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Abstract: Solid oxide fuel cells (SOFCs) represent a breed of eco-friendly, weather-independent, de-
centralized power generation technologies, distinguished for their broad fuel versatility and superior
electricity generation efficiency. At present, SOFCs are impeded by a lack of highly efficient oxygen
reduction catalysts, a factor that significantly constrains their performance. The double perovskites
LnBaCo2O5+δ (Ln = Lanthanide), renowned for their accelerated oxygen exchange and conductiv-
ity features, are widely acclaimed as a promising category of cathode catalysts for SOFCs. This
manuscript offers a novel perspective on the physicochemical attributes of LnBaCo2O5+δ accumu-
lated over the past two decades and delineates the latest advancements in fine-tuning the composition
and nanostructure for SOFC applications. It highlights surface chemistry under operational con-
ditions and microstructure as emerging research focal points towards achieving high-performance
LnBaCo2O5+δ catalysts. This review offers a comprehensive insight into the latest advancements in
utilizing LnBaCo2O5+δ in the field of SOFCs, presenting a clear roadmap for future developmental tra-
jectories. Furthermore, it provides valuable insights for the application of double perovskite materials
in domains such as water electrolysis, CO2 electrolysis, chemical sensors, and metal–air batteries.
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1. Introduction

The escalating issues of climate change and energy shortages, predominantly driven by
the pervasive and inefficient use of fossil fuels, have intensified the search for novel energy
conversion methodologies. Among various power generation technologies, solid oxide
fuel cells (SOFCs) hold a unique position. They are particularly noted for their exceptional
efficiency rates: 45% to 65% for independent applications and exceeding 85% for combined
heat and power applications. Moreover, their fuel compatibility is versatile, ranging from
hydrogen to hydrocarbons and even to carbon, making SOFCs a pivotal component in the
design of innovative energy solutions [1–3]. An SOFC is a solid-state device comprising
two porous electrodes and a dense electrolyte. This electrolyte conducts solid oxygen ions
and is the key functional component of each individual cell. Oxygen introduced at the
cathode side is reduced to form O2−. Driven by the concentration gradient, these O2−

ions travel through the dense electrolyte layer to reach the anode. At the anode side, the
fuel is directly oxidized to H2O and/or CO2 by O2−, releasing electrons to the external
circuit [1,2]. Traditional SOFCs typically use the following materials: oxygen ion conductor
yttria-stabilized zirconia (YSZ) for the electrolyte, the pure electronic conductors strontium-
substituted manganites (LSM) for the cathode, and NiO–YSZ for the anode. Due to the
inherent properties of these components, high operating temperatures, approximately
1000 ◦C, are required to achieve an economically viable power density [4]. However,
such high operating temperatures result in significant fabrication and operational costs,
severe material complications, and extended start–stop durations, all of which hinder the
widespread commercialization of SOFCs [1,4,5].
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In recent years, significant efforts have been made to lower the operational temperature
of SOFCs to a range of 500–800 ◦C [1,4,6]. Identifying innovative oxygen catalysts with
high catalytic activity at these reduced temperatures is a critical challenge for SOFCs,
particularly due to the exceptionally high activation energy of LSM [1,2,5,7]. For instance,
as the operational temperature decreases from 1000 ◦C to 500 ◦C, the polarization resistance
of LSM increases dramatically from 1 Ω cm2 to 2000 Ω cm2. This decline in cathode catalytic
performance is largely attributed to the limitation of the oxygen reduction reaction (ORR)
to the narrow triple-phase boundary (TPB) at the interface between the cathode, electrolyte,
and oxygen gas (air). Within this TPB, the transportation of electrons, oxygen vacancies or
ions, and oxygen gas occurs, facilitating their movement to or from the reaction site [5,8].

Mixed ionic and electronic conductors (MIECs) that exhibit elevated oxygen ion
conductivity within the temperature range of 500–800 ◦C have the potential to expand
the oxygen reduction region from the TPB to several micrometers within the cathode.
Consequently, these materials are anticipated to display exceptional catalytic activity for
the ORR [9–13]. For instance, at a temperature of 700 ◦C, the area-specific resistance (ASR) of
a La0.6Sr0.4Co0.2Fe0.8O3−δ cathode on a gadolinium-doped ceria (GDC) electrolyte has been
reported to be approximately 0.1 Ω cm2 [12]. Furthermore, Pang et al. reported a notably
lower resistance of less than 0.035 Ω cm2 for La0.5Ba0.5CoO3−δ on a GDC electrolyte under
identical operating conditions [13]. In the search for advanced cathode materials for SOFCs,
significant advancements have been realized over the past decade. However, polarization
resistances at lower temperature ranges are often considered suboptimal. Notably, Hwang
et al. observed a significant rise in the ASR of a La0.6Sr0.4Coe 0.2Fe0.8O3−δ cathode on a GDC
electrolyte, increasing from ~0.1 Ω cm2 at 700 ◦C to 12 Ω cm2 at 500 ◦C [12]. The primary
reason for this observation originates in the pronounced decrease in O2− conductivity as
the temperature drops, due to the relatively high activation energies associated with oxygen
transport and exchange processes [12,14]. As such, the ongoing quest for high-performance
cathodes for SOFCs underscores the need for the development of materials that facilitate
faster oxygen transport and surface exchange.

