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Abstract: We explore the origins of the marked improvement in enantioselectivity in the inner-sphere
(PHOX)Pd-catalyzed allylic alkylation of N-benzoyl lactam nucleophiles over their carbocyclic coun-
terparts. We employ density functional theory calculations to aid in the interpretation of experimental
results. Ultimately, we propose that the enhancement in enantioselectivity arises primarily from
noncovalent interactions between the substrate and ligand rather than secondary substrate chelation,
as previously hypothesized.

Keywords: C(sp3)–C(sp3) cross-coupling; asymmetric catalysis; computation; allylic alkylation

1. Introduction

The Pd-catalyzed decarboxylative asymmetric allylic alkylation of hard enolate nucle-
ophiles is a proven tactic for the formation of all-carbon quaternary stereogenic centers [1,2].
Employing chiral tert-butyl phosphinooxazoline (t-BuPHOX) ligands renders the transfor-
mation asymmetric, with an enantiodetermining inner-sphere reductive elimination [3–9]
(Figure 1A). Despite extensive ligand optimization efforts, enantioenrichment of carbocyclic
ketone products (2), derived from b-ketoesters (1) or enol carbonates, are generally limited
to 80–90% ee. In contrast, N-benzoyl lactams (3) undergo the analogous transformation
with markedly higher levels of enantioselectivity, often ≥99% ee (4) [10]. This represents
a substantial increase in the effective difference in barrier height between diastereomeric
enantiodetermining transition states (∆∆G‡), from ca. 1.6 to >3.3 kcal/mol (Effective ∆∆G‡

calculated from Eyring equation at 40 ◦C. Note the effective ∆∆G‡ may not directly corre-
spond to the free energy difference between only the two lowest diastereomeric transition
states if multiple low energy conformeric transition states are present) (Figure 1B). Com-
pared to their carbocyclic counterparts, the lactam substrate class would afford a potentially
more electron-rich Pd-enolate, which may serve to reinforce a highly selective inner-sphere
mechanism over a poorly selective outer-sphere process [7]. However, we also posited that
the presence of an adjacent Lewis basic carbonyl group may enable additional interactions
with the metal center. To independently examine each of these variables, we explored
the a- and b-enaminone substrate classes (Figure 1C). Of note, a-enaminones (5) with
a-heteroatom chelating groups retain the high levels of enantioselectivity of the N-benzoyl
lactam substrate class [11], while b-enaminones (6) featuring more electron-rich enolates
but lacking the ability to engage in hypothesized secondary interactions afford products
in <90% ee [12]. These results suggest that the a-heteroatom-containing fragment of the
substrate appears to play a key part in improving enantioselectivity. Here, we employ
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computational tools to elucidate this role, ultimately deepening our understanding of the
origins of enantioselectivity in the inner-sphere allylic alkylation reaction.
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Figure 1. (A) The decarboxylative asymmetric allylic alkylation of cyclic ketone nucleophiles.
(B) Allylic alkylation of N-benzoyl lactams. (C) Mechanistic insights from a- and b-enaminone
substrate classes.

2. Results and Discussion

The enantiodetermining C–C bond formation in the (PHOX)Pd-catalyzed asymmetric
allylic alkylation occurs via a seven-centered pericyclic transition state [7,13]. Enantioselec-
tivity arises from preferential exposure of the Re face of the prochiral enolate ligand to the
h1-allyl terminus (TS1) (Figure 2A). Bond formation from the Si face (TS2) is disfavored
due to steric incursions between the carbocyclic enolate backbone and the ligand scaffold.
The dramatic improvement in enantioenrichment of N-benzoyl lactam products suggests
an enhanced favorability of the analogous Re transition states over their Si counterparts.
As similar levels of enantioselectivity were observed with a-enaminones (Figure 1C), we
posited that such a-heteroatom-containing motifs may reinforce the Re facial preference
through axial chelation with the PdII center in the reductive elimination transition state
(Figure 2B, right). To further probe this hypothesis, we turned to computations.

Beginning with enolate 7, derived from carbocyclic substrate 1, we find a 2.0 kcal/mol
preference for TS1 over TS2 at the revDOD-PBEP86-NL/def2-TZVPP/SMD(PhMe)//r2SCAN-
D4/def2-TZVP[Pd], def2-SVP level of theory—in accord with our prior studies (Figure 3) [7].
Maintaining a similar steric profile while perturbing enolate electronics with N–H lactam-
derived enolate 8 did not significantly alter ∆∆G‡. Accounting for distribution across all
conformers, enantiomeric excesses of 89% and 90% are computed, respectively (experimen-
tally, the corresponding N–H lactam is not compatible in the transformation).

