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Organocatalysis has been a breakthrough in chemical transformations becoming vi-
able the conversion of challenging reactions through the sustainable use of small organic
molecules as catalysts. Although organic molecules have been utilized in the past, the
emergence of organocatalysis as new field occurred only in the last two decades. This was
brought about because of their distinct set of advantages, such as operational simplicity,
catalyst stability, and the availability of a vast amount of small, naturally occurring organic
molecules, including natural sources of chiral amino acids and alkaloids, to mention few [1].
The recognition of organocatalysis as a tool for controlling the chirality of molecules was
accomplished through the Nobel Prize in Chemistry 2021 being awarded for “the devel-
opment of asymmetric organocatalysis”. In addition to asymmetric conversion, other
organocatalyzed reactions have been exploited, such as forming and breaking reactions,
and photo- and electrocatalysis.

Thus, this Special Issue is dedicated to the field of organocatalysis and the latest
developments regarding the optimization of the organocatalysts using distinct methodolo-
gies, with the commitment of meeting the environmental requirements, highlighting the
importance of green solvents and catalyst recycling, as well as the need to correlate the
waste produced in relation to the useful product for upscaling purposes [2–8], as briefly
described in the following paragraphs.

Zalewska et al. [2] reported the benefits resulting from the association of Chiral
Ionic Liquids (CIL) using L-proline as a cation or anion, combined with suitable counter-
ions, and their performance in the asymmetric Michael addition reactions of ketones and
aldehydes to nitro-olefins. The CIL-Proline organocatalysis exhibited better catalytic results
in comparison to the L-Proline, achieving good conversions and enantioselecitivies (e.g.,
upwards of 95%). According to the authors, products could be recovered with good
efficiency via supercritical CO2 extraction. Likewise, Jacoby et al. [3] demonstrated the
feasibility of recovering products and catalysts through the development of novel polyester-
supported catalysts (PCL) prepared from poly(ε-caprolactones), modulating the molecular
weights in order to control the catalyst/polymer weight ratio, ensuring homogeneous
catalysis, while allowing the catalysts to recover through CO2 supercritical extraction.
In terms of catalyst performance, the presence of amide groups decorating the catalysts’
structures was more effective than the presence of their ester group counterparts toward
the aldol product, achieving a higher degree of steroselectivity. Fleisher et al. [4] evaluated
the substitution of the nucleophilic core, N-alkylimidazole or 4-aminopyridine, decorated
through the benzyl substituent by an extensive secondary-sphere envelope in the acylation
and phosphorylation of butyric anhydride and diphenylphosphoryl chloride reactions,
respectively. The results revealed significant differences between the two transformations
according to the catalyst’s nature, with the BMAP-type catalysts being much more active
than the imidazole-type (Im-) analogues.

In view of the fact that solvents have a pivotal role in organic reactions, Martelli et al. [5]
made a comprehensive review of the recent advances in asymmetric organocatalysis using
bio-based solvents in order to replace the toxic organic reagents often used with greener
ones. The authors emphasize the need for considering solvents derived from renewable
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sources, including biomass. The application of bio-based solvents such as ethyl alcohol, 2-
methytetrahydrofuran, ethyl acetate, ethyl lactate, supercritical carbon dioxide, and diethyl
carbonate in asymmetric organocatalysis reactions was discussed.

A detailed review of the use of sulfur ylides such as organocatalysts in reactions
such as Corey–Chaykovsky reactions, cyclopropanations, forming C-H and C-X, and X-H
insertions was discussed by Hayashi et al. [6]. Despite the fact that the use of sulfur ylides
for metal carbene formation is well established, their application in organocatalysis is still
in its early stages. The authors discussed the mechanisms and activation modes of this
class of organocatalysts, and identified the potential challenges to be circumvented, such as
the need for research on sulfonium ylide organocatalysts in formal insertion reactions and
sulfoxonium ylides in ciclization.

Antenucci et al. [7] discussed the foundations of upscaling of some of the relevant
organocataytic reactions not yet achieved on a large scale, wherein key factors such as the
availability of equipment, purity, and a lack of traces of certain metal impurities are pivotal
in the design of the process. At the same time, a sustainability approach was evaluated
through global E factor (Eg) and E factor (E), from which the ratio of useful product to
waste generated, including catalyst waste, was be measured.

Finally, I believe this Special Issue will contribute to the existing knowledge in
the field and motivate further research in organocatalysis, contributing to green pro-
cess development.
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