Over the past few years, owing to its unique crystal structure, considerable efforts
have been directed towards investigating the MIEC double perovskite oxides LnBaCo2O5+δ
(Ln = Lanthanide). These materials find potential applications across a multitude of domains,
such as magnetism [15–17], SOFCs, proton-conductive ceramic fuel cells [18–25], water elec-
trolysis [26–28], CO2 electrolysis [29], chemical sensors [30–32], ceramic semi-permeable
membranes [33–35], metal–air batteries [36,37], soot combustion [38], supercapacitors [39],
photocatalysis [40], and solar-driven thermal storage [41,42]. Given the diverse require-
ments in terms of physicochemical properties for each application, this article will ex-
clusively focus on novel strategies employed in advancing double perovskites for use
as cathode catalysts in SOFCs. It is worth noting that, due to the considerable interest
in double perovskites, comprehensive reviews of these materials have previously been
published [43,44]. However, the ongoing advancements in understanding the properties
and applications of these materials underscore the need for updated reviews, such as the
one presented in this article. Our discussions will span the exploration of physicochemical
properties, optimization of composition, and enhancement of application methodologies.
Additionally, we will deliberate on potential research breakthroughs concerning high-
performance double perovskite-based cathode materials.

2. Physicochemical Properties of LnBaCo2O5+δ

As depicted in Figure 1, the LnBaCo2O5+δ compound exhibits a perovskite structure
of the 112 type. Relative to their disordered analogs, these orderly structures have been
widely reported to considerably enhance the rate of oxygen transport [45,46]. Notably,
Taskin et al. [45] were pioneers in observing a notably high oxygen diffusion coefficient
(Dchem) of approximately 3.0 × 10−9 cm2 s−1 at 350 ◦C and 10−5 cm2 s−1 at 600 ◦C for the
GdBaCo2O5+δ double perovskite. The oxygen transport characteristics of the PrBaCo2O5+δ
double perovskite were subsequently evaluated by Kim et al. [47,48]. Their results demon-
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strated appreciably higher rates of oxygen transport (Dchem) for PrBaCo2O5+δ in com-
parison to GdBaCo2O5+δ, suggesting an enhancement in oxygen transport properties
corresponding to the increased size of the Ln cation. Tarancón et al. carried out a detailed
comparative study between the double perovskite LnBaCo2O5+δ (Ln = Pr, Gd) and other
classes of oxygen catalysts [44]. As illustrated in Figure 2, the double perovskite outper-
formed in terms of oxygen transport properties, emphasizing its considerable potential
as a cutting-edge cathode material for SOFCs. It is important to recognize that significant
variations exist in the LnBaCo2O5+δ oxygen tracer diffusion and the oxygen surface ex-
change coefficient as reported by different research groups [49]. Such disparities mainly
stem from differences in the precise composition and/or microstructure of the samples
used by distinct researchers. Thus, readers are encouraged to assess the data in Figure 2
judiciously and objectively.
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Figure 2. Oxygen tracer diffusion and oxygen surface exchange for different layered oxide cathodes
as a function of the temperature: (a) k*D*; (b) k*/D*. The materials used for comparison have been
labeled as follows: La0.8Sr0.2MnO3−δ (LSM), La0.8Sr0.2CoO3−δ (LSC0.8), La0.5Sr0.5CoO3−δ (LSC0.5),
La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Gd0.2O2−δ (LSCF/CGO), Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), La2NiO4+δ

(LNO) [50], La2CoO4+δ (LCO) [51], GdBaCo2O5+x (GBCO) [52], and PrBaCo2O5+x (PBCO) [47] .
[Reprinted with permission from Ref. [44]. Copyright 2010, Royal Society of Chemistry].