We then explored the effect of N-substitution on the relative free energies. N-benzoyl
substitution affords two low-energy transition states from the favored Si face—one con-
former with the flanking carbonyl of the benzoyl group oriented away from (TS5) and
another toward (TS6) the metal center (Figure 4). TS6 is reminiscent of our chelating het-
eroatom hypothesis (Figure 2B). However, TS5 is computed to be favored over TS6 by 5.2
and 4.7 kcal/mol with (S)-t-BuPHOX and (S)-(CF3)3-t-BuPHOX ligands, respectively. With
regard to enantioselectivity, TS5 is favored over the lowest energy Si face transition states
(TS7) by 2.3 and 3.2 kcal/mol with the (S)-t-BuPHOX and (S)-(CF3)3-t-BuPHOX ligands,
respectively. Computed enantiomeric excesses of 95% and 99% are found when accounting
for all transition state conformers. The additional increase in ∆∆G‡ of 0.9 kcal/mol with
incorporation of p-CF3 groups may arise from increasing favorable electrostatic interactions
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between the benzoyl and PHOX ligand arene quadrupoles in TS5b. We note the electron-
poor (S)-(CF3)3-t-BuPHOX ligand is also crucial in promoting the inner-sphere mechanism
discussed herein over less selective outer-sphere pathways.
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While the computed trends in enantiomeric excess are in accord with experimental
values, the energetic preference for TS5 over TS6 mandates a re-evaluation of our initial
hypothesis regarding axial chelation. TS6a and TS6b feature axial Pd–O distances of 2.64
and 2.63 Å (compared to equatorial Pd–O distances of 2.20 and 2.19 Å), highlighting the
lack of strong axial binding of the carbonyl oxygen. While the s-donating oxygen lone
pair is repelled by the occupied axially-oriented 4d(z2) orbital of the d8 PdII center, mixing
with the empty 5p(z) orbital may contribute to a partial s bonding interaction (for further
discussion on such 3-center 4-electron bonding arrays in d8 complexes, see [14]). Geometric
constraints inhibit π bonding interactions with the carbonyl group. We also suspect an
electrostatic contribution to the weak Pd–O axial binding. However, four-coordinate TS5a
and TS5b are the favored conformation of the Si transition states by a considerable margin.
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Figure 4. C–C bond-forming transition states for the N-benzoyl lactam substrates.

A similar trend is observed with N-acetyl lactam transition states (TS5c and TS6c),
highlighting that the preference for four-coordinate transition states is not a conformational
artifact of the benzoyl arene (Figure 5). Additionally, N-carbamate groups (Boc, CBz, and
Fmoc) that are more Lewis basic lead to reduced enantioselectivities of 73–87% ee. Hence,
axial chelation to the square planar Pd center in the reductive elimination does not appear
to enhance enantioselectivity.
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Figure 5. Comparison of relative barriers between diastereomeric C–C bond-forming transition states
in both N-Bz and N-Ac lactams.

In lieu of secondary substrate chelation to Pd, we posit that the success of the benzoyl
group lies in its ability to adopt a parallel orientation to the open face of the PHOX backbone
in TS5. However, the tert-butyl group occupies this site in the Si transition state (TS7).
Hence, this low-energy orientation is not accessible, and a large energetic penalty is incurred
in C–C bond formation from the Si face. The results presented herein suggest that the
improved enantioselectivity observed in the N-Bz class of substrates is noncovalent in
nature. While no evidence of secondary substrate chelation is found for N-Bz lactams,
such interactions may prevail in other substrate classes. The detailed investigation of these
systems will be reported in due course.

3. Computational Details

All quantum mechanics calculations were carried out with the ORCA program (ver-
sion 5) [15]. The r2SCAN functional [16] paired with D4 dispersion corrections [17], hence-
forth referred to as r2SCAN-D4, was employed for geometry optimizations and harmonic
frequency calculations. Similar geometries were obtained across a variety of density func-
tionals. For geometry optimization and harmonic frequency calculations, Pd is described by
the def2-TZVP basis set [18] and the ECP28MWB small-core (18 explicit valence electrons)
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quasi-relativistic pseudopotential [19], while C, H, and P are assigned the def2-SVP basis.
Diffuse functions are added to O, N, and F (ma-def2-SVP). All Hessians were computed
analytically. Stationary points are characterized by the correct number of imaginary vi-
brational modes (zero for minima and one for saddle points). Cartesian coordinates of all
optimized structures are included as “.xyz” files and are available online in a compressed
zip file format (see Supplementary Materials).

Electronic energies are further refined with single-point calculations employing the
revDOD-PBEP86-NL double hybrid functional with non-local dispersion corrections [20]
and the def2-TZVPP basis set on all atoms (with the ECP28MWB pseudopotential for
Pd) with additional diffuse functions on O, N, and F (ma-def2-TZVPP). Solvation was
accounted for with the SMD solvation model for toluene. Similar results were obtained from
single-point calculations employing the range-separated hybrid wB97M-V functional [21].
To check for basis set superposition error, single-point calculations of select transition states
(TS5, TS6, and TS7) were carried out with revDOD-PBEP86-NL and wB97M-V functionals
paired with the quadruple-z quality (ma-)def2-QZVPP basis set. Similar results are obtained;
hence, we recommend the more computationally tractable triple-z quality basis set for
this application. Final Gibbs free energies were obtained by applying thermodynamic
corrections obtained at the optimization level of theory to these refined electronic energies.
Thermodynamic corrections from harmonic frequency calculations employ the quasi-rigid
rotor harmonic oscillator approach to correct the breakdown of the harmonic oscillator
approximation at low vibrational frequencies [22].

All stereochemical perturbations (Re/Si, chair/boat, axial/equatorial) and confor-
mations (carbonyl distal, carbonyl proximal) are considered for each reaction pathway.
Computed enantiomeric excess accounts for contributions from all considered transition
states weighted by their final relative Gibbs free energies at 40 ◦C. All quantum mechanical
data are included online in the supplementary Excel file (see Supplementary Materials).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13091258/s1, all computed quantum mechanics energies and
coordinates of computed transition states.
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