under O2 atmosphere at 100 ◦C, a series of selanylated heterocycles 41
were prepared in yields ranging from 30% to 97%.
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This methodology was also applied to intramolecular silver-catalyzed radical cycliza-
tion, which afforded polycyclic selenium-containing heteroaromatics 42a and 42b in 22%
and 25% isolated yields, respectively (Scheme 54).
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According to the proposed mechanism (Scheme 55), initial conversion of arylboronic
acid to the corresponding aryl radical species mediated by the catalytic system of AgNO2/O2
occurs. Then, in situ radical trapping by elemental selenium leads to the selenium-centered
radical intermediate, which reacts with 2-alkynyl(thio)anisole, forming the alkenyl radical
species XXXIX. Finally, intramolecular radical cyclization forms the desired Se-containing
heterocycles 41, while the remaining methyl radical is converted to formaldehyde or
methane.
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boronic acids bearing different substituents on the aromatic ring, using elemental sele-
nium as chalcogen source. As the catalyst, AgNO2 proved to give the best yield, although 
other silver salts such as AgSbF6 and Ag2SO4 also catalyzed the cyclization reaction, albeit 
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One year later, the same research group described the first synthesis of Se-containing
isochromenones 43 by AgNO2-catalyzed cyclization reaction (Scheme 56) [69]. This three-
component protocol showed good efficiency for a series of alkynylarylesters and aryl-
boronic acids bearing different substituents on the aromatic ring, using elemental selenium
as chalcogen source. As the catalyst, AgNO2 proved to give the best yield, although other
silver salts such as AgSbF6 and Ag2SO4 also catalyzed the cyclization reaction, albeit with
lower yields. The optimum reaction conditions were dioxane as solvent at 120 ◦C under
open-air atmosphere, resulting in a series of twenty-one selenated isochromenones 43 in
36–92% yield. The proposed mechanism for this reaction is similar to that described in
Scheme 55, with the formation of selenium-centered radical as the key step.
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2.6. Using Indium as Catalyst

Indium salts have been widely recognized due to their high tolerance with oxygen-
and nitrogen-containing functional groups. Furthermore, indium(III) exhibits catalytic
activity as a soft Lewis acid, activating both C-heteroatom and C-C unsaturated systems,
and finding application in the synthesis of organic cyclic compounds.

In 2020, Hu, Li, and coworkers reported a fashioned unprecedented protocol for
the 1,3,4-trifunctionalization cascade of 1,3-enynes, allowing the simultaneous formation
of C-S, C-N, and C-O bonds by a sequence of sulfonating, isomerization, nitration, and
annulation events [70]. The authors have set the best reaction condition by reacting 1,3-
enynes in the presence of sodium sulfinate, t-butyl nitrite (TBN), and InBr3 (10 mol%),
employing MeCN as solvent, with the resulting mixture stirred for 8 h at 60 ◦C under
argon atmosphere. Through this reported method, thirty-three 5-sulfonylisoxazoles 44
derivatives were prepared in poor to very good yields, presenting an excellent substrate
tolerance. Among the synthetized derivatives, an Ibuprofen analogue 44d is a remarkable
example which shows the potential of this protocol in a late-stage functionalization of
natural products (Scheme 57).
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After performing reactions in the presence of radical inhibitors, the authors proposed
a plausible radical reaction mechanism. Thus, initially, sodium sulfinate reacts with tbutyl
nitrite, yielding a sulfonyl radical species and a NO radical species. After that, a selective
radical addition across the C-C double bond of 1,3-enyne gives the intermediate XXXX,
which is in resonance with radical allenyl species XXXXI. Then, a coupling with NO radical
species produces the allenyl species XXXXII, which undergoes intramolecular nucleophilic
cyclization, delivering the desired isoxazole 44. According to the authors, the role of InBr3
might be both as a Lewis acid to activate the sulfonyl radical intermediate and as facilitator
to the cyclization step (Scheme 58).
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2.7. Using Nickel as Catalyst

Nickel is an earth-abundant and low-cost transition metal, suitable to achieve several
chemical transformations in organic synthesis. Although less used in organochalcogen
chemistry when compared to copper and palladium, the synthetic utility of a nickel complex
in a chalcogenative heterocyclization reaction has also been demonstrated.