Numerous experimental and theoretical studies have been undertaken to delve deeper
into the oxygen diffusion behaviors in double perovskites [53–71]. Seymour et al. utilized
static atomistic simulations based on the Born model to methodically examine the intrinsic
defect processes of the double perovskite LnBaCo2O5.5 (Ln = Y, La, Pr, Nd, Sm, Gd, Dy,
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Ho, Er, Yb) [53]. Their research indicated that the defect reaction with the lowest energy
stemmed from the Ln/Ba antisite disorder energy, which diminishes with decreasing Ln
size. This suggests that the ordered structure’s primary foundation is the size difference
between the Ln and Ba cations [53]. Parfitt et al. combined molecular dynamics with Born
model potentials to study the oxygen transport behavior of GdBaCo2O5+δ at 900 K [54,55].
They posited that A-site cation ordering, in contrast to its disordered equivalent, can amplify
oxygen bulk diffusivity while decreasing transport in the c-axis direction [54,55]. Importantly,
the distinctively anisotropic oxygen diffusion in the double perovskite GdBaCo2O5+δ
takes place exclusively within the [GdOδ] and adjacent [CoO2] layers, as illustrated in
Figure 3 [54–57]. Shiiba et al. probed the distribution of oxygen vacancies in GdBaCo2O5+δ
under various oxygen vacancy concentrations (0 ≤ δ ≤ 1) and temperatures using a fusion
of density functional theory and Monte Carlo simulation [57]. Their analysis showed
that oxygen vacancies, which function as oxygen ion carriers, are restricted to the [GdOδ]
and neighboring [CoO2] layers, reinforcing the anisotropic oxygen diffusion mechanism.
Seymour et al. performed theoretical investigations on the oxygen transport properties
of layered PrBaCo2O5+δ at 650 and 1000 ◦C, employing the MD method [59–62]. These
proposed mechanisms for oxygen conducting were later confirmed experimentally via
in situ high-temperature neutron powder diffraction and isotope exchange depth profile
methods [59–62]. Additionally, it has been shown that PrBaCo2O5+δ has a lower energy
barrier for oxygen diffusion perpendicular to the c-axis compared to Nd, suggesting
enhanced oxygen ion diffusivity with larger Ln sizes [53,59]. Wang et al. detected rapid
cobalt redox reactions in epitaxial LaBaCo2O5+δ within a temperature bracket of 260–700 ◦C,
intimately tied to the processes of oxygen release and uptake processes [72]. This finding
hints at the potential application of these films in SOFC cathodes. Notably, Wang et al.
found the cobalt oxidation in the epitaxial thin films to be substantially swifter than the
reduction process, denoting a more rapid oxygen uptake compared to the oxygen release
(Figure 4) [72]. Bao et al.’s research further revealed a layer-by-layer oxygen transport
mechanism in epitaxial double perovskites, specifically LnBaCo2O5+δ (Ln = Pr, Er), which
likely originates in their intrinsic anisotropic oxygen diffusion properties [73].
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LnBaCo2O5+δ, owing to its exceptionally promising properties, has been extensively
studied as a cathode material for SOFCs [34,74–83]. Researchers have undertaken thorough
studies into the structural performance, thermal expansion behavior, electrical conductivity,
and electrochemical performance of these double perovskites. Studies on ions such as
La3+, Pr3+, Nd3+, Sm3+, and Gd3+ have shown that these oxides exhibit good chemical
compatibility with commonly used electrolytes, including GDC, La0.8Sr0.2Ga0.8Mg0.2O2.8
(LSGM), and samarium oxide-doped ceria (SDC), at temperatures below 1000 ◦C [74–76,84].
After firing LnBaCo2O5+δ double perovskites at 850 ◦C in air for durations ranging from 60
to 100 h, no impurity phases or phase transitions were detected. This finding highlights
the remarkable structural stability of these oxides under the standard operating conditions
of SOFCs [34,77]. Additionally, the electrical conductivities of LnBaCo2O5+δ compounds
tend to increase with growth in the size of the Ln ion, leading to a rise in the number of
electronic holes created by interstitial oxygen [75,76]. The electrical conductivity values of
these materials surpass 100 S cm−1 between 100 and 800 ◦C in air, meeting the electrical
conductivity requirements for SOFC cathodes [34,75–77]. What is more, oxides with larger
Ln ions exhibit superior electrochemical performance, stemming from enhanced oxygen
transport and exchange rates [34,75]. For instance, as the Ln ion shifts from Gd3+ to La3+,
the maximum power density (PPD) values of SOFCs utilizing these double perovskite
cathodes increase from 443 to 516 mW cm2 [75].

Despite the numerous advantages of LnBaCo2O5+δ as a cathode catalyst for SOFCs,
there are certain technical challenges that require further improvements. Firstly, enhancing
the catalytic activity of these oxides for ORR is paramount. Chen et al. [74] observed that
the ASR of PrBaCo2O5+δ on SDC electrolytes increases from 0.18 to 5.68 Ω cm2 as the tem-
perature drops from 650 to 500 ◦C. Moreover, the PPD of SOFCs utilizing PrBaCo2O5+δ as
the cathode material decreases from 866 mW cm2 (at 650 ◦C) to 115 mW cm2 (at 500 ◦C). Sec-
ondly, it is essential to minimize the thermal mismatch between these cobalt-based cathode
materials and other SOFC components. Kim et al. [75] reported that the thermal expan-
sion coefficients (TECs) of LnBaCo2O5+δ double perovskites increase from 16.6 × 10−6 K−1

(Ln = Gd3+) to 24.3 × 10−6 K−1 (Ln = Pr3+) with larger Ln sizes at 80–900 ◦C. Given that
the TECs of standard electrolytes for SOFCs, such as GDC, SDC, and LSGM, are around
11 × 10−6 K−1, this notable thermal mismatch between LnBaCo2O5+δ and the electrolyte
could adversely affect fuel cell stability. Thirdly, tuning the physicochemical properties of
the surface is essential. The surface physicochemical properties serving as catalysts for the
ORR significantly influence cathode performance. Findings by Téllez et al. [79] suggest that
the surface composition and morphology of LnBaCo2O5+δ (Ln = Pr, Gd) double perovskites
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are profoundly influenced by exposure time, temperature, and ambient atmosphere. A
quick covering of the electrocatalytic transition metal by inactive Ln3+ or Ba2+ cations,
observed under certain conditions, can be detrimental to the ORR. Therefore, the subse-
quent sections will provide a comprehensive overview of advancements in studying the
physicochemical property attributes of double perovskites and in adjusting the composition
and nanostructure of LnBaCo2O5+δ.

3. Compositional Optimization of LnBaCo2O5+δ

To enhance the performance of double perovskite-based cathodes, extensive efforts
have been made to optimize the composition of LnBaCo2O5+δ. These modifications involve
A-site and B-site doping, or a combination of both, aiming to improve structural stability,
enhance chemical compatibility with the electrolyte, increase electrocatalytic activity, and
finely tune the TECs (Table 1) [73,85–118]. Marrero-Jerez et al. [85] found that substituting
Sr for Ba in GdBaCo2O5+δ completely stabilizes the high-temperature tetragonal sym-
metry even at room temperature. Kim et al. [86] observed improved chemical stability
when GDC and LSGM electrolytes are used. Numerous investigations have systemati-
cally examined the electrical and electrochemical properties of the LnBa1−xSrxCo2O5+δ
system, with Ln representing La3+ [73], Pr3+ [87,92], Nd3+ [90,91], Sm3+ [87–89,112,114], and
Gd3+ [85–87,111]. Kim et al. [86] demonstrated that the electrical conductivity of
GdBa1−xSrxCo2O5+δ increases with rising Sr content, attributed to increased oxygen
content, which is believed to be linked to the difference in A-site cation radii between
(Ba1−xSrx)2+ and Gd3+. Additionally, Subardi et al. [88] found that the double perovskite
SmBa0.6Sr0.4Co2O5+δ has a relatively high Dchem (1.63 × 10−6 cm2 s−1 at 500 ◦C and
1.41 × 10−5 cm2 s−1 at 700 ◦C) and a notably low activation energy (Ea = 68.03 kJ mol−1)
for oxygen bulk diffusion at 500–700 ◦C. Jun et al. [89] demonstrated that Sr substitution in
SmBa1−xSrxCo2O5+δ can boost the catalytic activity of double perovskites. For instance, on
a GDC electrolyte, the ASR decreases from 0.192 Ω cm2 (x = 0.00) to 0.138 Ω cm2 (x = 0.75),
and the maximum power density grows from 0.848 to 1.039 W cm−2 at 600 ◦C (Table 1).

Table 1. Typical electrical conductivity, TEC, and ASR values of double perovskites.

Electrical Conductivity (S cm−1) TEC (10−6 K−1) ASR (Ω cm2) Refs

600 700 800 600 700 800 Electrolyte

LaBaCo2O5+δ 558 447 355 - 0.195 0.039 0.010 GDC [93]
LaBa0.9Co2O5+δ 483 386 306 - 0.118 0.023 0.007 GDC [93]
PrBaCo2O5+δ

208 164 128 23.4 (30–900 ◦C) 0.181 0.038 0.009 GDC [94]
212 170 138 24.6 (30–800 ◦C) - 0.078 SDC [100]

PrBa0.92Co2O5+δ 233 187 146 22.8 (30–900 ◦C) 0.093 0.024 0.007 GDC [94]
PrBa0.5Sr0.5Co2O5+δ - - - - 0.688 0.154 - GDC [87]
PrBaCoFeO5+δ 91 68 62 24.9 (30–800 ◦C) - 0.105 - SDC [100]
NdBa0.5Sr0.5Co2O5+δ

695 556 442 - - 0.139 0.039 LSGM [90]
263 204 191 25.2 (100–800 ◦C) 2.800 0.676 0.086 SDC [73]

SmBaCo2O5+δ 560 440 - - 0.192 - - GDC [89]
SmBa0.5Sr0.5Co2O5+δ

1000 810 - - 0.141 - - GDC [89]
- - - - 0.631 0.092 - GDC [87]

SmBaCoCuO5+δ 27 28 31 15.5 (30–850 ◦C) - 0.382 0.086 GDC [107]

GdBaCo2O5+δ

311 249 196 - - - - GDC [85]
- - - 20.0 (30–900 ◦C) 0.4 - - GDC [104]
472 374 305 16.6 (80–900 ◦C) - - - GDC [86]

GdBa0.5Sr0.5Co2O5+δ
591 492 409 - - - - - [85]
- - - - 1.260 0.561 - GDC [87]

GdBa0.4Sr0.6Co2O5+δ 1099 930 591 19.5 (80–900 ◦C) - - - GDC [86]
GdBaCo1.7Ni0.3O5+δ - - - 15.5 (30–900 ◦C) 0.54 0.297 - GDC [104]

The presence of A-site cation deficiency has been found to significantly influence
the physical and chemical properties of perovskite oxides, as reported in previous stud-
ies [119]. Extensive investigations have been undertaken to understand the effects of
Ba2+ [93–97,120,121] and Ln3+ [122–125] deficiencies on the crystal structure, oxygen
content, electrical conductivity, and electrochemical performance of double perovskite
LnBaCo2O5+δ. Pang et al. [94,95] observed that with an increase in Ba deficiency from
x = 0.00 (0.181 Ω cm2) to x = 0.08 (0.093 Ω cm2) at 600 ◦C, the ASR value of PrBa1-xCo2O5+δ
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drops by approximately 50%. This indicates a substantial improvement in oxygen catalytic
activity associated with A-site deficiency. Dong et al. [98] further revealed that a higher
Ba deficiency in PrBa1−xCo2O5+δ oxides results in an increased concentration of oxygen
vacancies, thus boosting oxygen transport and exchange kinetics. These findings strongly
suggest that A-site cation deficiency can enhance the electrochemical performance of double
perovskite LnBaCo2O5+δ.