Selander, Zhou, and coworkers have reported a strategy to perform a radical cycliza-
tion and ring opening of oxime esters in the presence of diorganyl diselenides, with the
process catalyzed by Ni(0) or Fe(II) species [71]. In this sense, the authors developed two
methods to perform the synthetic transformations efficiently. The method A involves
mixing the oxime ester, diorganyl diselenides, and Ni(COD)2 (20 mol%) as catalysts and
1,10-phenanthroline (20 mol%) as ligand in the presence of 1,4-dioxane as solvent and
Et3N as base, with the resulting mixture stirred for 12 h at 90 ◦C. On the other hand, the
method B was set just by using FeCl2 (20 mol%) instead of Ni(COD)2 as catalyst, and
extending the reaction time from 12 to 24 h. Under these conditions, the authors conducted
the synthesis of organoselenium-decorated pyrrolines 45 and alkyl nitriles 46 by employ-
ing γ,δ-unsaturated oximes or cycloketone oximes, respectively. The protocol presented
remarkable substrate tolerance, since a wide variety of electron-poor and electron-rich sub-
stituents were satisfactorily employed, despite being satisfactorily scaled-up from 0.2 mmol
to 0.8 mmol (Scheme 59).
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According to control experiments and the literature data, the authors proposed a
similar reaction mechanism for both metal species (Ni and Fe). The transformation starts
with the metal-promoted homolytic cleavage of the N-O bond via an SET process, giving
the iminyl radical species XXXXIII, which quickly undergoes an intramolecular radical an-
nulation, being converted into the cyclic intermediate XXXXIV. Finally, the carbon-centered
radical intermediate XXXXIV reacts with diorganyl diselenide, yielding the desired prod-
uct 45 and releasing selenium-centered radical species to the reaction medium, which are
instantly oxidized to the respective diselenide (Scheme 60).
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3. Conclusions and Perspectives

The structural diversity achieved in the transition metal-catalyzed synthesis of
organochalcogen-containing heterocycles provides the direction to design and synthesize
advanced molecules for biological and new material applications. The results summarized
in this review demonstrate the importance and versatility of both alkenes and alkynes
as starting materials to prepare differently functionalized heterocyclic compounds. The
most recent approaches addressed the reactions of several organic and inorganic chalcogen
species as precursors that enable the incorporation of a sulfur, a selenium, or a tellurium
atom into five-, six- and seven-membered cycles. From this point of view, the chalco-
genative annulation of acyclic unsaturated compounds catalyzed by transition metals
represent a current opportunity to construct libraries of new molecules for fine appli-
cations. Transition metals are an indispensable toolbox for organic synthesis, but some
drawbacks associated with their use can be evidenced: the low abundance and high cost
of some noble metals, lack of mechanistic understanding of catalytic processes, toxicity,
and environmental concerns. Although these are difficulties, they provide opportunities
for researchers to achieve new chemical bonds and organic structures in high yields and
selectivities not reached by other methods. In this sense, novel advancements arising
from photo-redox chemistry, electrochemistry, flow chemistry, and the use of sustainable
solvents are under intense development. From this point of view, future perspectives on
chalcogenative heterocyclization reactions support applications of classical transition-metal
catalysis in conjugation with environmentally friendly platforms. The current diversity of
metals used for the synthesis of organocalcogen-decorated heterocycles also demonstrates
the direction of using earth-abundant and low-cost metals. The big challenges are the
development of stable, selective, and reusable catalysts applicable to rational chemo- and
stereoselective transformations of interest to the fine chemical and pharmaceutical industry.
Finally, the findings described here are very encouraging and we believe that they can help
researchers interested in this area to conduct future developments in heterocycle synthesis
and organochalcogen chemistry.
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