Ca doping and optimization of the Ln component have been identified as other effec-
tive strategies to boost the electrochemical performance of double perovskite
cathodes [86,126–153]. Yoo et al. proposed novel cathode materials, such as Ca-doped
NdBaCo2O5+δ, that have ionic radii similar to Nd and demonstrated their impressive structural
stability and outstanding electrochemical performance [99]. The ASR of NdBa1-xCaxCo2O5+δ
double perovskites was observed to decrease from 0.091 Ω cm2 (x = 0.00) to 0.066 Ω cm2

(x = 0.25) at 600 ◦C. As illustrated in Figure 5, compared to the Ca-free sample, single
cells using NdBa0.75Ca0.25Co2O5+δ as the cathode exhibited a significantly higher PPD
of 2.114 W cm−2 at 600 ◦C. Moreover, while the power density of the single cell with an
NdBaCo2O5+δ cathode experienced a decrease of approximately 50%, nearly no degrada-
tion in power density was seen for NdBa0.75Ca0.25Co2O5+δ, highlighting its remarkable
stability. This result is believed to correlate with the increased electron affinity of mobile
oxygen species in the presence of Ca.
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surement at a constant cell voltage of 0.6 V at 550 ◦C. [Reprinted with permission from Ref. [99].
Copyright 2014, John Wiley and Sons].

Similar to other cobalt-based cathode materials, LnBaCo2O5+δ often displays relatively
high TECs, typically ranging from 19 to 25 × 10−6 K−1 at 80–900 ◦C. These values are
substantially higher than those of conventional electrolytes (10–13 × 10−6 K−1) [154]
and sealing materials (11–14 × 10−6 K−1) [155]. Such differences can lead to significant
compatibility issues between the double perovskites and other components of SOFCs
during cell fabrication and thermal cycling, potentially causing performance degradation.
Besides lattice anharmonic vibrations, the elevated TECs of cobalt-based oxides are mainly
attributed to the conversion of smaller Co4+ ions to larger Co3+ ions at higher temperatures.
This is due to the liberation of lattice oxygen upon heating and the spin-state changes of Co3+

ions [156,157]. To address these drawbacks, researchers have examined the substitution
of cobalt with various elements, including Fe [100–102,158–163], Ni [103,104,164–166],
Cu [105–107], Mn [167,168], Zn [169], Zr [170,171], W [172], Sc [173], Mo [174], Ga [175],
and Bi [176]. Jo et al. [104] reported that partial substitution of Fe and Cu for Co in
GdBaCo2O5+δ (GdBaCo2/3Fe2/3Cu2/3O5+δ) can reduce the TECs from 19.9 × 10−6 K−1 to
14.6 × 10−6 K−1 at 80–900 ◦C. Zhao et al. [100] conducted a comprehensive investigation
into the impact of Fe content on the physicochemical properties of double perovskite
PrBaCo2O5+δ, discovering a continuous decrease in TECs with higher Fe content. However,
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this substitution also led to reduced electrical conductivity, oxygen vacancy concentration,
and electrochemical performance compared to the Fe-free compound. For an in-depth
exploration of this subject, readers are encouraged to refer to relevant review articles [177].

The ability to incorporate dopants at both the A-site and B-site offers a broader
spectrum for customizing double perovskite cathode materials [102,108–110,178–180]. As
earlier elaborated, appropriate A-site doping in LnBaCo2O5+δ, like substituting Ba with
Sr or inducing a Ba deficiency, has the potential to enhance electrical conductivity, oxygen
bulk diffusivity, surface exchange kinetics, and the oxygen catalytic activity pertinent to
ORR [86,89,94,181]. On the other hand, replacing Co with different metal ions, including Fe,
Ni, and Cu, has proven to successfully enhance the structural resilience and thermal expan-
sion coefficients, thus improving compatibility with the electrolyte [100,101,103–105]. For in-
stance, Kim et al. [110] deftly adjusted the manganese content in NdBa0.5Sr0.5Co2-xMnxO5+δ
to refine its physicochemical attributes as a cathode catalyst for SOFCs. They found that
an increase in manganese content led to a decrease in TEC from 20.27 × 10−6 K−1 (x = 0.0)
to 14.33 × 10−6 K−1 (x = 0.5), while maintaining acceptable electrochemical performance.
Similarly, Choi et al. [108] documented a robust cathode material, PrBa0.5Sr0.5Co2-xFexO5+δ,
which exhibited increased oxygen ion mobility and surface oxygen exchange reactions,
superior electrochemical performance (~0.056 Ω cm−2 at 600 ◦C), and strong compatibility
and stability with a GDC electrolyte. Persistent optimization of double perovskite com-
position is essential to uncover innovative cathode materials boasting excellent structural
stability, advantageous chemical and thermal compatibility with the electrolyte, adequate
electrical conductivities, swift oxygen transport and exchange kinetics, high catalytic ORR
activity, and outstanding durability.

4. Nanostructure and Nanoscience of LnBaCo2O5+δ

Nanostructures offer significantly enhanced surface area-to-volume ratios and ex-
panded interphase and interfacial areas. As such, they have the potential to augment
electrochemical reaction sites. Perovskite oxides with nanostructured morphologies have
been rigorously studied and employed in solid oxide fuel cells [182–198] as well as other
energy-related applications [199–202]. Reducing the operating temperature creates an
opportunity to use nanostructured materials, which can sidestep the slow ORR and, in
turn, boost the catalytic performance of the cathode [182–198]. Infiltration is a common
and straightforward method for developing nanostructured cathode materials tailored
for SOFCs [182–184]. A nanostructured cathode material, represented by the formula
SmBa0.5Sr0.5Co2O5+δ, was created by infusing its precursor solution into the porous LSGM
framework, followed by calcining at 850 ◦C. This material showcased commendable elec-
trochemical performance [185]. For instance, it showed an ASR as low as 0.12 Ω cm2

and a PPD of up to 0.70 W cm−2 at 500 ◦C. Electrospinning, praised for its scalability
and precision, was utilized to fabricate a GdBaCo2O5+δ cathode material possessing a
nanofiber configuration, achieving a comparatively low ASR, approximately 0.10 Ω cm2 at
700 ◦C [194].

Ding et al. [185] managed to produce unique needle-like nanospikes of the cathode
material PrBaCo2O5+δ by applying a discharge voltage of 0.1 V to the anode-supported
single cell, arranged as NiO-Sm0.2Ce0.8O1.9/Sm0.2Ce0.8O1.9/PrBaCo2O5+δ, and then firing
the PrBaCo2O5+δ cathode slurry at 450 ◦C. As illustrated in Figure 6, these nanospikes, with
an average diameter of 20 nm and lengths spanning from tens to hundreds of nanometers,
are uniformly distributed along the pore boundaries of the porous cathode. For the single
cell that used the nanospikes PrBaCo2O5+δ as the cathode, exceptionally high maximum
power densities of 1.453 W cm−2 at 550 ◦C and 1.044 W cm−2 at 500 ◦C, coupled with
excellent endurance, were recorded.
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The fabrication of double perovskites in a thin-film architecture not only facilitates
fundamental studies to evaluate inherent properties of materials [73,183,203,204] but
also illuminates a new avenue for the development of high-performing cathode mate-
rials [72,186,188]. The influence of orientations on the electrochemical performance of
double perovskites was appraised by Gao et al. [186]. They produced PrBaCo2O5+δ thin
films with different orientations, including (110), (001), and (111), using pulsed laser depo-
sition. The thin film with the (111) orientation showed superior performance, achieving
an ASR of 0.302 Ω cm2 at 600 ◦C. Liu et al. [187,188] fabricated symmetric half-cells by
coupling single-crystal, highly epitaxial LnBaCo2O5+δ (Ln = Pr, La) thin-film cathodes
with Gd0.8Ce0.2O2:Y0.08Zr0.92O2 electrolytes and subsequently characterized their oxygen
surface exchange and catalytic activity. For instance, the symmetric half-cell featuring the
epitaxial LaBaCo2O5+δ thin film displayed remarkable properties, such as an impressively
fast surface exchange rate of 0.017 cm s−1 at 600 ◦C and an exceptionally low activation
energy value of 0.49 eV. These outcomes might be ascribed to the structural entropy arising
from the nano-ordered oxygen vacancy framework.

5. Conclusions and Outlook

This manuscript addresses the development of novel strategies concerning the double
perovskites LnBaCo2O5+δ, which possess rapid oxygen bulk diffusivity and a high surface
exchange rate. These parameters serve as the cornerstone for achieving advanced catalytic
activity for the ORR; hence, they are essential for cathode materials operating within
intermediate-to-low temperature SOFCs. The discourse encompasses physicochemical
characteristics, compositional fine-tuning, and the implementation of nanostructure and
nanoscience within double perovskites. Potential research focuses for advancing high-
performance double perovskite-based cathode materials include:

(1) Surface Chemistry of LnBaCo2O5+δ Under Operating Conditions
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The surface physicochemical properties of double perovskite LnBaCo2O5+δ, as cata-
lysts for the ORR, are essential for their practical application. Téllez et al. [79] characterized
the surface chemistry evolution in double perovskite LnBaCo2O5+δ (Ln = Pr, Gd) using
low-energy ion scattering, spectrometry, and atomic force microscopy. They found that
the surface composition and morphology of LnBaCo2O5+δ (Ln = Pr, Gd) are sensitive to
their ambient environment. Inactive Ba-rich layers emerged on the double perovskite
surface following annealing, adversely affecting oxygen surface exchange processes and,
subsequently, the electrochemical performance. Druce et al. [205] observed a similar surface
termination and subsurface restructuring for GdBaCo2O5+δ. According to Lee et al. [206],
the segregation originates from the dopant’s elastic and electrostatic interactions with the
host lattice. A slight size mismatch between the dopant and host cations could reduce
this segregation, promoting a more stable cathode surface [205–215]. Nonetheless, the
majority of research on the surface microstructure of double perovskite cathodes relies on
basic sintering processes in the air, which differs significantly from actual battery operating
conditions. Hence, guidance for the practical use of double perovskites remains limited.
Investigating surface microstructure evolution under the SOFCs’ actual operational con-
ditions and creating targeted enhancement strategies offer a promising path for practical
deployment of these cathode materials.

(2) Microstructure of LnBaCo2O5+δ Cathode Materials

The structural design of double perovskite metal oxides offers advantages for their
use in the cathodic parts of SOFCs. Nevertheless, in practical applications, these double
perovskites often present as polycrystalline particles. It is believed that features such
as grain orientation, microstructure, lattice strain, and chemical imperfections strongly
influence their catalytic activity [72,73,183,186,188,189,193,203,216–218]. Consequently, a
comprehensive study on the microstructure of these double perovskite particles is crucial
for high-performance SOFC cathodes. For instance, Fu et al. found that a dual-phase
cathode containing both double perovskite PrBa(Co1-xFex)2O5+δ and simple perovskite
Pr0.5Ba0.5Co1-xFexO3-δ significantly enhanced the cathode’s oxygen catalysis [193]. Like-
wise, Pang et al. engineered a biomimetic ceramic catalyst resembling tree leaves, incor-
porating Ce0.9Gd0.1O1.95 “epidermis” and “veins” externally and inside the bulk of the
PrBaCo2O5+δ [189]. This unique design substantially improved cell performance, inducing
a 79% rise in the cell’s output power density, reversing the rapid decline trend, yielding a
23% power density gain in the initial 20 h, and stabilizing at 0.91 W cm−2 (at 750 ◦C and
0.7 V) [189].
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materials for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A 2017, 5, 25641–25651. [CrossRef]

132. Pang, S.; Su, Y.; Yang, G.; Shen, X.; Zhu, M.; Wu, X.; Li, S.; Yang, X.; Xi, X. Enhanced electrochemical performance of Ca-doped
NdBa1-xCaxCoCuO5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Ceram. Int. 2018, 44, 21902–21907.
[CrossRef]

133. Xia, W.; Liu, X.; Jin, F.; Jia, X.; Shen, Y.; Li, J. Evaluation of calcium codoping in double perovskite PrBaCo2O5+δ as cathode
material for IT-SOFCs. Electrochim. Acta 2020, 364, 137274. [CrossRef]

134. Li, J.; Sun, N.; Liu, X.; Shen, Y.; Wang, F.; Li, J.; Shi, K.; Jin, F. Investigation on Nd1–xCaxBaCo2O5+δ double perovskite as new
oxygen electrode materials for reversible solid oxide cells. J. Alloys Compd. 2022, 913, 165245. [CrossRef]

135. Wang, L.; Xie, P.; Bian, L.; Liu, X.; Chou, K. Performance of Ca-doped GdBa1-xCaxFe2O5+δ (x=0, 0.1) as cathode materials for
IT-SOFC application. Catal. Today 2018, 318, 132–136. [CrossRef]

136. Xiang, W.; Wang, J.; Li, S.; Xia, T.; Wang, G. Positive effects of calcium-doping on the cathode performance of layered perovskite
Eu1-xCaxBaCo2O5+δ for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 2019, 801, 220–228. [CrossRef]

137. Wang, W.; Pang, S.; Su, Y.; Shen, X.; Wang, Y.; Xu, K.; Xi, X.; Xiang, J. The effect of calcium on the properties of
SmBa1−xCaxCoCuO5+δ as a cathode material for intermediate-temperature solid oxide fuel cells. J. Eur. Ceram. Soc.
2017, 37, 1557–1562. [CrossRef]

138. Zhou, D.; Yuan, C.; Chen, X.; Chen, F.; Xiong, X.; Liu, Y.; Yan, J.; Fujita, T. A-site double-lanthanide-doped La1-xPrxBaCo2O5+δ
cathode materials for intermediate-temperature solid oxide fuel cells. J. Mater. Sci. 2022, 57, 14398–14412. [CrossRef]

https://doi.org/10.30880/ijie.2023.15.01.015
https://doi.org/10.1016/j.materresbull.2020.111173
https://doi.org/10.1016/j.jallcom.2020.158025
https://doi.org/10.1016/j.jeurceramsoc.2022.10.068
https://doi.org/10.1039/C6TA08396J
https://doi.org/10.1016/j.jpowsour.2010.05.051
https://doi.org/10.1039/C5RA19555A
https://doi.org/10.1016/j.jallcom.2021.160759
https://doi.org/10.1016/j.ceramint.2020.04.051
https://doi.org/10.1016/j.ceramint.2021.08.301
https://doi.org/10.1016/j.ijhydene.2016.04.248
https://doi.org/10.1016/j.jallcom.2022.165002
https://doi.org/10.1016/j.jallcom.2022.164191
https://doi.org/10.1016/j.ceramint.2021.11.310
https://doi.org/10.1016/j.jallcom.2022.167731
https://doi.org/10.1016/j.electacta.2021.138830
https://doi.org/10.1007/s10853-020-05375-y
https://doi.org/10.1039/C7TA08954F
https://doi.org/10.1016/j.ceramint.2018.08.301
https://doi.org/10.1016/j.electacta.2020.137274
https://doi.org/10.1016/j.jallcom.2022.165245
https://doi.org/10.1016/j.cattod.2018.03.028
https://doi.org/10.1016/j.jallcom.2019.06.143
https://doi.org/10.1016/j.jeurceramsoc.2016.12.017
https://doi.org/10.1007/s10853-022-07497-x


Catalysts 2023, 13, 1288 16 of 18

139. Bangwal, A.S.; Jha, P.K.; Chauhan, M.; Singh, S.; Sinha, A.S.K.; Jha, P.A.; Singh, P. Compositional effect on oxygen reduction
reaction in Pr excess double perovskite Pr1-xBa1-xCo2O6-δ cathode materials. Int. J. Hydrogen Energy 2020, 45, 23378–23390.
[CrossRef]

140. Chen, F.; Zhou, D.; Xiong, X.; Pan, J.; Cai, D.; Wei, Z.; Chen, X.; Liu, Y.; Luo, N.; Yan, J.; et al. Doping strategy on improving the
overall cathodic performance of double perovskite LnBaCo2O5+δ (Ln=Pr, Gd) as potential SOFC cathode materials. J. Mater. 2023,
9, 825–837. [CrossRef]

141. Zhu, F.; He, F.; Xu, K.; Chen, Y. Enhancing the oxygen reduction reaction activity and durability of a double-perovskite via an
A-site tuning. Sci. China Mater. 2022, 65, 3043–3052. [CrossRef]

142. Wang, S.; Zan, J.; Qiu, W.; Zheng, D.; Li, F.; Chen, W.; Pei, Q.; Jiang, L. Evaluation of perovskite oxides LnBaCo2O5+δ (Ln = La, Pr,
Nd and Sm) as cathode materials for IT-SOFC. J. Electroanal. Chem. 2021, 886, 115144. [CrossRef]

143. Yang, Q.; Tian, D.; Liu, R.; Wu, H.; Chen, Y.; Ding, Y.; Lu, X.; Lin, B. Exploiting rare-earth-abundant layered perovskite cathodes of
LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln=La and Nd) for SOFCs. Int. J. Hydrogen Energy 2021, 46, 5630–5641. [CrossRef]

144. Zhang, Y.; Niu, B.; Hao, X.; Wang, Y.; Liu, J.; Jiang, P.; He, T. Layered oxygen-deficient double perovskite GdBaFe2O5+δ as
electrode material for symmetrical solid-oxide fuel cells. Electrochim. Acta 2021, 370, 137807. [CrossRef]

145. Saccoccio, M.; Jiang, C.; Gao, Y.; Chen, D.; Ciucci, F. Nb-substituted PrBaCo2O5+δ as a cathode for solid oxide fuel cells: A
systematic study of structural, electrical, and electrochemical properties. Int. J. Hydrogen Energy 2017, 42, 19204–19215. [CrossRef]

146. Akande, S.O.; Chroneos, A.; Schwingenschlögl, U. O vacancy formation in (Pr/Gd)BaCo2O5.5 and the role of antisite defects.
Phys. Chem. Chem. Phys. 2017, 19, 11455–11459. [CrossRef] [PubMed]

147. Anjum, U.; Vashishtha, S.; Agarwal, M.; Tiwari, P.; Sinha, N.; Agrawal, A.; Basu, S.; Haider, M.A. Oxygen anion diffusion in
double perovskite GdBaCo2O5+δ and LnBa0.5Sr0.5Co2-xFexO5+δ (Ln = Gd, Pr, Nd) electrodes. Int. J. Hydrogen Energy 2016, 41,
7631–7640. [CrossRef]

148. Ananyev, M.V.; Eremin, V.A.; Tsvetkov, D.S.; Porotnikova, N.M.; Farlenkov, A.S.; Zuev, A.Y.; Fetisov, A.V.; Kurumchin, E.K.
Oxygen isotope exchange and diffusion in LnBaCo2O6−δ (Ln = Pr, Sm, Gd) with double perovskite structure. Solid State Ionics
2017, 304, 96–106. [CrossRef]

149. Zhou, Q.; Wang, F.; Shen, Y.; He, T. Performances of LnBaCo2O5+x–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-
temperature solid oxide fuel cells. J. Power Sources 2010, 195, 2174–2181. [CrossRef]

150. Malyshkin, D.; Novikov, A.; Tsvetkov, D.; Zuev, A. Preparation, oxygen nonstoichiometry and defect structure of double
perovskite LaBaCo2O6–δ. Mater. Lett. 2018, 229, 324–326. [CrossRef]

151. Liu, S.; Zhang, W.; Li, Y.; Yu, B. REBaCo2O5+δ (RE = Pr, Nd, and Gd) as promising oxygen electrodes for intermediate-temperature
solid oxide electrolysis cells. RSC Adv. 2017, 7, 16332–16340. [CrossRef]

152. Politov, B.V.; Suntsov, A.Y.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L. Thermodynamic analysis of defect equilibration in
double perovskites based on PrBaCo2O6–δ cobaltite. J. Solid State Chem. 2017, 249, 108–113. [CrossRef]

153. Jin, F.; Liu, J.; Shen, Y.; He, T. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ-
Sm0.2Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs. J. Alloys Compd. 2016, 685, 483–491. [CrossRef]
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